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Abstract

Atechnique is developed for identifying the system
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1. Introduction

Let M denote the formally symmetric second-order vector-matrix differential expression

given by

d d N
dx ? dx “ *

MV =

(rLn

Uheing a compiex-valued vector function ‘I':(‘;), suitably differentiable on the interval (0,%¢)

and where the coefficients p.rand g, (j = 1.2,3) satisfy the following conditions:

163



164 PRABIR KUMAR SENGUPTA

(i) p(x).r(x)are real-valued and positive for all von (0.%)and are absolutely continuops
on all compact sub-intervals of (0,%).

(ii) ¢, (/ = 1.2,3) are real-valued and continuous on {0,%°).

The Hilbert space H in which the spectral theory of M is developed is that of compl

. ex-
valued vector-functions ¥ = ({, ) such that

Y

(\H 17+ lgl*} dx<Coo (12

or, equivalently, each of Re(f), Re(g). Im(f), Im(g) is square-integrable on (0,%); we
express these by writing Re(f), Re(g), Im(f), Im(g) e L.° (0,20). The inner product of two
vectors ¥ = (-é } and ® = (¥ ) is defined by

(¥, d) :”f (u + gv)dux.

It is known [See Chakravarty ', Sengupta’, Naimark * (§. 17.5 V11) and Glazman® (Ch. 1.
§. 13] that the differential system

M[¥]= AW, Im\ # 0 (1.3)

possesses at least two and at most four linearly independent solutions on (0,%¢) which liein A.
M[-]is said to be in the limit-S case at infinity if the differential system (1.3) has exactly §
number of linearly independent solutions in K. Given p, r, qi, g, g3 the number §is
independent of A, as long asim A\ #% 0. The idea of this paper is to establish a general set of
sufficient conditions on the coefficients p.r,gi,q2,g3 so that M[-]is in the limit-2 case at
infinity. Several methods have been used forinvestigating the limit-2 case for the system (1.3)
or for one similar to it. In 1954, Lidskii® showed that the system

~Y"+ QY =AY, ImAX 0 [tE))]

possesses k number of linearly independent square-integrable solutions on (0,%°) provided
the square hermitian matrix Q(x) of order k satisfies

(Q(x) h) = — N(x) f[R)*
for any constant k-vector h, where the pesitive continuous function N(x) satisfies
0] _F[N(x)]"’2 dx diverges
andn, either
(if) N(x) is monotone
or,

(iii) N(x) is differentiable and lim supew | N'(x)| [N(x)]¥? < . (.3
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Sear’s result© can be derived from Lidskii's result by putting k=1. Chakravarty” (Th. 111)
proved in & different way that the system

d]
91 T +q:
M [¥] = &= Ay (1.6)
d:
——dT:*’ q: qs

is in the limit-2 case at infinity if qi,g2,¢s are all 0(x%) as x—~o, Anderson® discussed the

system
PO+ Q¥ =¥ (1.7

where @ is & k& x k matrix of real measurable functions which are Lebesgue integrable on
compact sub-intervals of (0,°¢) and ¥ isa k-vector, and extended the results of Lidskii’ to the
case when the system (1.7) possesses the minimum number (viz. nk) of square-integrable
solutions on (0,%¢). The method applied by Anderson is similarto thatapplied by Hinton® to
the corresponding scalar equation. In particular, if n = 1, k = 2 Anderson proved that [Th.
2.4]. the system

is in the limit-2 case at infinity if g1, g3, [g2]=<N(x) for N(x) as in (1.5). Following
Titchmarsh'® (Th. 2.20) Bhagat and Guma'' (§ 5) pointed out that the system (1.3) with
p=r=11is in the limit-2 case at infinity, if ¢:2=0(1) and ¢;.g3=~N(x) is a positive,
continuous non-decreasing function of x satisfying condition (i) of (1.5). A complete analysis
of the system (1.6) has been made by Eastham " when g} s,j=1,2,3 are multiples of powers of
X, giving conditions under which $=22 or §=3 or 4. In this connection mention should also
be made of the papers by.Titchmarsh”, Shaw and Bhagat ", Sengupta'* ¢, Eastham '’ dsi
Bverity'*%°

In this paper, we present a simpler method to establish that the system (1.3) is in the limit-2
case at infinity under suitable conditions imposed on the coefficients p.r,g1, g2, gs which will
include the cases mentioned earlier. The method employed is based on an extension of a
technique given in Levinson®' or Coddington and Levinson® (Th. 2.4 Ch. 9, Sec. 2). The
result obtained is given in the following theorem:

Theorem: et N(x) be a positive, absolutely continuous and non-decreasing function of x
such that
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o) lf? [ PNY " dx diverges, P = max (p.r) g

(i) lim sup.-e N' /[p/N']and lim sup, -« N'\/ (r/ N°) exist finirely (19

and moreover,
(i) g1 (x) = = kit N(x) qa () Z =k N(x)and | g: (X} S ke N(x) (L1g
(ki ko ks are all finite positive constantsy hold for all sufficiently large values of x.
Then M[+]is in the limit-2 case al infinity.
The proof is given in the following section. fn proving the theorem we extract a function
wo = [roy wemex tr=(0 ")y

from the equation
[ @7 M[8YN) dx = f£ 070/ N) dx,

converging to a finite limit as x—o°°, which later produces ( R’/ \/PN) e Hforall 0 ¢ D See
section 2 for definition of DJ. Finally the theorem follows on utilising the last result along
with (1.8) and (2.1).

2. Proof of the theorem

We introduce a linear manifold D as follows:

A vector-valued function ¥ =(/;)is in D if and only if
iy ¥eH

(ii) f7, g’ are absolutely continuous on (0,%)
(i) M[Y]e H

For ¥ = ({Z) . ® :(‘;)e D, it is known from Green’s formula that

KN M[‘P]dx—Uf\IfTM[zb] dx= {p (fd@ ~fa)+rigv-gW)}i
)
and the bilinear form

[¥ @] = p(fii’ ~ fi) +r(gV' —g'¥) tends to a finite limit as x— 2.0

and that

lim [¥o]=0 22
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for all ¥, ® ¢ D if and only if M is in the limit-2 case at infinity [ See Sengupta® Th. 6.2;
Naimark® § 18.3 lemmal].

Since the number of L*-solutions of the system (1.3) remains uncharged as longasim A #
0, we start to prove the theorem by choosing A =/ in it.

Let ¥ = (9 (ﬁ + llg e D be a solution of M [¥]= ;¥ satisfying the initial conditions

flay=oa,g(a)=§

} a>0

pla)f(a) = ,r(a)g' (a) =36

a,8,7.8 are finite complex constants [For existence of the initial conditions, see Sengupta
Th. 3.1]. Multiply both sides of M[¥]= ;¥ by (¥~7] N), integrate between a and x, and
then integrating the right-hand side by parts, we get

fqlff+qz(fg+f33)+qvggd e f(fl ;lgl f(pf’)f+N(rg)g dx

__pTres . rpfftree cwf g )N
=-[ ~ e+ [ N dx ?[ e dx

Taking real parts from both the sides,

_f @117+ 2q (fis +hg) T aslgl’ dx:_p(flfi tAMA) Frigigl T gtk
N N

X 7y 2 2 x a t 1 4= Z
+fP|f1 +rigl dx—-,/(p(flf‘-i-ﬁlezrfr(glg‘ 8283 oo

then by condition (1.10) Lh.s. satisfies the inequality

_fa If?2+24z(fxg1\x[+fzgz)+qslglz axs- | qmz;qs gl 4ot

voflallfisithienl g g, [ipaxtis [ 1gtart 26 [ 1t ass

Hence there exists a constant X such that

PUASI+H A Frisigl + ggh) fp +rIg|

K>-
N
_j pN S +fzfi)N‘t rigngi + g:8%) Ndx, (Fx) @.3)
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Now it is to be proved that if the solution ¥ ¢ D then the integral

Folirie
X
2 N

converges. For, suppose conversely that this integral diverges, then the function

N 24 /2
Wy = [RULEAL

N

is positive, monotonically increasing and tends te 4o as x o0, Using condition (1.9) and
then the Cauchy-Schwartz inequality results in

| f pUNS +fz/"z]\)lz+ r(ggi T 8288 nrg s

<f[l PIN N NPIN S+ A |+ /NP NN rIN (gigl + g288) | Tdx

< K f[\/p/N’lﬁfogf;\ + /N lgigi + gagil 1 dx

p U AN (gt el
N

2

dx

< Ki f{(fﬁ +A) +Hgt e |
X x 7y 2 2
<K L1+ g1 dxl {ff’-'%m—dx}‘”

< K; Y W(x)

Applying these results in (2.3), we find that

1 ¥4 + ’ ” /I ;
K> W(x)— pfifi fzfz)N+ rigigt+ ggt) Ko/ T, (Vx)

Since W(x) — o, as x — oo, the last inequality can hold only if

PUNSIH S5+ rigigh + eagh)
N

> 1/2W(x)

for all sufficiently large x. As p,rand Nare positive it appears from the above inequality that

at least one of the pairs f1,/1;f2./%; £1.81; g2,g31s of the same sign for large x. In this situation
at least one of the four integrals
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[ridx [ ride [ gidx [ ghdx

fails to exist and this contradicts the fact that We 0. Thus, W(x)remains finite for ¥ e Dand
that

o ) 2 R
Feslinely, .

it then follows
VEINISL NN Igl e L?(0,)

and consequently

L= Ll = VIR < Lo, 2.4a)

'

[P=max (p,r) ] and like wise

el e (2.4b)

m € L°(0,%)

forall ¥ ¢ D.

Utilizing the results obtained we now show that im [V @] =
From (2.1) we find

0 for any solution ¥, &, eD.

|[Yell, flpf —pf T gy gVl

N VPN

Suf Plfll"u”l+p!f’llﬁl‘;;,lg!IV'I+rlg’|l\7| d

R

The integral on the right side converges as x tending to infinity following the result (2.4) for
¥, ® ¢ D and consequently

LT e])
VPN

dx

Sy
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converges. Now, if l‘ig}o [¥®]=4k, a finite limit (#0), we can find an X, €(0, <), depending
on 4 such that N

21kl < |[¥0]] < 32 k|

hold for all x > X;. Then

1 \l/(b w X v
faLL—P-J—' dy = (Hfﬁf) l%_}ff’]]v—' dx=171,+1/2 1k|Jd,\-,r’\/PAV~m,

3

as X — = contradictory to (2.5) and the desired result limy [W®] = 0 is achieved. which
ensures the system M{-] to be in the limit-2 case at infinity.

Remark 1. Some discrepancy is found in between the papers of Gadamsi-Mahto® and
Eastham-Gould *. In Theorem 37" the authors tried to apply the technigues of Titchmarsh "
and Everitt™ in proving the system (1.3) to be in the limit-2 case at infinity : the conditions
taken there were

DO<p.r=kx® (i) g.gs=~kix", g2 =~ kax’

witha+ =2, a=0,B-a<2y=<aandk, ki, k1 all positive finite constants; whereasn
Theorem 1 (ii), § 3* it was proved that the system (1.3), (with p=r== 1) is in the limit-3 case
at infinity provided

qgir=alqg:l.qs=>blg:],a=0,b=0,ab<1

2

where ¢ be no where zero in some interval [ X,50), ¥ = 0 and g3 (g2"™")" € 17 (X.°).

As for an example, if we take p=7r =Tl and g, = ¢q3 = 1/2 x°, g2 = x°, x € (0,%), then
following Eastham-Gould™ the system (1.3) turns out to be in the limit-3 case at infinity
though the coefficients p, r, g1, g2, ¢ satisfy the conditions of Gadamsi-Mahto™.
Remark 2. It appears from the previous results (except Gadamsi-Mahto?’) especially
Anderson®, Th.2.4 and the theotem of the present paper that for a system of the type (1.3),
belonging to the limit-2 case at infinity, g2 should satisfy

lg2(x)| < K N(x)

along with other restrictions on g, and g3.
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