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1. Introduction 

Let M denote the formally symmetric second-order vector-matrix differential expression 

give11 hy 

vbeing a complex-valued vector function Y==(./'), suitably differentiable on the mtetval (km) 
R 

and where the coefficients p , r  and q,  ( j  = 1.2,3) satisfy the following conditions: 
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(i) p(.t-). r (  r )  are real-valued and positive for all 'on (0.m)and areabsolutelycontinuous 
on all compact sub-intervals of ( 0 , ~ ) .  

(ii) q, (i = 1,2,3) are real-valued and continuous on (0,m). 

The Hilbert space H in which the spectral theory of M is developed is that of 

valued vector-functions '4' = ($ ) such that 

or, equivalently, each of R e ( f ) ,  Re(g). Im(f) ,  I m ( g )  is square-integrable on i 0 . m ) : ~  
express these by writing Re( f ) ,  Rc(g) ,  Im(f). I m ( g )  e L"0.-). Theinnerproduct oftwo 

vectors 'Z' = (.f; ) and = ( t  ) is defined by 

It is known [See Chakravarty l. ~ e n g u ~ t a ' ,  Naimark' (5.  17.5 V11) and ~ l a z m a n '  (Ch. I. 
5 .  131 that the differentla1 system 

possesses at  least two and at  most four linearly independent solutions on (0.m) which lie in H. 
M[. ]  is said to  be in thc l i m i t 4  case a t  infinity if the differential system (1 .3)  has exactly S 
number of linearly independent solutions in N. Given p, r ,  q , ,  q ,  q, the number S is 
independent of A ,  as  long as im A # 0. The idea of this paper is to establisha generalset of 
sufficient conditions on the coefficients p.r,ql,q2,qi SO that M [ . ]  is in the limil-2 case at 

infinity. Several methods have been used for investigating the limit-2case for the system (1.3) 
or for one similar to ~ t .  In 1954, Lidskii' showed that the system 

possesses k number of linearly independent square-intcgrable solutions on ( 0 . ~ )  provided 
the square hermitian matrix Q(x) of order k satisfies 

( Q ( x )  h.h) 2 - N ( x )  llh1I2 

for any constant k-vector h,  where the positive continuous function N ( x )  satisfies 

(i) 1 [~(x)]- ' /" .r  diverges 
n 

and, either 

(ii) N(x)  is monotone 

or, 

(iii) N ( x )  is differentiable and lim sup,-, I N'( . x )  I [N(x)]-"' < m. 
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sea13s lesult6 can he derived from Lidskii's result hy putting k =  I .  chakravarty7 ( ~ h ,  111) 
proved in  a different way that the system 

, , in  the l imit3 case at Infinity if ql ,q~,q i  are all 0ix2) as  x-m. ~ndersnn~d i scussed  thc 
syhtzrn 

where Q 1s a k X k matrix of r e d  measurable functions which are Lehesgue mtegrahle on 
compact sub-intervals of ( 0 . ~ 1  and \Iris a k-vector, and extended thc resultsof LidskiiS to the 
case when the system (1.7) possesses the minimum number ( v k .  nk) of square-integrable 
solutions on (0,m). The method applied by Anderson is similarto that applied by Hinton9 to 
the coiresponding scalar equation. In particular, if n = 1, k = 2 Auderson proved that [Th. 
2.41. the syqtem 

1s in the limit-2 case at infinity if q l , q i ,  / q 2  l I N ( x )  for N ( x )  as in (1.5). Following 
 itchm marsh"' ( l 'h .  2.20) Rhagat and Guma" ( 5  5) pointed out that the system (1.3) with 
p=r=l is in the limit-2 case a1 infinity, if q2=0(1) and q i , q , 2 - N i x )  is a positive, 
conti~luous non-decreasing function o f x  satisfying condition (i) of (1.5). A complete analysis 
of the system (1.6) has been made by Eastham '' when q;s,i= 1.2.3 aremult~ples of powers of 
.r, giving conditions undef which S=2 or S=3 or 4. In t h a  connection mention should also 
be made of the papers hy   itch marsh", Shaw and Bhagatl'. ~ e n ~ u p t a ' ~ . ' ~ ,  Easthami7 a n d  
Everitt ''-" 

In this paper, we present a simpler method toestablish that thesystem (l.3)is in thelimit-2 
case at infinity under suitable conditions imposed on the coeffic1entsp,r,ql,q2.q1 which will 
include the cases mentioned earlier. The method employed is based on an extension of a 
technique given in ~ e v i n s o n "  or  Coddington and ~ev inson"  (Th. 2.4 Ch. 9, Sec. 2) .  The 
result obtained is given in the following theorem: 

nieorem: LPr N ( x )  be apositjve, absolurrlv continuous andnon-decreasing funcrion ofx 
such rhar 
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(i) f [ P N ]  ' ' d v ri iwr~~es.  P = r11a.r (17. r )  
I ( 1  xi 

i i  i n  u p ,  - N' p ' 1  I I u . N' I N  f i i ~  (1.9) 
umi lllo~t,,,wr, 

(iii) y ,  (.I.) 2 - X i  N(.r). qi ( x )  2 - X I  N ( x )  arid 1 ~2 (x.) 5 k2 N(x) (1.10) 

( I <  ,. k 2 , h  , arc2 uii fi'niie posiiiw u ~ n s i a r ~ i s )  hold /b r  all .sulj~i.irnt/s lur,qe tviues qf w. 

Then M [ . ]  is in the ii~nit-2 case at ir!finiry. 

The p r o d  is given in the following section. In proving the theorem weextract a function 

from the equation 

converging to a finite limit a sx -m,  which lateiproduccs ( RB'/&N) e Hfor all 0 r D[See 
section 2 for  definition of Dl .  Finally the theorem follows on utilising the last result along 
with (1.8) and (2.1). 

2. Proof of the theorem 

We introduce a linear man~fold D as follows: 

A vector-valued Functior P =({)is in D if and only if 

(i) V  e H 
(ii) f'. f' are absolutely continuous on ( 0 , ~ )  
(iii) M [ t ]  e N 

For P = (f) . LP =(IC)e  D, it is known from Green's formula that 

and the bilinear form 

[P 41 -- p CfC' - f i )  + r (KC' - g'G) tends to a finite limit as  rdm (2-I) 

and that 
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for g, E D if and only if M is in the limit-2 case at infinity [See Sengupta2 ~ h .  6.2; 
Naimark' 4 18.3 lemma]. 

Since the number of  solutions of the system ( I  .3) remains uncharged as long as im A #  
0, we start to  prove the theorem by choosing A = i in it. 

kt = (f)= [t : 3. D be a solution of M  [f ] = i '4  satisfying the initial conditions 

( Y , ~ , Y , S  are finite complex constants [For existence of the initial conditions, see Sengupta2 
Th. 3.11. Multiply both sides of M [ * ]  = i '4 by ( F - T /  N), integrate between a and x, and 
then integrating the right-hand side by parts, we get 

Taking real parts from both the sides, 

Hence there exists a constant K such that 

.>- p(.t i f;  +.f2,fi) + r(gig< C g ~ g i )  plf12 + rlg'12 d x  - 
N +! N 
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Now i t  is to  be proved that if the solution Y' t D then the integral 

con.,ergcs. For. suppose conversely that this integral diverges, then the function 

is positive, monotonically increasing and tends to  4-m a s  x - w .  Using condition (1.9) and 
then the Cauchy-Schwartz inequality results in 

Applymg these results in (2.3). we find that 

Since W ( x )  - m, as  x  -- m, the last inequality can hold only if 

for all sufficiently large x. Asp,r and Nare positive it appears from the above inequality that 
a t  least one of the pairs,fi Ji; f2, fi; gl,gi; g2,giis of the same sign for large x. In this situation 

: at least one of the four integrals 
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fails to exist and thiscontradicts the fact that V t  D. Thus, W(x)remains finiteforPE Dand 
that 

it then follows 

and consequently 

[ P =  max ( p ,  r )  ] and like wise 

for all V! e D. 

Utilizing the results obtained we now show that v_m_ [P @ ]  = 0 for any solution y, a, ED. 
From (2.1) we find 

The integral on the right side converges as  x tending to infinity following the result (2.4)for 
T, @ E D and consequently 
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converges. N o w  i t  liii [VQ,] =L-. a finite limit ( f  0) .  w r  can tind a n  .\-A t (0 ,  m), dependlng 
on  k  such that 

hold for all x > XI. Then 

a s  X - m. contradictory to  (2.5) and the desired result $3 LV4] = 0 is achieved. which 
ensures the system MI . ]  to  be in the limit-? case at  infimly. 

Remark I .  Some discrepancy is found in between the papers o i  ~adamsi-  ah to" and 
Eastham-Gould". In Theorem 3'' thc authors 11-icd toapply the techniquesof Titchmarsb " 
and ~ver i t t " '  in proving the system (1.8) to  he in the limit-?.case at  infinity. theconditions 
taken there were 

( i ) O < p , r S  k x "  (ii) q l . q i 2 - h ~ x " , q ? 2 - k ~ r '  

with a f /3 5 2, a 2 0, p - a  5 2 y 5 a and k, h ,, k all positive finite constants; whcrcasin 
Theorem I (ii). 5. 311 it was proved that the system (1.3), (with p = r =  1) is in the h i t -3case  
a t  infinity provided 

whcre qz be no where zero in some interval [ X . m ) , X  2 0 and q2!"(y2"d)" e I . ' ( x . ~ ) .  

As for a n  example, if we take p = r = k and q = q ,  = 1 / 2  xZ, y = x3, .\- c (O,m), then 
following Eastham-Gouldz4 the system (1.3) turns ou t  to  be in the limit-3 case at infinity 
though the coefficients p ,  r, q , ,  q l ,  q ,  satisfy the conditions of Gadamsi- aht to". 
Rerwark 2. It appears from the previous results (except ~adamsi-w ah to") especially 
AndersonR, Th.2.4 and the theorem of the present paper that for a system of the type (1.3)- 
belonging to  the limit-2 case a t  infinity, q. should satisfy 

along with other restrictions on q ,  and y,. 
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