], Indian Inst. Sci. 65(B), Aug. 1984 pp. 143-162
© Indian Institute of Science, Printed in India.

On the spectral resolution of a differential operator I
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Abstract

The actual construction of the explicit form of the matnx H(x, », A} generating the spectral resolution (i.e , the
resolution of the identity) of the matrix differential operator

-Dtp r
r -D+g

has been made by deriving the explicit form of the Green'’s matrix in the singular case (~o0,0¢),

Keywords: Spectral resolution, bilinear concomitant, wronskian, Green's matrix, generalized Parseval’s theorem,
Zauchy's singular integral, generalized orthogonal relation, Carleman-type kernel.

L. Introduction

Consider the differential equation
MU =AU a.n

vhere

—D+p(x)  rx) u
M ( Wx) =D+ q(x) ) ,D=djdx, U= ()
d A is the complex parameter, p(x), g(x), r(x) are the real valued Cix (a, b) (k=0,1)~
;lass.functions of x, integrable over (a.b), finite or infinite; where by Cx (2, f)—class
unctions we mean (real or complex-valued) functions which are k times continuously
hft'eren}tiable with respect to x defined in (a, ), finite or infinite. The matrix differential
Xpression is symmetric and the Hilbert space # in which we go in for the definition of the
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spectral resolution (or the resolution of the identity) of M is that of vector valued functios

= ({:) where [(#,/) dt <ee,{.,.) denotes the usual inner product of the vectors.

Let T be a linear operator. The spectral resolution or the resolution of the identity of the
operator T or the spectral family' (P.13) is defined as a one parameter family of projection
operators Ev, 1 ¢[,a, b, where g, b are finite or infinite, where .= hm 1 £y, Ew= hm E., such

that (i) £, =0, E, = E(ii) for a<t < b, E-o = E, (iil) E. E= E\, 5= mm(u, v), (see “Akhiezer
and Glazman?). Tis connected with £, by means of the relation TZ-L)\ dE (M)
The boundary conditions at 4,6 satisfied by a solution U (x, A) of (1.1) are
[UC A, ¢nla=0, [U(xA), ¢ =0, I=12;j=34 (LIa)

with[ ¢1, ¢:1.=[ @3, da]s =0, where ¢, are the ‘boundary condition vectors'—solutions of
(1.1) which together with their first derivatives take prescribed constant values at (a or b)and
[ U, ¥]s, the value at x = a of

the bilinear concomitant of the vectors

_fw (e
U=ty ) V=14,
The boundary condition vectors at a,b are linearly independent of each other.

It is well-known ** that the system (1.1) along with the boundary conditions (1 1a)leadstoa
seif-adjoint eigenvalue problem for the finite interval (a,b). The extension problem for the
singular case [0.,%) was dealt with by Chakravarty®; the problem for the interval (-2, %)is
first discussed in the following and then we obtain an explicit expression for a matrix
H (x, 3. \), A real, which generates an expression connected in the same way with the differentil
operator M as the spectral resolution with the operator T. We call H (x,y.A) the spectral
resolution or the resolution of the identity in the present discussion.

Let

& = & (x\) :(tf;) r= 12

be the vectors which are the solutions of (1.1) satisfying at x == 0, the conditions

(w, v, ud, vi) la=0 = (1,0,0,0)
} (1

(w2, v2, w3, v4) |20

il

0, 1,0,0)
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Also let the non-homogeneous system corresponding to (1.1) (which is the homogeneous

system) be

MU= AU = flx) (1.3)

where f{x) = (2 )

Corresponding to the solution vectors ¢, let us choose another pair of solution vectors 8

=0, (v )= (;:) of (1.1) related with ¢, by means of the relations
[qb, ak] = Ou, [91, 92] =0, rk=12 (1.4)

where [ '] represents the bilinear concomitant of the vectors concerned. Evidently, given ¢,
the choice of 84 by (1.4) is not unique; in fact, three more independent relations are necessary
to determine B, 8%, k = 1,2 completely. The vectors ¢, ¢, 61, 8; form a fundamental set, the
wronskian W = W (@1, ¢2,61,02) being equal to 1.

The procedure adopted for the extension to the case (~o9>90) is to assume the results for the
interval (a,b) and then to pass on to the desired case by making @ — -0, b — o, by
considering the intervals (0, b) and (a, 0) separately. (For extension problem, see

Chakravarty®).

1. The extension process

Asin Chakravarty*, there exists the symmetric matrix (1,s (A)), depending on X, b, and the
coefficients in the boundary conditions at x = b, where /s have an infinite number of simple
poles on the real axis and for fixed b, l.s = O (1/|v]|) as v — 0, where v = imA.

Also there exists a pair of vectors ¥, (b, x, A\) = ¢, = (;f’:) =lg @1+l ¢2+6,,
r=12, obviously solutions of the given system (1.1), such that

Lt (bx,h) llop = = wim (ly), r = 1,2.

Similgrly, there exist the symmetric matrix ( Ls (1)) and vectors x-(a, x, ) which behave in
(2,0) in the same way as (/<) and ¥, (b, x, \) respectively in (o,b). Thus

Lis= O(1/|v|), asv =0, » = imA

xr(a.x,\) = x, =(;§:;) =La¢r+ Lo+ 8, r=12,
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where I xr(@x,A) a0 = T/wim (Ly), r =12,

¥, 2 as also x1, x2 are linearly independent palrs Further, ¢,, x, are constructed interms
of boundary condition vectors at a, b (Chakravarty®) which are linearly independent of each
other. It follows that ¥, x, are also linearly independent of each other. Thus the wronskian
W(a, b, \) of ¥, x,, j = 1,2 does not vanish identically.

We have  [x1, x2]1 = [#1 #2] = 0 21
[Xr 5] = Les— b

and W (a,b,N) = [xu, ¥11lxz, w2l = [xu, W2l [x2 ¥1]
= (Ly~1n)(Le—1In) = (Li~1In)* # 0.

Let
- - n [xs @)= [xs 91 4s o
Urlabx,\) = ll'r—( J’Z) ZW 2.2
where s = 2 when r = | and s = | when r = 2.
- @ilabx\) Pulab x))
Put L b, x, = = : .
wo dlebn ) (l/llz(a,b,x.)\) lbzz(a,b,x,)\))
- x1{ax,A) xa(axX)
LXA) =
X (a73) (xu(a»x.)\) x22(a,x\) )
and construct the matrix
G G
G(ab,x,1,\) = (Gy(a,b,x,y,\))° =( Gi‘ G“ )
= §(abx\) X (ayA),ySx 23
=X(ax ) ¢ (a by ), y>x .

Then G(a,b,x,y, ) is the Green’s matrix for the system (1.1) for the interval [ a,b] with usual
properties, as can be easily verified by using the following easily deducible identities
!

ALES!] - n=1) = (n-1 - ) —
b b xir |+ ‘ﬁj(rn ! Xis — Yiss XJ"” V=5,
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where 8" is the Kronecker delta and n,r, s = 1,2; when r=1, j=2 and r=2, j=1 and f® =,
j(ll =f"

It easily follows from (2.2) that

Iy — L

- - L
D] = 5= —

[§2,¢2] = W (@b N)

2.4)

) B la-L
and  [¥n02] = [d2.1] = = Wn(a,b.!)f)

with similar results for [, 6], jk = 1,2.
Todetermine the 8 uniquely, inaddition to the relations (1.4) we choose three more relations

as
W(d1,02,0n%:) =0 and [ §1,02] = [ §2,6:]

Hence on slight reduction, we obtain the following canonical representation for i,, viz.,

_ 111 In 1
, b, X, N) = L A) + ———— L A) + 01 (x. A
hiabxd) In—Ln $1(xh) lun—Ln $2(x 1) ln=Lu HxA)
' (2.5)
Babx) = —2 o) + 2 4o n) + e 825 A)
nesh In=—Ly T In—Lu e hi—Ln B
2.6)

with 1y — L = Iy = Loy, Inn = L2

By following the Chakravarty analysis* we obtain that

" = = { Gu Ga Y |
i Glaban = oo = (g1 G2

the Green’s matrix for the singular case (—ce 0°); the Green’s vectors
Gilxy,\) =(G”> €Ly (=00 ), 1= 1,2,
Gn

¥:(bx,\) tends to ¥, (x,A), as b—0, where i, e L, [0,%0)
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and

Wy = mu 1 + mada: + 6,

Xr (a,x,\) tends to Xr (x, ), as a—~, where xre L2(~, 0]
and

Xr = Mu¢ + M2 + 8,

Ls (N) = my (N), Mrs = Mg, a8 b —

L (M)~ M (X)), Ms = My, as g — —,

Il we Cor) low = = 1/pim { my (A) }

and [Fxr (e X) oo = 1/vim { Mn ()}

@23)

(4)

Thus from (2.5) and (2.6), since ¢, ¢z are linearly independent, it follows by making a——x

and b—eo,

T (on) = — 2 g o)A
my —~ My m

T

~ mi ma i
A) = 212 AN —2 [, S
yra (X, \) di(x, M)+ Y ¢2(x,A)+ Y

u =M

1n -
Mo—mn = Mp—mzn, Mg = mp and

lim ¥ (abx A = i, (x,\).

b—

12 1
S LAY ——— (%A
Mn ¢2(x.0) my = Mn =)

29

82(x,\)
1

I (x, \)is the §f (@ b, x,\), as a——o0, b—00_and ¥ (x, \), the ¥ (x, ), as a——oo, with

» G (x, )} xrn(x )
b = ( - ) Xr = ( )
Y2 (X%, 0) X2 (x,A)

it follows from (2.3) that the Green’s matrix in the singular case (—o°,0) has the representa-

tion
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G(xyM) = (A x (WAL Y=x }
(2.10)

=x(xNFT(A), p>x

G (x.y,\) is not necessarily unique. For uniqueness of G (x,y, A) we require a number of
stringent conditions on p,g,r (See Chakravarty*, where the problem is discussed for the

interval [0,92) ).

Finally, as in Chakravarty®, if f(x) e Lz (=, 22 be an arbitrary vector, the vector
O (xA) = @ (AN =] GlxpN)f(y)dy @2.11)

satisfies the non-homogeneous system (1.3) and & (x,A,f) € L (—o0, ).

3. Derivation of the generalized Parseval theorem for the system (1.1) in the singular case

(e )

In (2.10) we substitute the explicit expressions for ¥ (x, A), X,s (x, A) as obtained in (2.9)
and (2.8). Then, since

My—mgy My = mn My - mu

. M . My mo Mu+tmoMe _ muMotmo My
ml - [ = im N =
My—mn

ete., and ¢, {x, A) 8, { x, A) take real values for real A, it follows after some reductions that for
yEx,

limim Gu (%3, 3) = (u) uz) (dfy)( le )+ (w1 uz) (dny) (;;21 ) +
uj i X1
+ (x1x2)(dny) ( " ) + (x xz)dCu( 2 )
ur Xr
where u,, x, are the elements of ¢, :( v >’ 4, :( Ve )

respectively, A = p + iv and £, = £y (p), 9y = 1y (0), L = Lo (k);
Ey =& My = My, L= L2,

are defined by
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H . . i)+ m, .
En(p) = “rgf_ i [ my (utiv) My (u+iv)+mi (utiv) ] du
—=to

My (u+iv)—my(u+iv)

wherer=1,s=2andr=2, s =1;

= i f—im mi Mu+mae M du
falu) = l'l"nf?o My —mn

H My
= i =i — | du, ns= 1,2,
ﬂr:(l‘) }fl—n(;lbf m [ Mn“mn:l “

~mn

L F 1
and [u(p)= 1yl_ngof—1m [ﬁ”———-——] du

G

£, nreand {1 are non-decreasing functions of p (Proof given in §4) with similar expressions

for the remaining G, (x,y, M) for y < x. Hence for y < x, we have
lip im G(xpA) = ¢ (xp)dé6” (u)+ ¢ (xuldnb” ()
48 (ap)dn o (np)+8(xp)dle” (np)
where d¢ (u) = (d€y (1) ), d (p) = (dny () ), AL (p) = dlu (u) L
U1 u:z X1
I unit 2 X 2 matrix, and ¢ {x, u) = ( ) and 8 (x,u) =
Vi V2 B4t

The superscript T denotes the transpose of a matrix.

A similar result holds when y > x.

As in Chakravarty®, the vector tl;(x, A.f) satisfies the relations

I ® (AN Ui S 072 (1 fll-mens
A (xAN =0+ 8 (0]

where A= p+iv, F(x)=Mf feLy(—oo ).
Also, by utilizing the formula of type

(3.2

£

X2 >
J2

(3.2a)
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£
%) @ (xA) = [ (£-3)* (3=x) { M(2, M) ® (3 N) - F(p) } dy -
£
~[(6y—2x-4£) @ (1\) dy

(P
where M(y,X) = ( r q—k) and Fly) = (j:zl)

we obtain (see Chakravarty®, p. 411)

(M) =0 (N [»]™), for f{x)e Ly (—o,%0), x fixed and » # 0 (compare Titch-
marsh®, p. 34).

Hence
Rt
Ax)=lim im{ljm [ ®(xA)dr]
R-oo ~R+wy
v=Q
R -
=lim im /7 [ [[G (x».0)f0)dy]dx
R Rt
=0

(see Titchmarsh®, pp. 39-40).

Thus,

fix) =[ & (x.p) de(w) [ 67 () f¥) dy+ [ 6 (e p) dn(p) [ 07 (r.0) f(¥) dy +
+[:0 (x, ) dn(p) [zcbr(y,u)f(y)dy +f;0(x.u) dl(ﬂ)ji@’(y.#)f(y) dy (3.3)

Since for square matrices A, B8, C, of the same order

(ABC) = CTB"A", (47)" = A and A7 = A when the matrix is symmetric, the above
expansion formula leads formally to the following theorem

Theorem: For two vectors f(x), g(x) € Lz (—°0,%0)
LUT g0y dx = 17a 1 [ET ) a6 1) Fo () + [EF ) an 00 Fro +
+[EF Oy dn oy R0+ LEF D Q) (0] G4

where (.,.) is the usual inner product of two vectors; ‘



152 N.K. CHAKRAVARTY aND SWAPNA ROY PALADHI

En
Ei(N) :<E)

Fi. o Fa: o
Fi(\) =(F')= [ @7 (x M) glx)dx; F2(X) =(F >=[0T(x.x>g(x)dx;
12,

2, s

0 E> @
[ o7 e dx Ea(n) :(E ‘>:J‘N9T(Xv)\)f(x)dx;

i

and the elements of cach of the matrices, £ n,{ are non-decreasing functions of the real
variable A.

The rigorous derivation of (3.3) that is the expansion formula and (3.4), that is the general-
ized Parseval relation, follow in exactly the same manner as Titchmarsh® (Chapters I1-I11), the

only difference lies in proving the non-decreasing characters of each of the elements of the
matrices &7, and {.

4. On the matrices ¢, 1, {

Let Auob Yra(a b, x) = ( :[/’]:" ) be the eigenvalues and eigenvectors for the interval
(a.b)
Then,
b
m{ab,
[ vl (@by) Grlaboxy hydy = Lmi@b:x)
@ X Nrab

where G (...) are the Green’s vectors (i.e., the column vectors of the Green’s matrix
G(a, b.x,y.\) with elements Gy () ).

Differentiating with respect to x we have

H 4 (a,b,
[ 5(a.by) Gi(abxyr)dy = w
a - nab

If K (.....) denotes the various constants depending on the arguments shown, then

. 2
Lemma 1. 3 Ymlabx)

2 1A, SKW

i.e., the left hand side is bounded independently of 4, b.
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femma 2. A = ptiv, 0<<wyp=1l

fﬂa imG(xyA) | de < K(xya8)
ie., the ;eft hand side is bounded independently of v.
Lemma 3. Hx#*p 0<vr=s1

f{ Gl N dp < K(x a8y v

remma 4. MfO<p=1
1l j;qim G (e Ay dp -2 « < K(x,a.8)
Lemma 5. If0<v =<1, and .8 and x fixed,
fdp HGr (31X A) |- < K (x,0,8) »7"
Lemma 6. For 0 < v =<1 and a, B, x fixed

B
[dull Gr (A feme < K (3,0, 8) »7

The lemmas follow in the same way as Titchmarsh® (pp. 28-40) and Titchmarsh® (p. 57)
(also see Tiwary7, pp. 4548 and p. 108 for G e Ly (~%2,9)), If x=0, by virtue of the initial
conditions (1.2) and (1.4), the Green’s matrix (2.10) takes the simpler form

WA = (my (M) X (WA) r S
G((?,},)») T (OO x A r=0
1
= — (M, (A T A), r>
—a (My(X) ¢ (2 A),»>0
Y Y Yrn
where ¢ = ( ) and ¢, = ( )
Y V253 ¥n

Consider first the case y<<0. Then utilizing the inequality |a|*<2 (|a+b]* + 16{°), a b
complex, and the lemma 3, it follows that

[ mn|? (f”] dyydu-2 [ ims® (ﬂ [*dy)du = O(1/»)
,X|M“—-m“!2 oo X 'V) # m|1l’fu"m11]3 -wXS . #
and
Hi
| My’ fo (_fmal? RE
_ A PR N 4 12dy)du = O(1
u"w‘]MU“er (L’X"I dy)du 2m PETTE (lel yidp (1/v)
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Thus

2 mal?

firranen: [l i
I Tt = et [ dielfanas e

are each O (1/v), where r ¥ s = 1,2, and x, are the column vectors of x (x, A).

In exactly similar manner, by considering the case y > 0,

{M}'Q

£ |Mrr
/ 1= mu)

Mo —mn |2 ‘f‘“’" dy)du; f : (fhlfslzdv 43

s

are each O (1/v) where r # s = 1,2 and ¥, are the column vectors of ¥ (x, X).
By using the relation (A) of § 2, it follows from (4.1) and (4.2) that

H

1

fm [ Mm%t Mo | My ® imm,Ydu = O(1) @3
0
and
Hz |m |Z
m (im M, —imm,) du = O(1) (44)
n 1

(4.3) and (4.4) are equivalent to

s w Mo

Jimg A;': -1 du = 0(1) 49
and

f [ s | *im (——~—) dp = 0) (4.6)

Again, from (2.10), by differentiating with respect ta x, and then putting x = 0, we have o1
utilizing the initial conditions (1.2) and (1.4)
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) -T
: = XT(n ALY
G0, N) = w (3R y=0

— 1 T

= ALY >0
mu ~ Mu Ui (r ALy
and ¢ being defined as before.

Hence, by making use of lemma 6 and the relation (A) of § 2 we have

fw du (im M~ immy) = O(1)
—e—s (1 e ) =
sl Mu—mnl”

which is equivalent to

i ——— ) du = 01 4.7
u[ lm(Mu'mu) # M &7
By using the Titchmarsh inequality® (p. 57) viz.,
[im (2/a~b)]* < im (1/a~b) im (ab/a~b), a.b complex, a # b,
we obtain from (4.5) and (4.7)

“y ’n”
i e du = O(l 4
i‘{ im [ M- 1 du =0 (4.8

The analysis adopted above remains true if My, my, are replaced by iMy and imy
respectively. Hence as in (4.6) we obtain

I

’ 2
rs e
uj; o (Mn—mll

)y dp = O(1) (4.9)

From (4.6) and (4.9), we have

K2 ' 1

2 . B 2

1€ My du, immbre (————) d p are each Q(1).
i‘: s im ¢ Mn“mn) K uj: ’ My -mn

Hence

2
M ops )dp=0(1)
—mn

fi (4.10)
Jim( 37
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It is easy to verify the identity

(im ab) im b, im (a°b) + (1ma)2 | 5|2, for complex numbcrs a,b. From this, ifim b,
im (a’b) are of the same sign, we have by the obvious inequality ¢* + 5* =(a+b)abzg

|imab|<|imb.im(a’b) |+ |imal |b]

4.1
If im b, im (a’b) be of different sign, we have
limab | < |ima||bi (4.12)
1 . .
In(4.11),puta=my, b = ————— soasto obtain by the Schwarz inequality
My —mn
fmlim Z ldu <(f:im("““l‘—")du)‘/j flm( ‘“”L—’)d#)w
e My —my A My

"42‘ l
+ immy ————— d
,Zl: [ M~ myy |

The first term on the right is O(1), by (4.10) and (4.6), the second term is also O(1), since My
* mu implies | My ~mn | 6>0
H2

and f im m,s dg = O(1) (compare Tiwary’) (4.13)
M1
e
Consequently, f im ( ————-) du =0(1) (4.14)
Ky M n-
2
The result also holds, if im ( ! Yand im( M )differ in sign : to prove this case
1My My —mu

we use (4.12).

4

Again, fImsl? dp <o, rs =12 “4.15)
My

(compare Titchmarsh®, p. 43).

Then by the relation

M Bl My + M (
. - [ R 2
My—mn. (Mo —my)" (M, —m. )"

and the inequality,
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imax b)Y’ =2(1al®>+ (6" and | My =my| = §>0

if follows that

fxm( D s -) du =0(1) (4.16)

. mia Mu . mump
11ce - — My
’ mpn = M my = My

i Momzn _ momn
an -
my = Mu my ~ My

,(for my = M12) it follows from the results obtained

before that
o m12M11+M12m22
i 222y dp = O(1 4.17
J im( M) 4k =00 (4.17)

a1

Hence (vide Titchmarsh®, p. 43, lemma (3.3) ) we can establish that the elements &, 7, {11 0f
the matrices €, n, { respectively defined by (3.1) are non-decreasing functions of A (A real).

A rigorous derivation of the expansion formula (3.3) and the Parseval formula (3.4) can
now be obtained by closely following Titchmarsh® (Chapter 111).

5. The spectral resolution and the generalized orthogonal relation

Let the matrix H (x, 3, A) = (Hx (x5, X)), (X real) be defined by

A
H{xp\) = lim fim G (x,y,0+iv) do , A>0
=0 g
i

it

—Iirsxfim G (xpotiv) do, A<0
=0 A
=0 , A=10

(5.1) .,

(compare Titchmarsh®, p, 41, Tiwary’, p. 49). Then the properties like existence of the limits,
bgunded variation character of H,, etc., follow from Titchmarsh and are incorporated in
Tiwary’s thesis” (§§ 2.13-2.14).

Also in the interval (~o9,0)

HH (37,3 A) | -o,00 < (X, X) (5.2)
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where H, is the rth column vector of the matrix H,and k(x,\)isa constant depending an the
arguements shown. By making use of the relation (3.2) the matrix H(x, »,\) has the explici;
representation

v

i

H(xpA) = [[ & (x Ay dEN) @ (A + & (xA) dn(A) 07 (1 A) +

0

+ 8(x, Ny dp(A) ¢ (M) F B8 (M) AUM BT (M) ]; A0
[

= JL80xA) 400 870 0) + 0 (1) dn (M) 0750 + 53

i

+ 00N dr(M) TR M) F O M) AN 8T M) T A<

=0 A=

where the matrices ¢, 8, £ 7, { are defined as before.

Then the expansion formula (3.3) takes the form
ftxy = Um lim [ [H (et T)= Honn=T) 1 A1) di 64

By Green's theorem (see, for example, Chakravarty®, p. 139), it follows that for non-real

=ptiv, AM=ptiv, A#EN,
h
(A=A [ Glab,x,)) Gla byt M) dr = G(a, by, x,\)~ Glabyx\)

Itis easy to verify that G(a, b, 7, x, A ) convergesin mean square to G(7,x, A); therefore by the
familiar extension procedure (vide Titchmarsh®, p. 58 and Chakarvarty*) we have

G(pr,x N)=G(r,x\")

f GLx NGty dr =
[ Glx MGy N dr T

(5:5)

Hence (vide Titchmarsh®, p. 59) we obtain after integration with respect to u between the
limits (0,v) and making v—0

F , _ H(y,xv) Y H( X 0 :
H{t, x,v)G(y,tA)ydr = 5.6
[ H(Lxv)G(p 60y dr e +6f(#—)~’)2 d (5.6)

Equate the imaginary parts of both sides of (5.6), integrate with respect to pu’ between the

!imits (0,u) and proceed as in Titchmarsh® (p. 60) by using the theory of the Cauchy singular
integral. Then after some reduction we obtain
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fH[/.Xv") Hirrw)de = o Hip,xu)~mj2 H(rx0+0) ; 0<u<y
=w/2[ H(roxu)+ Hxu-0)~ H(p,x,0+0)] : 0<u=1

= 0=usy
= -—m/2 H(y, x,0+0) cu<o<vy
5.7

Similarly, for the case v = 07 0 <v <<0; u =y <0,
Let A = (a,8)and H (1. x. A)Y= H(t,x,8)~ H(t x,a).
Then, f A’ = (a’,B") such that AN A’ = (a,8")

j;H(l,.x’, Ay H(noAYdr=m H(px, AN AT (5.8)

{n particular,

%

[ HCGx,A) HOn, A dE = 7 H (5w, A) (5.9)

Lo’

The relation (5.8) is the generalized orthogonal relation for H(s, x, A).

The differential operation M defines on Ca(-29,99) a symmetric operator on Lz (—o0 %),
called the minimal unclosed differential operator. The closure 7'y of this is the minimal
differential operator defined by M. Let T be the operator ‘generated’ by M, so that Tis any
sel-adjoint extention of T (see Glazman®, pp. 27-28).

Put K{xy, A = H(x,», A—0) ~ H(x,y,—%), (when A is real).

Then, K(x,y, A} is symmetric in the sense that K (x,1nA) = K’ (r,x,X), H bemng so.
Moreover, since as a function of y and for almost all x (as well as for almost all y when
considered as a function of x) Hel; (—oo,0¢), K (x,3,A) does so. The (matrix) kernel
K{x.y.\) is thus of the Carleman type.

The operator E(\): fxy—=1/r fx K(x,t,A) f(r) dt

Le £(N) f(x) = l/w_[i]((x,t.)\)f(t)dt, f= (;]> (5.92)

is therefore a linear symmetric operator in the Hilbert space J# (sce Stone’ pp. 101, 398).
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From definition, £(=2°) = 0 and from the cxpansion formula (5 4) E(e) = |,

Also (see Titchmarsh®, p.52) we have for fig e L: (—,50)
J(Eg dx= [ (EO)g/)dx

showing that £(A) is self-adjoint.

t

Again. E(g) EQ) £ = 1/’ [ Klenw)dr [ K (1 00) £ dy
= 1/7,—1@ [Zk(x,z,m K(ty, A)dn fly)dy
= 7 [ Ky AOAD () dp by (58)

where

A (=0, —%0), A (A0, ~2)
Thus, E(u) E(A)Y = E(A}forA < p
Also evidently £(A—0) = E(N).

E(X) is thus a projection operator and is, in particular, a resolution of the identity of the
operator T.

Put Fx Af) = 1jm [ H(x 3 A) /() dy, for fe Ly (=o0,%0). so that
E(Mf = FOOA) ~ F (-0,
Then following Titchmarsh® (p. 55)

E(u)f = lim 1z [im { @ (x o+ iv, /) = & (x= +iv. [)}do
v o
where f = Mf¢ L1 (~90,00),

In the relation (3.2a) of § 3. wereplace A (=o+iv) by A’ (=¢’+iv’) subtract the new result

from (3.2a), equate imaginary parts from both sides of the result so obtained and finally
make v, v"— 0,06+, ¢ — oo,

Then closely following the analysis of Titchmarsh® (p. 55), we obtain,

[m(j'« g) dx :[M)\{dj;(f()\)f. g)dx}, A, real (5.10)
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The equation (5.10) is expressed as
T:[m)\dE()\) 510

where T is the self-adjoint operator generated by the differential operation M.
The results obtained above can now be summarized in the form of the following theorem.
Thearem: To every self-adjoint boundary value problem involving the system (1.1). (1.1a)
over the interval (—90,9°), there exists a matrix H (x, v, N) explicitly defined by (5.3) which
satisfies the generalized orthogonal relation (5.8). H (x,v,\) generates the operator E(\)
given by (5.9a) which is associated with the self~adjoint operator Tgenerated by M by means
of the relarion (3.11). E(X) is the spectral resolution or the resolution of the identity of the
aperator T

The matrix H(x, y, A) given by (5.3) is therefore the spectral resolution (or the resolution
of the identity) of the differential operation M in (1.1).
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