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Abstract 

Ihi actual construclion of the explicit form of the matrlx H ( x ,  v, A )  generating the spectral resolut~on (it, the 
resolution of the identity) of the matrix differential operator 

has been made by deriving the explicit form of the Green's matrix in the singular case (--,m). 

Key wnorda: Spectral resolution, bilinear concomitant, wronskian, Green's matrix, generalized Parseval's theorem, 
:auchy's singular integral, generalized orthogonal relation, Carleman-type kernel. 

I. Introduction 

Consider the differential equation 

'"A the complex parameter, p ( x ) ,  q ( x ) ,  r ( x )  are the real valued CI-k (a ,  6)  (k=O,I)- 
:lass functions of x, integrable over ( a ,  b), finite or infinite; where-by Ct (u.P)-class 
*"tions we mean (real or complex-valued) functions which are k times continuously 
lifferentiable with respect to defined in (a,P), finite or infinite. The matrix differential 
'XPressi~n is symmetric and the Hilbert space$ in which we go in for the definition of the 
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spectral resolution (or the resolution of the identity) of M is that ofvector valued func,iuns 

Let T h e  a linear operator. The spectral resoiution or the resolution of the identity ~ f t h ?  
operator T o r  the spectral family1 (P.13) is defined as a one parameter family of projection 
operatois E l ,  t e[,o, b] ,  wherea, bare finite or infinite, where E-,=iim E,, E, = l im~, ,~ , ,~h  ,--- l - l i  

that (i) E, = 0, B = E(ii) for o < t < b. Et-a = E,, (iii) 13 E+ E,, .s= min i ~ ,  v),(see Akhiezer 

and ~ l a z m a n ' ) .  T is connected with E, by means of the relation T = T i  dE (A). 
- m  

The boundary conditions at  a.6 satisfied by a solution U ( x ,  A)  of (1.1) are 

[U(X,A) ,+I ] ,=O,  [U(x ,A) ,b , ]1 ,=0 ,  I =  1,2 : j=3 .4  (].la) 

with [4 , ,  @?I, = [ + p ,  +4]h = 0, where 4, arethe'boundary condition vectors9-solutionsof 
(I .  !) which together with their first derivatives take prescribed constant valuesat (a or b)and 
[ U ,  V ] . .  the value at x = a of 

the bilinear concomitant of the vectors 

The boundary condition vectors at  a.b are linearly independent of each other 

It is well-known"." that the system (1. I) along with the boundary conditions ( 1  1a)leadstoa 
self-adjoint eigenvalue problem for the finite interval (a,h). The extension problem for the 
singular case [O,m) was dealt with by Chakravartyi; the problem for the interval i-m,miis 
first discussed in the following and then we obtain an explicit expression for a matrix 
H (x,?.. A), A real, which generates an expression connected in the same way with the differential 
operator M as the spectral resolution with the operator T. We call H (x,y.A) the spectral 
resolution or the resolution of the identity in the present discussion. 

Let 

he the vectors which are the solutions of (1.1) satisfying at  x = 0, the conditions 
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Also let the non-homogeneous system corresponding to (1. I) (which is the homogeneous 

system) be 

corresponding to the solution vectors 4,, k t  us choose another pair of solutionvectors @ *  

= (;:) of (1.1) related with 4. by means of the relations 

where [.I represents the bilinear concomitant of the vectors concerned. Evidently, given +,, 
thechoice of b'k by (1.4) is not unique; in fact, threemore independent relations are necessary 
todetermine b't, b'i, k = 1,2 completely. The vectors +1,42,b'1,& forma fundamental set, the 
wronskian W = W ( ~ $ ~ , 4 2 , 8 ~ , @ 2 )  being equal to 1. 

The procedure adopted for the extension to the case (a,-) is to assume the results for the 
interval (a,b) and then to pass on to the desired case by making a - --, b - -, by 
considering the intervals (0, b )  and ( a ,  0)  separately. (For extension problem, see 
~hakravarty 4). 

2. The extension process 

As in chakravarty4, there exists the symmetric matrix (Irs (A)), depending on A, b, and the 
coefficients in the boundary conditions at x = b, where I ,  have an infinite number of simple 
poles on the real axis and for fixed b, I,, = 0 (1 / 1 v I ) as v - 0, where v = im A. 

*IS. there exists a pair of vectors *, (b, x. A )  = +, = ( ) = 1.1 41  + 1.2 02 + O r ,  

r=1,2, obviously solutions of the given system (I.]), such that 

Similarly, there exist the symmetric matrix ( L ,  ( A ) )  and vectorsx,(a,x, A) which behave in 
(a,O) in the same way as (I,,) and Jr, (b,x, A) respectively in (o,b). Thus 
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*I,  $* as also x ,, ~2 are linearly independent pairs. Further, $,, X, are conStructedinterms 
of boundary condition vectors a t  a, h (chakravarty4) which are linearly independent ofeach 
other. i t  follows that $,, X, are also linearly independent of each other. Thus the wronskian 
W(a,b, A) of #,, x,, J = 1,2 does not vanish identically. 

and W(a ,b ,A)  = [ X I ,  $ I ] [ x ~ ,  $ 2 1  - [ X I .  $ 2 1  [x:, $11 
= ( L i l  -111) (L22-122) - (L12 -112)~ # 0 

Let 

where s = 2 when r = I and s = I when r = 2 

and construct the matrix 

Then G (  a,b,x.y. A) is the Green's matrix for thesystem (1.1) for the interval[a,bl withusual 
properties, as can be easily verified by using the following easily deducible identities 
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where 6"is the Kronecker delta and n, r,s = 1,2; whenr= I, j=2 and r = 2 , j =  1 and f ( O )  - -L 
r'" =r. 

follows from (2.2) that 

with similar results for [F,, O x ] ,  j,k = 1,2. 

Todetermine the 8 uniquely, inaddition to  the relations(1.4) we choose three more relations 
as 

Hence on slight reduction, we obtain the following canonical representation for $,, viz., 

Ill 112 I 
$1 (a,b.x,A) = - @ I ( X . A )  + - +2(x,A) + ~ I ( x , A )  

ill -L11 Ill -L11 

(2.5) 

112 1 2 2  1 
&(a,b.x,A) = - I l l - L 1 ,  4 1 ( x . A )  + 42(x ,k )  f - Bz(x,A) 

I l l  - L I I  

By following the Chakravarty analysis4 we obtain that 

the Green's matrix for the singular case (-e. m ) ;  the Green's vectors 

#r(b.x,h) tends to  *, (x, A), a s  b-m, where JI, cLt  [O,m) 
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$,= m , l 4 1  + rn,242 + 0, 

x .  ( a x ,  A) tends to X r  ( x , A ) ,  as ad--,  where ~ , t L 2 ( - ~ ,  0] 

and 

X, = M,I 41  f M.2 4 2  + er 

!,,(A) - - m ,  (A), m ,  = m,, as b - m 

L,, (A) - M ,  (A), M ,  = M,, as a - --. 
II J r r ( x , h )  110,-  = - l l v  i m t m , ( A ) J  

(A) 
and I I x . ( x , A ) I l - - . o = I / u i m { M , , ( A ) )  

Thus from (2.5) and (2.6), since @ I ,  &a are linearly independent, it follows by makinga--m 
and b--, 

$ 1  

$2 

it follows from (2.3) that the Green's matrix in the singular case (-m,m) has the representa- 
tion 
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~ ( ~ . y ,  A) is not necessarily unique. For uniqueness of G (x,y, A) we require a number of 
conditions on P.q.r (See Chakravarty4, where the problem is discussed for the 

mterval [0,-) 1. 

Finally, as in chakravarty4, iff(x) L2 (-m, m) be an arbitrary vector, the vector 

safisfies the non-homogeneous system (1.3) and 4) (x,A,f) c L7 (-m, m) 

3. Derivation of the generalized Parseval theorem for the system (1.1) in the singular case 
(-- m) 

In (2.10) we substitute the explicit expressions for $,  (x, A), X ,  (x, A) as obtained in (2.9) 
and (2.8). Then, since 

etc., and @, (x,  A) 8, (x, A) take real values for real A, it follows after some reductions that for 
y 5 x, 
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i m,, ( u +  iv) M , ( U  + iu)+ m i  (u-tiu) 
cr,(p) = lim I - im 

"-0 a M I ,  ( U  + iu)  - m11 (u  + iv) I d" 

wherer = 1. s =  2 a n d r = 2 ,  s = 1 ;  

* [ m12 M I L  + m ~ 2  M12 
e ~ 2 ( p )  = lim 1 - i m  

V - o  a Mil  - m i l  1 d" 

L 

7,. ( p )  = lim -im - 
"-0  [ M , ~ ' m l l  ] du. r r =  1.2, 

"-0 i) 

E F S ,  n,3 and in are non-decreasing functions of +(Proof given in 5 4) with similar expressions - .  
for the remaining G,  ( x , y ,  A) for y 5 x .  Hence for y I x, we have 

The superscript T denotes the transpose of a matrix. 

A similar result holds when y > x. 

As in chakravarty4, the vector +*(x, A, f) satisfies the relations 

where A = p + iv, j (x) = MJ f c LZ (-m,m). 

Also, by utilizing the formula of type 
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we obtain (see Chakravarty 4, p. 41 1) 

@ ( x ,  A) = 0 ( 1 A 1 -'I4 / v / - I ) ,  for.f(x) d LL (--,-), x fixed and v f 0 (compare Titch- 
marsh', p. 34). 

Hence 

f (x)  = lim im [ l / r  1 (x,A) d h  ] 
R-- 
" - 0  

-R+ lv  

Xt," 

= lim im l/x 1 [ f - ~  (x,y.A) f (y)  dy] dA 
R - r  

Since for square matrices A,B,C, of the same order 

( A B c ) ~  = C ~ B ~ A  )-, ( A T ) T  = A and A T  = A when the matrix is symmetric, the above 
expansion formula leads formally to  the following theorem 

Theorem: For two vectors f(x),  g(x) d Lz (-m.m) 

where (.,.) is the usual inner product of two vectors: 
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and the elements of each of the matrices, 5 , r ~ , 5  are non-decreasing functions of the real 
tariable A. 

The rigorous derivation of (3.3) that is the expansion formula and (3.4). that is thegeneral- 
,zed Parseval relation, follow in exactly the same manner as Titchmarsh5 (Chapters 11-HI), the 
only difference lies in proving the non-decreasing characters of each of the elements ofthe 
matrices c,q, and <. 

4. On the matrices g, a, 5 

Let A. i. U n  ( a ,  6, r) = ( :: ) be the eigenvalues and eigenvectors for the interval 

(a.6).  

Then, 

where G ,  (...) are the Green's vectors (i.e.. the column vectors o i  the Green's matrix 

G ( u ,  b.x. y. A) with elements G,, (.) ). 

Differentiating with respect to x we have 

lf K (.....) denotes the various constants depending on  the arguments shown, then 

i.e., the left hand side is bounded independently of  a, h. 
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The lemmas follow in the same way a s  Titchmarsh6 (pp. 28-40) and Titchmarsh* (p. 57) 
(also see 7?wary7, pp. 45-48 and p. I08 for G; t L2 (-m,m)). If x=O, by virtue of the initial 
conditions (1.2) and (1.4). the Green's matrix (2.10) takes the simpler form 

Consider first the case ySO. Then utilizing the inequality la 1 ' 5 2  ( la+ h I '  + I b 1'). a, h 
complex, and the lemma 5, it follows that 
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are each 0 (1 / u ) ,  where r f s = 1,2, and X, are the column vectors of x (x, A). 

In exactly similar manner, by considering the case y > 0, 

are each 0 ( I /  v )  where r f s = 1,2 and '4, are the column vectors of P ( x ,  A). 

By using the relation ( A )  of $ 2, it follows from (4.1) and (4.2) that 

and 

(4.3) and (4.4) are equivalent to  

and 

Again, from (2.101, by differentiating with respect to  x, and then putting x =  0, we have on 
utilizing the initial conditions (1.2) and (1.4) 
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$ being defined a s  before. 

Hence, by making use of lemma 6 and the relation (A) of 3 2 we have 

By using the Titchmarsh inequalityS (p. 57) viz.. 

[im (a/a-b)]'  5 im ( l / a - b )  im (ahla-b),  a.6 complex, a # 6,  

we obtain from (4.5) and (4.7) 

The analysis adopted above remains true if Mk,, mk, are replaced by iMk, and imk, 
respectively. Hence a s  in (4.6) we obtain 

From (4.6) and (4.9), we have 

Hence 
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It is easy to verify the identity 

(im ah) '  = im b. im ( a ' b )  f ( h a ) '  I b I '. for complex numbers a h .  From this, if imh, 
i m ( 0 2 h )  are of the same sign, we have by theobviousinequality a ' + b ' ~ ( ~ +  b)2,a,b20, 

If im b, im (a 'b) be of different sign, we havc 

I 
I n ( 4 . l l ) , p u t o = m r ~ ,  b = ---- so as  to obtain hy the Schwarz inequality 

Mli -mil 

The first term on the right is O(l) ,  by (4.10) and (4.6), the second term is also O(I), since MII  
# m i l  implies) M I L  - m l 1 1  6 > 0  

P 1 

and im m,, d p  = O(1) (compare ~ i w a r y ~ )  (4.13) 
P l  

Consequently, im ( A dp = 0 ( 1 )  
P M I I  -mil 

(4 14) 

The result also holds, if im(---------- m  :, )and irn (- )differ insign: to prove thls case 
M I I  - m11 M I I  - ~ I I  

we use (4.12). 

Again, j-l mrS I d p  < -, r.s = 1,2 

(compare Titchmarsh5, p. 43). 

Then by the relat~on 

and the inequality 
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i m ( o f  b I 2 5 2 (  I o l 2 +  l b 1 2 ) a n d  l M 1 1 - r n 1 1 j  = S > O  

if follows that 

MI?  m22 - m12 m22 
and ----- - , ( f o r m  = M I ? )  it follows from the results obtained 

mil - M I ,  mtl  - M I I  

before that 

Hence (vide~itchmarsh', p. 43, lemma (3.3)) we canestablish that theelements f,s, TI,$, 511 of 
the matrices 5, 7, 5 respectively defined by (3.1) are non-decreasing functions of A ( A  real). 

A rigorous derivation of thc expansion formula (3.3) and the Parseval formula(3.4) can 
now be obtained by closely following  itchm marsh* (Chapter 111). 

5. The spectral resolution and  the generalized orthogonal relation 

Let the matrix H (x,.v, A) = ( H ,  ( x , , ~ ,  A) ), (A real) be defined by 

= - l i m l  im G ( x , y , o + i v )  d o ,  A < 0 
"-0 A 

= 0 , A = O  

( ~ ~ m p a r e T i t c h m a r s h ~ ,  p. 41; Tiwary ', p. 49). Then the propertieslike existence of thelimits, 
bounded variation character of etc., follow from Titchmarsh and are incorporated in 
Tiwary's thesis7 ($5  2.13-2.14). 

Also in the interval (-m,m) 
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where H, is the rth column vector of the matrix H,and k(x ,A)  isa COnStantdependingonthe 
arguements shown. By making use of the relation (3.2) the matrix H(x.y,  A) has the explicit 
representation 

where the matrices @, 0, f, 77, 5 are defined as before. 

Then the expansion formula (3.3) takes the form 

By Green's theorem (see, for example, chakravarty3, p. 139). it follows that for non-real 

h = p + i v .  A ' = p ' + i v ' ,  A f h ' ,  

It is easy toverifythat G(a ,  h, r ,x ,  A)convergesinmeansquareto G(t,.r, A);thereforebythe 
familiar extension procedure (vide Xtchmarsh6, p. 58 and chakarvarty4) we have 

Hence (vide Titchmarshf p. 59) we obtain after integration with respect to p between the 
limits (0,v) and making v-0 

Equate the imaginary parts of both sides of (5.6), integrate with respect t o p '  between the 
limits (0.u) and proceed as in Titchmarsh6 (p. 60) by using the theory of the Cauchy singular 
integral. Then after some reduction we obtain 
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The relation (5.8) is the gcneralired orthogonal relation for H(r,.y. ~i) 

The differential operation M defines on C? (-",m) a symmetric operator on 1-2 (-m,"), 
called the minimal unclosed differenlial operator. The closure T I  of this is the minimal 
differential operator defined by M.  Let T b e  the operator 'generated'by M,  so that Tis any 
relf-adjoint extenlion o r  T I  (see ~ l a n n a n "  pp. 27-28) 

Then. K(.r,j,. A) is symmetric in the sense that K (x.!,, A) = K' (!,.I, A), H bemg so. 
Moreover, since a s  a function o f ?  and for  almost all x (as well as  for almost all s when 
considered as a function of  x )  H e L 2  (-,LC), K (x ,y ,A)  does so. The (matrix) kernel 
K(x.p. A) is thus of the Carleman type. 

1s therefore a linear symmetric operator in the Hilbert space X (see ~ t o n e '  pp- 101. 398). 
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F:rom delinilion. E ( - - x i  = 0 and from the expansion formula ( 5  4) E ( m )  = I 

Also (see  itchm marsh", p.52) we h a w  for j:n t L I  (-m,-) 

showing that E ( A )  ia self-adjornt 

where 

Thus, E ( j r )  E(A)  = E ( A ) f o r A S p  

Also evidently E( A -0)  E( A). 

E( A ) is thus a projection operator- and IS. in part~cular,  a resolution of the identity ofthe 
operator T. 

Then following Titchmarsh6 (p. 55) 

In therelation(3.2a) of # 3,  wereplace A ( r o + j u )  by A ' ( = ~ ' + ~ P ' )  subtract the newresult 
' f rom ( 3 . W  equate imaginary parts from both sides of  the result so obtained and finally 
make v,  v '  - 0 , ~ - m ,  a'- -or 

Then closely following the anaiys~s of Titchmarshh (p. 55), we obtain, 
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 he equation (5.10) IS expressed as 

where T is the self-adjoint operator generated by the differential operatlo" ,M 

The results obtained above can now be summarized in the form of the following theorem. 

The matrix H(.u,? ,  A ) given by (5 .3)  is therefore the spectral resolution (o r  the resolution 
of the identity) of the differential operation M i n  (1.1). 
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