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Abstract | This article aims to review some aspects of quantum information processing (QIP)

using continuous variable systems for one and two-modes. The objective of the article is to

convey a flavor of the kind of developments which has taken place in this subfield of QIP in

the past decade and not to write a comprehensive review of the field. We hence focus on

Gaussian states, their entanglement and their utilization in various quantum cryptographic

protocols that have been proposed and recently implemented.

1. Introduction
There has been a lot of interest in continuous
variable systems as candidates for quantum
information processing. Their connection with
quantum optics makes them useful systems from the
standpoint of experimental implementations based
on the quadrature amplitudes of the electromagnetic
field. Recently, quantum cryptographic protocols
based on such quantum systems (as opposed to
qubits) have been proposed and these developments
have attracted a lot of attention.

Continuous variable states arise in many
different fields in physics. Apart from material
oscillators, bosonic fields such as phonons,
plasmons and more importantly photons lend
themselves to such a theoretical description.
Optics has been an important test-bed for
novel and counterintuitive aspects of quantum
theory and currently, optical schemes are being
actively considered for quantum information
processing. Gaussian states with Gaussian-Wigner
distribution functions play an important role
in this context [1,2]. They are a family which
can be easily generated and manipulated in the
laboratory and have members from classical-like
states to maximally entangled ones. Entanglement

of Gaussian states is a fundamental resource in
quantum information theory implemented using
continuous variable systems [3,4]. Therefore, it is
necessary to understand entanglement of these states
qualitatively as well as quantitatively. A large body of
work has been carried out in this direction; however
there is still a long way to go before one achieves a
complete understanding of the issues involved [5–
8]. This particular family of states is playing a
very important role in the newly emergent area
of quantum information processing for continuous
variables. They have been used to implement
quantum teleportation [9], simulation of quantum
processes on a classical computer [10] and quantum
cryptography. Protection against decoherence is a
major issue in quantum information processing, and
it is hence important to study the evolution of this
family of states under a dissipative environment[11,
12]. Various ways are being devised to protect
these states against decoherence. Error correcting
codes [13,14], understanding the physics of
quantum channels [15] and distilling entanglement
from the non-maximally entangled states have also
been explored in this context [16–18].

Squeezing and entanglement are important
signatures of nonclassicality in the states of the
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electromagnetic field. Squeezing is associated with
noise in a certain quadrature of a quantum state
falling below the coherent state value of h̄/2.
Entanglement on the other hand, arises when it is
not possible to find any ensemble decomposition
of the density matrix for the two-mode quantum
system which is a convex sum of separable states.
It turns out that although these two concepts are
quite different there are some interesting inter-
relations between the two [19]. It is possible to
use passive optics to interconvert mode squeezing
and entanglement, particularly in the context
of Gaussian states of two-mode fields [20–22].
Various experiments have been performed to obtain
entangled Gaussian states and squeezed Gaussian
states and to understand how they are affected by
decoherence [23–25].

An important question in this context is the
sensitivity of these features to noise or decoherence.
Typically, one would imagine that entanglement is
more fragile compared to single mode squeezing
under a noisy environment because it is a two-mode
non-classical feature as opposed to squeezing, which
is a single mode non-classical feature. Fortunately,
for this class of states one can quantify the amount of
entanglement and it is therefore possible to answer
this question precisely [26–28]. This interplay
between entanglement and squeezing is a feature
which does not have any analogue for qubit systems.

The first proposal to carry out cryptography
based on continuous variable systems, where phase
and amplitude modulation of light beams carry the
key information and security is ensured by quantum
entanglement, was proposed by Ralph [29,30].
Later a new scheme using coherent states was
constructed by Grangier and collaborators where
only coherent states were used [31]. This was a
very interesting development because coherent
states were considered to be as classical as possible
within quantum theory, and it was not expected
that they could be used to carry out a quantum
information processing task such as cryptography.
Several cryptographic protocols have been designed
and implemented later using bosonic modes with
Gaussian statistics. These schemes have indicated
the possibility of reaching high secret key rates
even in lossy quantum channels. However, their
security can be affected by more general attacks
where extra Gaussian noise is introduced by Eve.
Recently, Pirandola et al have shown that the security
thresholds of these cryptographic protocols can be
increased by extending them to two-way quantum
communication where one of the honest parties
assists the secret encoding of the other [32]. For
a detailed and comprehensive review of Gaussian
states for quantum information processing see [33]
and a few important studies in this context are
described in [34–39].

2. Continuous variable quantum systems
The most straightforward route to quantize a
bosonic field (for example the electromagnetic field)
is through canonical quantization. To implement
canonical quantization for this system we associate
dimensionless Hermitian operators q̂k and p̂k with
the quadrature components of the electric field qk

and pk . The Poisson brackets become the canonical
commutation relations

[q̂j , q̂k] = [p̂j , p̂k] = 0

[q̂j , p̂k] = iδjk

j,k = 1,2··· (1)

The corresponding annihilation and creation
operators and their commutation relations are

âk =
1
√

2
(q̂k+ ip̂k)

â†
k =

1
√

2
(q̂k− ip̂k)

[âj , âk] = [â
†
j , â†

k] = 0 (2)

[âj , â†
k] = δjk (3)

The quantum mechanical Hamiltonian then
becomes

Ĥ =
∑

k

h̄ωk
(
q̂2
+ p̂2)

=

∑
k

h̄ωk

(
â†

k ak+
1

2

)
(4)

The factor of half comes from the fact that q̂p̂ 6= p̂q̂
and represents the zero point energy for each mode.

The Hilbert space on which the operators ak

and a†
k act irreducibly, in the Fock representation

has an orthogonal basis which has simultaneous
eigenvectors of number operators corresponding
to all the modes

|n1,n2,···nk ···〉

=
(a†

1 )n1 (a†
2 )n2 ··· (a†

k )nk ···
√

n1! n2!···nk!···
|0,0,···〉 ,

aj|0,0,0,···〉 = 0 ,

a†
j aj |n1,n2,···nk ···〉 = nj |n1,n2,···nk ···〉 ,

〈n′1,n′2,···n
′

k ···|n1,n2,···nk ···〉

= δn′1 n1
δn′2 n2

···δn′k nk
···. (5)

284 Journal of the Indian Institute of Science VOL 89:3 Jul–Sep 2009 journal.library.iisc.ernet.in



Continuous variable systems: Entanglement, decoherence and quantum cryptography REVIEW

Arbitrary vectors in the Hilbert space can now be
expanded in the above basis. There are several other
useful basis systems which can be used to expand
states of the electromagnetic field.

It is natural to look for transformations under
which the canonical commutation relations (1) are
invariant. For a situation where we limit ourselves
to say n modes, the real linear transformations
which preserve these commutation relations form
the group Sp(2n,<). It turns out that the unitary
representation of this group, while acting on the
Hilbert space of the n mode system is capable of
implementing finite time evolution generated by
arbitrary quadratic Hamiltonians. In other words,
the generators of this group in this representation
are all possible Hermitian quadratic expressions in

âk’s and â†
k ’s. To start with, the free Hamiltonian

is itself quadratic in the creation and annihilation
operators and further one can have interactions
which will generate more nontrivial quadratic
terms in the Hamiltonian. The noncompact
group Sp(2n,<) naturally splits into two parts:
the maximally compact U (n) subgroup which
comprises of “passive” transformations which
preserve the total photon number and are generated
by photon number conserving Hamiltonians; and
the noncompact photon number nonconserving
“active” part. This group plays a very important role;
the compact part comes in handy in the analysis of
various “nonclassical” properties as it does not alter
the amount of nonclassicality in a state. The general
strategy will be to perform such transformations
on a given state to make the nonclassicality, if it is
present and hidden, manifest. On the other hand,
the noncompact part has the potential to take a
classical state to a nonclassical state and vice versa.
More precisely, it generates a squeezed state from a
nonsqueezed one.

The symbol∼ in the second column of the table
above represents the local isomorphism between the
groups i.e. isomorphism at the Lie algebra level. A
useful account of Sp(2n,<) is given in the review
article [11].

3. Classical and nonclassical states within
quantum theory

Coherent states
Coherent states were originally constructed by
Schrödinger in the context of the harmonic

oscillator as minimum uncertainty states and later
applied to the electromagnetic field by Glauber and
Sudarshan in 1963.

For the single mode electromagnetic field the
coherent states are defined as

|z〉 = D(z)|0〉= ezâ†
− z∗ â

|0〉

= e−
|z|2

2

∞∑
n=0

zn

√
n!
|n〉

â|z〉 = z|z〉 (6)

and they are eigen states of the annihilation operator
â. The generalization to multi-mode fields is
straightforward, a multi-mode coherent state is
just a product state with each mode being in
a single mode coherent state. There are several
interesting properties of coherent states which are
worth mentioning at this stage.

• The commutation relations lead to the
customary uncertainty relation among the
variances of the quadrature components

(1q)2 (1p)2
−1(q p)2

≥
1

4
(7)

For coherent states we have

(1q)2
= (1p)2

=
1

2
,

1(q p) = 0. (8)

Therefore they are minimum uncertainty
states with the quantum noise being equally
distributed among the quadratures. Further,
this noise in each quadrature remains
constant in time.

• Coherent states have a well defined classical
limit. For the case of the harmonic oscillator,
they represent an oscillating Gaussian wave
packet of fixed width which is independent of
its amplitude. Therefore, in the limit of large
amplitudes, this width can be neglected and
we recover the phase space trajectories of the
classical harmonic oscillator. In the context
of the em field, this limiting process gives
us the appropriate solution of the Maxwell
equations.

System Group of linear canonical transformations Max. compact subgroup

Single mode Sp(2,<)∼ SL(2,R)∼ SO(2,1)∼ SU (1,1) U (1)

Two mode Sp(4,<)∼ SO(3,2) U (2)

n-mode Sp(2n,<) U (n)

Journal of the Indian Institute of Science VOL 89:3 Jul–Sep 2009 journal.library.iisc.ernet.in 285



REVIEW Arvind

• Arbitrary states can be expanded in terms
of coherent states as they span the whole of
Hilbert space. They are not just complete but
are overcomplete with overlaps given by

〈z|z′〉= exp

(
−
|z|2

2
−
|z′|2

2
+ z?z′

)
(9)

• In the classical limit (in the limit of large
amplitude), coherent states go over to
the corresponding solution of the classical
Maxwell equations; for cubic geometry they
would be plane waves which have precisely
defined phase. This for example, is in contrast
to Fock states which have completely random
phases even when one is dealing with a large
number of photons.

• As is clear from the definition, the photon
number distribution for coherent states is
Poissonian. Moreover, in a typical photon
counting experiment with coherent states
one gets Poissonian statistics which can be
mimicked by a classical plane wave being
detected by a quantized detector.

• The quantum mechanical description of a
monochromatic laser beam is through a
coherent state.

In view of all the above properties, the coherent
states are pure quantum states which come very
close to a classical description and can be called
“classical”.

3.1. Diagonal coherent state distribution function
While working within the quantum theory, a given
state is to be classified as classical or nonclassical
based on some appropriate criterion or convention.
Such a criterion has to be physically motivated
and mathematically precise. The most prevalent
prescription for such a classification is through
the diagonal coherent state distribution function.
Since every density matrix (pure or mixed) of
the electromagnetic field can be expanded as an
integral over projections onto the coherent states,
the diagonal coherent state distribution function
has complete information about any given state.
Now if this function turns out to be nonnegative
everywhere we can interpret the given state as
a classical mixture of coherent states, and then
using the normal ordering rule can calculate all
correlation functions for such a state using the
corresponding ensemble of solutions of the Maxwell
equations. Such states can thus be defined to be
classical. On the other hand, if the diagonal coherent
state distribution function is negative somewhere

or becomes more singular than a delta function
then one cannot raise it to the status of a probability
distribution and the corresponding state will be
called nonclassical. These nonclassical states have
one or the other nontrivial quantum features which
cannot be captured by a classical treatment based
on Maxwell equations. To cite a few examples the
presence of squeezing, sub-Poissonian statistics,
antibunching, violation of Bell’s inequalities all
imply that the underlying state is nonclassical in
this precise sense.

For a single-mode field the expansion in terms
of diagonal coherent states is given by

ρ̂=
1

π

∫
ϕ(z) |z〉〈z| d2z (10)

Here ϕ(z) is the diagonal coherent state distribution
function and we have the classification.

Classical states ϕ(z)≥ 0

Nonclassical states ϕ(z) 6≥ 0

The above arguments are completely general
and are valid for any number of modes.

When a state undergoes a unitary Hilbert
space transformation corresponding to a passive
canonical transformation, its diagonal coherent
state distribution function transforms by a point
transformation through the defining representation
of U (n). Hence this function is covariant under the
action of U (n) implying that the new function at an
arbitrary given point is just the old function at some
other point. Obviously the “positive everywhere”
character or the “singular” character of the function
is retained under such transformations.

Thus an initial classical(nonclassical) state will
remain classical(nonclassical) while it undergoes a
Hilbert space unitary transformation corresponding
to the passive canonical transformations U (n)

which is the same as finite time evolution under
quadratic photon number conserving Hamiltonians.
However as we will see on various occasions the
nature of nonclassicality may qualitatively change
when a state undergoes a U (n) transformation. For
example, a nonentangled state can get transformed
to an entangled one, hidden squeezing can become
manifest, etc.

Nonclassicality of a state manifests itself through
one or the other of its measurable signatures. Most
of these signatures are physically important as
they qualitatively explore some particular quantum
feature of the field. We discuss here some important
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signatures of nonclassicality. We however emphasize
that though the presence of any of these signatures
does imply that the underlying state is nonclassical,
the absence of one or a few of them does not confirm
its classical nature.

3.2. Squeezing
Squeezing is essentially a process of manipulating
the quantum noise in the quadrature components of
the electromagnetic field. Beginning with a coherent
state, without losing its minimum uncertainty
character, the noise in the quadrature components
can be redistributed such that at a given time, some
quadrature component has noise less than the “shot
noise” limit. If one focuses attention on a particular
quadrature component then the noise present in it is
time dependent and oscillates around the coherent
state value.

For a single-mode situation we define the
quadrature noise matrix to be

V =

 (1q)2 1(q p)

1(q p) (1p)2

 (11)

The uncertainty relation then becomes DetV ≥ 1
4

and the minimum uncertainty states are the ones
for which DetV = 1

4 . A single-mode minimum
uncertainty state is squeezed if one of the eigenvalues
of V is less than 1

2 with the product remaining
1
4 . This definition of squeezing is invariant under
the passive canonical transformations U (1) and
paves the way for analyzing multimode squeezing
in a U (n) invariant manner. The remaining
canonical transformations are actually squeezing
transformations and, when they act on an originally
unsqueezed state, can convert it into a squeezed one.

The original interest in squeezing was motivated
by the possibility of using squeezed light to enhance
the phase sensitivity of an interferometer. However,
now it is clear that squeezed states are very important
for quantum information processing.

For the two-mode situation there is a possibility
of intrinsically quantum mechanical correlations
between the modes; when such correlations are
present the state cannot be of the product form with
one factor belonging to each mode and thus the state
is “entangled”. Two-mode squeezed states can exhibit
such properties. For two-mode case the situation
is a little more subtle [2]. The passive canonical
transformations with respect to which squeezing
is invariant here form the group U (2). Therefore, it
becomes imperative to be able to experimentally
implement arbitrary U (2) transformations on a
state before actual detection.

Wigner representation
The first quasi-probability distribution to
characterize the state |ψ〉 in phase space was
introduced by Wigner in 1932. The Wigner function
may be defined as the Fourier transform of the
symmetrically ordered characteristic function χ(η)

W (α)=
1

π2

∫
exp(η∗α−ηα∗)χ(η)d2η (12)

where the characteristic function χ(η) is given by
the following:

χN (η)=Tr(ρeηa†
e−η

∗a) (13)

where subscript N stands for Normal order and
η is a complex number. We can obtain the
symmetrically ordered characteristic function from
the normal ordered characteristic function using
Baker Hausdorff relation.

χS(η)=Tr(ρeηa†
−η∗a) (14)

Note that the Wigner distribution always exists
but is not necessarily positive and so it cannot be
interpreted as a probability distribution as was the
case for the diagonal coherent state representation.
The relationship between the Wigner distribution
and the φ(α) distribution may be obtained via the
characteristic functions. The two distributions are
related to each other as follows:

W (α) =
1

π2

∫
exp(η∗α−ηα∗)χN

×(η)e−1/2|η|2 d2η

=
1

π2

∫
Tr{ρeη(a†

−α∗)eη
∗(a−α)

}

×e−1/2|η|2 d2

=
1

π2

∫
φ(β)exp[η(β∗−α∗)

−η∗(β−α)−
1

2
|η|2]d2ηd2β (15)

The final relation between the two functions is given
by

W (α)=
2

π

∫
φ(β)exp(−2|β−α|2)d2β (16)

Thus, the Wigner function is a Gaussian convolution
of the diagonal coherent state representation
function.

When the Wigner distribution corresponding
to a quantum state is Gaussian, we call it a Gaussian
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state. Gaussian states are determined completely
by first and second order noise moments. As we
will see, the first order moments can be trivially
manipulated and therefore the Gaussian states are
characterizable via their second order moments
which can be arranged in the form of a variance
matrix. Gaussian states are an extremely important
and interesting family of states and they include
coherent states, squeezed states, and thermal states.
Fock states are not Gaussian states. Gaussian states
can be defined for any number of modes. In our
analysis, we will confine ourselves to two-mode
Gaussian states.

4. Two-mode continuous variable systems
A two-mode system is the simplest composite
system for continuous variables where we can have
entangled states. It turns out that although the
Hilbert space is infinite-dimensional, there are
entangled states which have a simple description.
The most interesting and useful of these states of
such systems are Gaussian states. We now take up
the discussion of such states and their entanglement
properties.

We consider two orthogonal modes of the
radiation field, with annihilation operators a1 and
a2. To handle the analysis of the two-mode fields
compactly, we introduce the column vectors

ξ(c)
≡

(
ξ(c)

a

)
=



a1

a2

a†
1

a†
2


, ξ≡ (ξa)=



q1

q2

p1

p2


.

(17)
ξ(c) being the vector of creation and annihilation
operators and ξ the vector of the quadrature
operators, with their components having the usual

relation, qj =
1
√

2
(aj+a†

j ) and pj =−
i
√

2
(aj−a†

j ).

The canonical commutation relations can be written
compactly in terms of these column vectors as

[
ξ
(c)
a ,ξ

(c)
b

]
= βab

[
ξa,ξb

]
= iβab

with (βab)=



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


(18)

The linear canonical transformations of the
quadrature operators qj and pj are those real linear
transformations that preserve the commutation

relations given in Equation (18). They constitute
the four-dimensional symplectic group Sp(4,R):

ξ−→ ξ′= S ξ, S ∈ Sp(4,R)

Sp(4,R)=
{

S= 4×4 real matrix | SβST
= β

}
(19)

In the Hilbert space this group acts via its infinite
dimensional unitary representation called the
Metaplectic representation. This group describes the
action of all possible quadratic Hamiltonians on the
quantum states of the two-mode field. In particular
this includes squeezing transformations and
optically passive transformations. The maximally
compact subgroup K =U (2) of Sp(4,R), can be
identified as

K =
{

S(X,Y ) ∈ Sp(4,R) | U = X− iY ∈U (2)
}

S(X,Y )=

 X Y

−Y X

 (20)

The action of this subgroup on the creation and
annihilation operators is through its defining
representation a′1

a′2

=U

 a1

a2

, U ∈U (2) (21)

The standard way of distinguishing classical
from non-classical states is through the diagonal
coherent state description. A given two-mode
density operator ρ can always be expanded in terms
of coherent states

ρ=

∫
d2z1d2z2

π2
φ(z1,z2)|z1,z2〉〈z1,z2| (22)

where |z1, z2〉 are the two-mode coherent states.
The unique normalized weight function φ(z1,z2)

provides a complete description of the two-mode
state ρ and can in general be a distribution which is
quite singular. For the case when φ(z1,z2) can be
interpreted as a probability distribution (i.e. it is
non-negative and nowhere more singular than a
delta function), Equation (22) implies that the state
ρ is a classical mixture of coherent states which have
a natural classical limit. Such quantum states are
referred to as “classical”; in contrast those states for
which φ(z1,z2) either becomes negative or more
singular than a delta function, are defined as “non-
classical”. Classical states are clearly unentangled.
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When the two-mode state described by density
operator ρ, transforms under a unitary operator
corresponding to the compact U (2) subgroup of
Sp(4,<), the distribution φ(z1, z2) undergoes a
point transformation given in terms of the U (2)

element

ρ′=U (S(X,Y )) ρ U (S(X,Y ))−1
⇐⇒

φ′(z1,z2)= φ(z′1,z′2), z′1

z′2

=U

 z1

z2

, U = X− iY ∈U (2) (23)

Thus under U (2) (the group of passive
transformations), classical states map onto classical
ones and non-classical states onto non-classical ones;
these transformations are incapable of generating a
non-classical state from a classical one or vice versa.
However, these states can generate entanglement
provided that the original state is nonclassical.

We recapitulate some interesting and important
properties of the maximally compact subgroup
K =U (2) of Sp(4,R) here:

(a) The action of the elements of U (2) on
a quantum state does not change the
distribution of the total photon number.

(b) The diagonal coherent state distribution
function is covariant under U (2)

transformations.

(c) One requires only passive optical elements
(mirrors, beam splitters, phase shifters etc.)
to experimentally implement any U (2)

transformation on a state of the two-mode
field.

We will see that passive U (2) transformations
are a useful tool to analyze the nonclassicality
of a two-mode state and we can convert
nonclassicality into entanglement by employing
these transformations.

Upto this point we have been considering general
two mode states. From this point onwards we will
confine our discussion to those states for which the
Wigner distribution is Gaussian. Such states are
called Gaussian states.

The Wigner distribution is related to the density
operator in the following manner and is a complete
description of the quantum state of the system.

W (ξ) = π−2
∫

d 2q′〈q−q′| ρ̂ |q+q′〉

×exp(2i q′ ·p). (24)

where q= (q1,q2), p= (p1,p2).
The most general centered Gaussian Wigner

Distribution function is given as follows

W (ξ)=
1

4π2
√

detV
exp

(
−

1

2
ξT V−1ξ

)
(25)

where the variance matrix V is given by

V =



〈q2
1〉 〈q1q2〉

1
2 〈{q1,p1}〉 〈q1p2〉

〈q1q2〉 〈q2
2〉 〈q2p1〉

1
2 〈{q2,p2}〉

1
2 〈{q1,p1}〉 〈q2p1〉 〈p2

1〉 〈p1p2〉

〈q1p2〉
1
2 〈{q2,p2}〉 〈p1p2〉 〈p2

2〉


(26)

The non zero displacement can always be added by
considering the phase space displacement of this
centered Gaussian via transformations of the type

ξ→ ξ+ ξ0 (27)

Where ξ0 is a constant phase space displacement
(not an operator like ξ). Coherent states, squeezed
states and thermal states are all Gaussian in nature.
This family of states is very rich and contains
states ranging in nature from classical to maximally
entangled.

5. Evolution of entanglement under
dissipation

The decoherence of quantum systems is one of the
major issues in quantum information processing.
Understanding and controlling decoherence is a key
step in building quantum information processors.
We take up here the decoherence in two-mode
quantum systems modeled via the Master Equation
approach.

The time evolution for a general two-mode state
in a dissipative thermal bath is given by the Master
Equation [43]

dρ

dt
=
γ

2
(N+1)(2a1ρa†

1−a†
1 a1ρ−ρa†

1 a1)

+
γ

2
N (2a†

1ρa1−a1a†
1ρ−ρa1a†

1 )

+
γ

2
(N+1)(2a2ρa†

2−a†
2 a2ρ−ρa†

2 a2)

+
γ

2
N (2a†

2ρa2−a2a†
2ρ−ρa2a†

2 ) (28)

where we have assumed that the two modes
of the system are interacting with two different
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(independent) baths. The two baths have the same
temperature given by the average thermal photon
number N . The decay constants for the modes is
given by γ and has been assumed to be the same.

The Master Equation given in Eq. (28) gives us
the evolution of any general two mode state. We
are interested in the time evolution of a specific
set of states, namely Gaussian states. As we have
seen in the previous section, a Gaussian state can be
described completely by its variance matrix (and
averages). We obtain the equations of motion for
the variance matrix from the above Master Equation

V (t)= X(t)(V (0)−N ′Id)X(t)+N ′Id (29)

where V (0) is the variance matrix of the system
state at time t = 0, Id is a 4×4 identity matrix, N ′

is a constant dependent upon the bath temperature
and X is

X(t)=


e−γ t 0 0

0 e−γ t 0 0
0 0 e−γ t 0
0 0 0 e−γ t

 (30)

We now turn to the entanglement properties
of two-mode Gaussian states. It has been shown
by Simon [44] that the positivity of the partially
transposed density matrix is a necessary and
sufficient condition for the separability of any two-
mode Gaussian state. Given a variance matrix V
corresponding to some Gaussian state, let Ṽ be
the ‘variance matrix’ after the partial transposition.
Then the necessary and sufficient condition for the
state to be separable is

Ṽ+
i

2
β≥ 0 (31)

where β is defined in Equation (18). Based on this
result, a quantitative measure of entanglement can
be constructed. A simple measure is the amount by
which Ṽ+ i

2β turns negative. Further, if the smallest

symplectic eigen value of Ṽ is n− we can define
the logarithmic negativity measuring entanglement
quantitatively as

E=max{0,−ln(2n−)} (32)

Let us now consider the vacuum state of the
two-mode field given by the variance matrix

V0=
1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (33)

The squeezing transformations (which are
noncompact, canonical transformations), that we
consider for each mode are

S1 =

 e−
l1
2 0 0 0

0 1 0 0
0 0 e

l1
2 0

0 0 0 1

,

S2 =


1 0 0 0
0 e−

l2
2 0 0

0 0 1 0
0 0 0 e

l1
2

. (34)

Where l1 and l2 correspond to squeezing
parameters for the first and second mode
respectively. We will typically squeeze both the
modes via a transformation S(l1,l2)= S1S2 acting
on the variance matrix as V→ SV ST .

A one parameter family of passive symplectic
transformation (belonging to the maximally
compact subgroup U (2) of Sp(4,R)) that we will
use in our calculations is given by

R(θ)=


cosθ 0 0 −sinθ

0 cosθ −sinθ 0
0 sinθ cosθ 0

sinθ 0 0 cosθ

 (35)

Beginning with the vacuum state, we can squeeze
it by the application of the squeezing transformation
S and entangle it via the passive transformation
R(θ). It turns out that maximum entanglement is
obtained when we use R(π/4). Furthermore, we
consider the case with l1= l2 i.e equal amount of
squeezing in both the modes. This gives us the final
variance matrix :

VSR =
1

2



coshl 0 0 −sinhl

0 coshl −sinhl 0

0 −sinhl coshl 0

−sinhl 0 0 coshl


(36)

where l is the squeezing parameter.
To see the amount of entanglement in this

variance matrix we compute the eigen values of
Ṽ+ i

2β. The smallest eigen value turns out to be
1
2 (e−l−1), which is always negative for positive
values of l. Further this negativity increases with
increasing values of l. Thus for these states the
entanglement is directly proportional to the amount
of squeezing and the squeezing parameter of the
original state gives a measure of the entanglement of
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the final state after the implementation of the passive
transformation R(π/4). It is worth emphasizing
here that this passive transformation has converted
nonclassicality, which was present in the form of
squeezing, into entanglement.

Next we ask the question as to what happens to
this entanglement if a thermal bath is introduced?
We choose to do this in two different ways:

Case 1: In this case, we consider a two-mode
entangled state as discussed above and subject
it to dissipation via a thermal bath. We then
ask the question how entanglement decays in
time. We compute the final variance matrix
at time T using Equation (29) to obtain

VSRT = X(T)(RSV (0)ST RT

−N ′Id)X(T)+N ′Id (37)

Case 2: In this case after squeezing we switch on the
bath and allow the state to evolve for a time
T and then entangle via R. We call the final
variance matrix in this case as VSTR given by

VSTR = R(X(T)(SV (0)ST
−N ′Id)X(T)

+N ′Id)RT (38)

It turns out that these two variance matrices have the
same amount of entanglement at all times. Actually,
it turns out that VSRT+

i
2β and VSTR+

i
2β possess

an identical spectrum. Thus we conclude that it
does not matter if we entangle first and switch
on the dissipative bath later or if we reverse the
process. In case 1, dissipation acts on an entangled
state while in the case 2 dissipation acts on a state
which is mode-squeezed but separable. Under a
dissipative evolution, one would have expected that
the inter-mode quantum correlations present in the
entangled case are more fragile than intra-mode
correlations present in the mode-squeezed state.
However, we find that they both decay in the same
way. This means that single mode squeezing is as
sensitive to dissipation as is entanglement. We have
shown this for a special case with certain values of
the parameters. In general the outcome will depend
upon the details, the amounts of squeezing in each
mode and so on.

6. Continuous variable quantum
cryptography

Quantum cryptography using quantum systems
with infinite dimensional Hilbert spaces is becoming
increasingly important [32,45–49]. Such systems
are in general referred to as continuous variable
(CV) systems and can be described using bosonic

modes of the radiation field. In quantum optics,
bosonic modes are generated in states with Gaussian
statistics. Quantum cryptographic schemes use
intrinsic properties of quantum systems to ensure
the protection of random number keys. The
security of such schemes against attack by
an eavesdropper (Eve) relies on the fact that
quantum measurement inevitably disturbs the
system and also on the fact that for single quanta
such as a photon, simultaneous measurements
of noncommuting variables is forbidden. If
the information is randomly encoded between
noncommuting variables of a stream of single
photons, Eve will be forced to guess which
observable to measure for each photon. On average,
Eve will guess wrong half the time and reveal herself
through the back action of the measurement to the
sender (Alice) and the receiver (Bob).

Quantum key distribution (QKD) refers to
the distribution of secret information between a
sender (Alice) and a receiver (Bob) via an optical
channel. The key that Alice and Bob share has to
be kept secret from an eavesdropper (Eve) and this
can be achieved without leaking any secret key
information. This unconditional security cannot
be achieved by classical cryptographic schemes and
therein lies the power of quantum cryptography.
Further, it has been shown that the presence of
entanglement in the quantum state distributed
between Alice and Bob is a necessary precondition
for any secure QKD protocol [50]. QKD can be
implemented with current photonic technology,
hence its popularity as compared to other quantum
information protocols. A standard test of secure
QKD is to check for optimal entanglement witnesses
(these are observables that detect entanglement),
given a set of local operations and a corresponding
joint classical probability distribution. An example
of such an entanglement witness is the violation of
Bell’s inequalities [51]. Standard QKD protocols
(such as the BB84 protocol proposed by Bennett
and Brassard [52] and their variants) use single
photons or photon pairs for secure communication
between Alice and Bob. These protocols have been
proved to be unconditionally secure if implemented
using a perfect single photon source. The quantum
information in these communication schemes
is encoded as pairs of canonical variables such
as the polarization or relative phases of single-
photon superposition states. Hence the maximum
achievable information transfer rate of such schemes
is limited to one bit per photon. Higher key
distribution rates (higher than one bit per photon)
are in principle possible in continuous variable
multiphoton systems where the information is
encoded in the amplitude and phase quadratures
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of coherent states or squeezed states. It has
been suggested that single-photon CV-QKD using
position and momentum observables can increase
information transfer rate by encoding more than
one bit per photon. The advantages of single-
photon CV-QKD over quadrature-based CV-QKD
is the elimination of local oscillators required in
homodyne detection and the decoupling of channel
loss from quantum correlations. The feasibility of
such schemes has been experimentally demonstrated
using spatial coordinates of single photons and
pairs of entangled photons generated by parametric
down-conversion.

Another major difference between CV-QKD
protocols and standard QKD protocols is the use of
homodyne measurements (where the quadrature
amplitude of the signal is measured, which is a
continuous variable) instead of photon-counting
measurements. CV-QKD protocols do not require
single photon technology as they only require
standard off-the-shelf telecom components such
as diode lasers, electro-optics modulators and PIN
photodiodes. However, CV-QKD protocols require
elaborate classical error correction algorithms
to efficiently extract secret bits from correlated
continuous variables.

Current schemes to use CV for quantum key
distribution (QKD) use nonclassical light (light with
Gaussian statistics) such as squeezed light or pairs
of light beams that are correlated for two different
quadrature components (the so-called “EPR”
beams). These amplitude and phase quadratures
are analogous to the position and momentum
for a light mode and are hence continuous
conjugate variables. Simultaneous measurements
of these noncommuting observables can be made
in different ways, for example, by using a beam
splitter and then making homodyne measurements
on each beam. The information that is finally
obtained is limited by the generalized uncertainty
principle for simultaneous measurements. If an
ideal measurement of one quadrature component
produces a result with a signal to noise ratio

(S/N )±=
V±s
V±n

(39)

where V±s and V±n are respectively the signal and
noise power of the amplitude (+) or phase (-)
quadrature at a particular rf frequency with respect
to the optical carrier. A simultaneous measurement
of both quadratures cannot exceed a signal to noise
ratio of

(S/N )±sim =

(
η±V±s

η±V±n +η∓V±m
S/N±

)
(40)

where the quantum noise that is always added when
dividing the mode is V±m , the splitting ratio is η±

and η+= 1−η−. For a coherent beam V±n = 1. For
a classical light beam (V±n >> 1) the penalty is
negligible but for a coherent beam the signal to
noise ratio for both quadratures is halved when
the splitting ratio is half. The Hartley-Shannon law
applies to Gaussian channels wherein, if information
of a fixed bandwidth is sent down a channel at a
rate corresponding to the channel capacity and the
signal to noise ratio is reduced, errors will inevitably
appear at the receiver. Thus any attempt by an
eavesdropper to make simultaneous measurements
will introduce errors in the transmission of the
information. While usage of squeezed states are
fundamentally interesting, coherent-state protocols
are in practice easier to achieve. CV-QKD using
coherent states over a 1-km optical fiber path has
been experimentally demonstrated at a 1.55 µm
communication wavelength. It has also been shown
that there is no need for squeezed light and that
an equivalent level of security for CV-QKD can be
obtained by generating and transmitting random
distributions of coherent states. The performance of
QKD is limited by the presence of transmission loss:
in the beam-splitting attack scenario, Eve replaces
the lossy transmission path with a lossless one and a
beam splitter. She then gets signals corresponding
to the loss without disturbing the signal. At first,
above an existing 50% loss (3 dB loss), it seems
impossible to distill the secret key in this coherent-
state scheme since Eve can get a stronger signal than
Bob. However, since signal information depends
on the measurement, the coherent-state protocol
can provide a secure key by postselection (i.e
conditional use of measurement results) even in the
presence of higher loss. In addition to the loss, excess
Gaussian noise is always imposed on the quadrature
distribution. Since any excess noise tapers off when
the state falls into vacuum at high loss, the excess
noise added by Eve near Alice’s side will disappear
at Bob’s side for a long transmission distance and
eavesdropping will not be detected. Hence CV-
QKD protocols using coherent states cannot work
for arbitrarily long transmission distance in the
presence of excess noise. There have been several
experimental demonstrations of key distribution at
high repetition rates based on Gaussian modulation
of coherent or squeezed states of light implemented
with homodyne detection.

In a quantum communication channel,
interaction with the environment leads to noisy
transformations of the quantum state. In general
Gaussian statistics are preserved under such noisy
transformations. Hence in a single-mode Gaussian
channel, the coupling with the external environment
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is a completely positive trace-preserving map that
transforms Gaussian states into Gaussian states
and does not lead to the creation of correlations
among the bosonic modes. In the framework of CV-
QKD, Gaussian attacks have been identified as the
most powerful collective attacks and single-mode
Gaussian channels between users can be modeled as
the effect of such collective Gaussian attacks. There
have been several studies examining the quantum
cryptographic security of CV schemes based on
coherent light and squeezed light, and it has been
shown that while the coherent light scheme is
inferior to single quanta schemes, the squeezed light
scheme provides in principle equivalent security.
However, it is essential that the coherence between
the two squeezed modes is destroyed.

Coherent state CV-QKD
In a coherent state CV-QKD protocol, random
values are encoded in the complex amplitude
of the coherent state signal. Encoding schemes
are based on either the Gaussian modulation or
the discrete modulation format. In the Gaussian
modulation format, information is continuously
encoded in the two-dimensional phase space of
the coherent state |α〉 with complex amplitude α.
For a homodyne measurement, a single bit value
is encoded, whereas a two-bit value is encoded
for a heterodyne measurement (called the doubly
encoding scheme). In the discrete modulation setup,
the signal is phase modulated by a fixed amount
depending on the randomly chosen basis and bit
value. Coherent states are efficiently transferred
via an optical fiber or via free-space propagation.
The coherent state decoding scheme depends on
whether the encoding has been performed using
Gaussian modulation or discrete modulation. For
the discrete modulated case, Bob tries to read out
the discrete variable encoded by Alice. In the case of
Gaussian modulation, Bob uses a prefixed decoding
scheme. As an illustration, Bob measures the x
component of the complex amplitude (a continuous
variable). Bob then interprets the measurement
outcome x as the bit value 0 or 1 if n is even
or odd, where (2n− 1)c < x ≤ (2n+ 1)c and
n= ...−3,−2,−1,0,1,2,3, ... and c is a positive
constant. Decoding for the doubly encoding scheme
is done in the same way but with respect to both x
and p.

In the homodyne measurement setup, either
the x or p component of the complex amplitude is
randomly read out. In the heterodyne measurement
setup, the incoming light is split up and both the
x and p components of the complex amplitude
are randomly read out. The splitting enlarges
the variance of the statistic of the measurement
outcomes.

Security of coherent state CV-QKD protocols
There has been a lot of work on the security
of single Gaussian beam protocols against any
individual attack. Such protocols are those that
do not transmit simultaneously several quantum-
correlated modes of the electromagnetic field.
In a single Gaussian beam QKD protocol, Alice
randomly modulates a Gaussian beam and sends
it to Bob through a Gaussian noisy channel. Both
phase and amplitude are modulated with Gaussian
random numbers which allows for an optimal
information transfer rate. Bob then measures either
the phase or amplitude of the received beam and
informs Alice about the measurement performed.
Alice and Bob now have two correlated sets of
Gaussian variables, from which they can extract
a common secret string of bits. Since such a
protocol does not require squeezed light, it can
be implemented by sending light pulses in a low-
loss optical fiber. It has been shown that in such a
scheme, half of the information sent by Alice will be
lost and that the protocol is secure for losses smaller
than 3 dB. Unconditional security of coherent state
protocols remains an open question.

Squeezed state CV-QKD protocols
Hillery [53] was one of the first to investigate the
utility of squeezed states for QKD and the security
of this protocol under two kinds of eavesdropper
attacks: intercept-resend attacks and quantum-
tap attacks. Other entanglement based quantum
cryptographic schemes have been proposed that
are based on correlations of the quadratures of
two-mode squeezed states. [29,54,55]. Further,
it has been shown that when different types of
attacks are considered, there is a tradeoff between the
extractable classical information and the disturbance
of signals passed on to the receiver. Enhanced
security requires high level of squeezing and low
levels of loss in the channel [31,56,57]. Apart
from these single-Gaussian non-collective attacks,
a continuous variable analog of the original BB84
protocol has been considered and a detailed proof
of absolute theoretical security worked out [58].
Much work needs to be done to work out the real
experimental implementations of such theoretical
squeezed state cryptographic protocols. Quantum
cryptography using continuous variables has been
described in detail in recent reviews [33,59,60].

Received 03 June 2009.
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5. T. Opatrný, N. Korolkova, and G. Leuchs, Phys. Rev. A 66,

053813 (2002).
6. A. Serafini, F. Illuminati, M. G. A. Paris, and S. D. Siena, Phys.

Rev. A 69, 022318 (2004).
7. G. Giedke, M. M. Wolf, O. Kr‘̀uger, R. F. Werner, , and J. I.

Cirac, Phys. Rev. Lett. 91, 107901 (2003).
8. R. Filip and L. M. Jr., Phys. Rev. A 66, 044309 (2002).
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