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Abstract

Nos-linear behaviour of an axisymmetric orthotropic circular plate at elevated temperature for both clamped
movable and immovable cdges has been studied, using generalised dynamical field equations (ip the von Karman
sense) derived in terms of displacement components. Relative time-periods for linear and non-linear vibrations are
seen to depend an relative amplitudes and thermal loading parameter. Critical buckling temperatures for both the
boundary conditions have been obtained in the limiting case and corresponding results for isotropic plates have
been comparced with keown results.
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1. Introduction

With the increased use of strong and light-weight structures, especially in aerospace engi-
neering, and in the vibrations of machine parts, many problems of non-linear vibrations
arise where complementary stresses in the middie plane of the plate must be taken into
account for deriving the governing field equations of the plate.

Extensive studies on the large amplitude (non-linear) vibrations of elastic circular plates
have been made by Berger’s method ™ as well as by von Karman’s method 7 Berger’s method
has some advantages over von Karman’s method since it leads to decoupled equations.
However, Nowinski and Ohanabe® and Prathapq have pointed out certain inaccuracies in
Berger's equations and in view of this von Karman's method should be resorted to until some
alternative theory is set forth.

Inthe present investigation. non-linear behaviour of an axisymmetric orthotropic circular

glate at elevated temperature for both clamped movable and immovable boundary condi-
tions has been studied. using generalised dynamical ficld equations (in the von Karman
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sense) derived in terms of displacement components. Relative time-periods for tinear ang
non-linear vibrations are seen to depend on relative amplitudes and thermal loading parame.
ter. Critical buckling temperatures have been deduced in the limiting case and compared
with known results for the isotropic plates.

2. Governing equations

Considering equilibrium equations of the non-linear theory for the case of an axisymmetric
orthotropic circular plate subject to thermal stresses and with notations as in Nowinski *, the
basic governing equations for the dynamical analysis in terms of displacement components
can be expressed in the forms

2 _Ca Cu_ 2
rluy + oru,, r 1/2(C” 1) rw,,
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~rlw W + S Ny —
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3. Free vibrations

For {ree vibrations g = 0: however, it is not exactly true that M r= 0; it is an assumption
based on the neglect of temperature variation in depth due to compression even though
Jaones et al'* assume M7= 0. For free thermal vibrations, the* tempetature field should be
taken to depend on the radial co-ordinate r as considered by Buckens'?. Accordingly. Mr
disappears from equation (2) and only N rsurvives in equation (1).

4. Method of solution

The deflection w(r,t) is expressed in the separable form

wirg) = A[1 + E

=24,
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=A[l1+ A2(rfa) + A4 (r/a)* 1 F (1) 3Y
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where 4 is the maximum deflection at the centre of the plate and the constants 4, and 4.
must be determined from the boundary conditions.

Considering equations (1) and (3.1) one gets the in-plane displacement u(r,t) finite at the
origin, in the form

crl Cy rs Cs r?
s Y T O “

u{rt) = Cor* +

where C1, C2 and Cs are known constants and Cp is a constant of integration to be
determined from in-plane boundary conditions for movable and immovable edges, ¥ (r) is
the particular integral for the thermal loading terms on the right-hand side of equation (1)

and k*=Cn/Cn.
Assuming the temperature distribution 8 (r,2z) to depend on the radial co-ordinate in the
form® given by
d(rz)=ro(ry=To(l—r/a),

one gets the expressions for Ny and accordingly ¢ (r) is determined.

We now substitute the expression for w (r,1) given by equation (3.1) as well as the required
expression for N, given by

h/2 u 5
Ne=frpdz = Cuh(u, + % w,?) + Coh—+ Bu Nz %)

~hz r

into equation (2) and applying Galerkin procedure one arrives, after a lengthy but simple
walculation, the following time-differential equation in the form
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5. Determination of the constant of integration C,

For clamped immovable edges of the plate we have 12 = 0 at r = a and for movable edges ofa
plate we have N, = 0 at r = a. Required expressions for the constant C, for the two casesare
obtained by inserting the above boundary conditions in equations (4) and (5). With these
values of Coinserted into equation (6) one gets, finally, the time-differential equation in the
form

7

d F(ryde* + aF() + AF 1) = 0 ’ u

6. Boundary conditi lamped plate

For a plate clamped along the boundary

w = dwidr =0 at r=a
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and considering equation (3. onegets A, = -2 and 4, = |
Corresponding values of 4> and A for simply-supported edges can be determined by

considering the conditions

w= 0= M, (moment)at r = a.

7. Solution of time-differential equation

The solution of equation (7) with initial conditions

F(0y =1, dF(0)/dt=0 ®)

has been given by Nash and Modeer ** with the help of Jacobian ellipticfunctions and hence
the ratio of the non-linear and linear time-periods 7*/ T'is given by

20 ,
T*/T:“;/(Hﬁ/a)” (9)

8. Numerical results and discussion

For both movable and immovable edges of the circular plate variations of non-dimensional
time-periods 7*/ T for different variations of non-dimensional amplitudes 4/h and
non-dimensional temperature N% =~ 81 Tof Ci have been computed and presented in
Tables I and II considering the set of values.

Eu = 1X10°, Exp = 05X 10°, y, = 0.5, v2 = 0.025, C»»/Cn = 0.5
= En/Eu, Ci2/Cy = 0025, k* = 0.5, Bn/B1 = 05 a/h = 15.

From the tables, it is observed that for both the edge conditions the effect of N is to
diminish the non-dimensional time-periods. The effect of temperature on non-dimensional
time-periods is more for plates with immovable edges than for plates with movable edges for
the corresponding variations of non-dimensional amplitudes. As it should be, the non-linear
behaviour of the plates due to elevated temperature obtained here, issimilar in nature as that
of the plates subjected to in-plane compressive forces '*.

Table I

Circular plate with movable edge

4jh 0 0.4 0.8 1.2 1.6 2.0

T T(N%=0) 1 199250 197099 1938052 897102 8515666
T*[T(N%=05) 1 .97998 92645 .85391 77608 70157

T T(N%=075) 1 87421 .67602 52176 41694 .34451
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Table 11
Circular plate with immovable edge

Alh 0 0.4 0.8 1.2 L6 20

T/ T(N*=0) 1 97433 90778 82189 73442 65451

T*! T(N*%=.005) 1 96356 87429 76842 6692 58455
T*]T{N*=.01) 1 93718 80214 66713 55757 v4733:\-

9. Buckling criterion and critical buckling temperatures

Considering the foregoing set of values of elastic constants and required expressions for o
and B one gets

B/« (for movable edges) = 12(,41/11)Z (.006624) / (.079 ~NT) (10)
B/ e (for immovable edges) = 12({A /h)? (0004522) / (01626 — NT) an
Tables 1 and I1 have been constructed for the pre-buckling state by considering values of N}

sufficiently near to .079 and .01626 for movable and immovable edges respectively.

Buckling occurs when

Nt

it

.079 (movable edges) (12

i

N% 061626 (immovable edges) (13

which give the critical buckling temperature for the above two cases.

10. Results for simply-supported plates

Results for the non-linear dynamic analysis of simply-supported orthotropic circular plates
at elevated temperature can be obtained by considering the values of 4;and A, givenbelow

’_Hfi—vz)'/h: 1~p2 (14)

A=
5- v 5-p,

where »; is the Poisson’s ratio in the ¢ -direction.

The analysis of the preceding section may be followed by using the same equations and
expressions where the values of A, and A4 should be considered from equation (14).
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