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Abstract
The idea of a ‘separated” fourth-order differential expression has been introduced. 1t has been proved that if a

fourth-order symmetric differential expression is separated then it satisfies the Dirichlet property and hence itis in
the strong limit-2 case at infinity. The above results have been generalized 1o symmetric even-order differential

expressions.
Key words: Strong limit-2 case at infinity, Dirichlet property, separation.

I We consider the fourth~order differential expression

L[f]E(rf(Z))(Z)_(pf(l))(H+qfon [01 00)1 (LI)
where the real-valued coefficients r, p and ¢ satisfy the following:

(i) ¢ is locally Lebesgue integrable on [0, ),
(ii) r' and p are locally absolutely continuous on [0,%0) and

(iii) r (x) and p (x) are positive for all x € [0,0). (1.2)

The linear manifold A C L*(0,°0) may be defined as fe A if (i) fe L7 (0,%0) (ii) /' is locally
absolutely continuous on [ 0,0} and (iii) L[] e L* (0,%0). (1.3)

We define the linear manifold Ay C A C L?(0,%0) as fe Ay, if fsatisfies (i) — (iii) of (1.3)
and in addition (iv) /(0) =y (0) =¥ (0) =0 (1.4
Then both A and A, are dense in L7 (0,%0) [4].

The operator L [+] is said to satisfy the Dirichlet property if
173



174 JYOTI DAS AND JAYASRI SETT

@yr2r@ ppt g1 el (ooc)forallfeAand(u)f(rfm '(2'+Pf'”““+q/')dx
=[0F™) /- E - T O + [ 1Lg) (05

L[*]is said to be separated in Aif ( rfm O {pf MW and gfare separately in Lz(o,m)
for all fe A, (1.6)

L[-]is said to be in the strong limit-2 case at infinity if lim [ e+ gy
(FF ™YY (X) = 0. an
forallf, g € A,

We have,

f (f g™+ pr g + gff) dx = (R + oM B - 0]
+f0f L{Z] dx (18)
for all f,g € A.
In particular for f= g e A we have, from (1.7),
f{rlf“’l +olrMP+ gl dx =
DofF O+ rf 7 O =faf DY o)+ ffL[f] dx (19

From § 3[13,i(1.9) holds for real-valued functions, then it is also true for complex-valued
functions. Hence, though Aand A ; are defined for complex-valued functions it is sufficientif
we consider our results for real-valued functions only.

Some properties of functions, square integrable on [0,2) are enlisted in the following
lemmata.

Lemma 1. 1 fe L* (0,%) or f¢ L(0,%), and f ¥ absolutely continuous on any compact
subinterval of [0,%0) then f (x), £ (x), /@ (x) tend to 0 as X — o

Proof: Ifhmf(x) n#Othen]f(x) nl<eforx> X
ie,n —e<f(x <11+Ef0r).>X

As fe L7 (0,%), for X1 > X,fﬁ(x) dx sf“f2 (x) dx < oo,
X X * ’
Butxf fz(x)dx>;[ (m—¢)? dx = (n-¢)? (X1—X)—~as X; ~ >
which is contradictory to the above result.
Hence lim S(x) = 0. A similar proof holds if f ¢ L(0,%).
Alsof S de=1lim (£() ~ f0) ] = ~f () => fV-¢ LO0) = > lim FU(x)=0

Lemma 2. 1 fe L’ (0,%0), and £, £V, f® are continuous on [ 0,%), then for large X, "
(x)<0and f (x) % (x) <.
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Proaf: Ifﬁ"u) (x)>>0, then fand /' are of the same sign, say f(x)> 0 and S (x)>0; then
flx)> 0 and £ is increasing.

Butfe L*(0,0)=>>lim f(x) =0 by lemma 1. This leads to a contradiction.

By a similar argument, we can prove that £ (x)/® (x) < 0 for large x.
Lemma 3. For any fe Ay and g satisfying (1.2)if gfe L* (0,%), then |g|2f e L2(0,%0).
The proof is exactly similar to that of lemma 1, § 3[2] and hence is omitted here.

In this paper we prove the following theorem.

Theorem. If L[] is separated in L* (0,9), then L [-] satisfies the Dirichlet propertv and
hence L[] is in the strong limit-2 case ar infinity.
Proof: We assume that L[-]is separated i.e., L[-] satisfies (1.6).
Since Ay is dense in A, it is sufficient if we prove the theorem for f¢ A ;. So we consider any
f(: AL

From (1.6) we know that gf'e L*(0,9). Hence from lemma 3, we have | g | > fe L(0,%0) ¥
feAr, (L11)

g A X
Nowgpf“' gWdx =p(X)f(X) g™ (X) +£f[*(pg“’)‘” +geldx-[qfgdx  (1.12)

forall f, g e Az as £(0) = g (0) = 0.
In particular for f= g
X X
[ 7™ ax = (™) (X) + [fI=(er™" + a7 1dx - [ gf’ax
[H]

Since, by the definition of separation, (/") and g/ are in L*(0,%)forallfe Ayand by
lemma 3, | ¢ | ** f'e L* (0,%), each of the integrals on the right hand side of (1.13) tendstoa
finite limit as X — 0. Since p(x)>> 0 by (1.2) (iii), the left-hand side of (1.13)is positive and
tend to + %o if and only if (pff ") (X) — + o0 as X — e, But this is not possible, asp(x)>0
and fe L* (0, %) implies fand £ cannot have the same sign. Hence pf” ™ ( X) = a finite limit
asX—w Sop"? e L2 (0,) forallfe Ay (1.19)
Hence by (1.11), (1.12) and (1.14), p( X)f(X)g"" (X) tends to a finite limit as X — ¢.(1.15)

Infact, it can be shown that this limit of (1.15) is zero [with the help of a lemma analogous -
toalemma in § 2 [3]].

Hence

lim p(X) f(X) gV (X)=0forallf,ge AL

(1.13)

(1.16)

Now

frf"” dx = if W f@ (X - (f O £ 0 +f(rf‘”)‘z’fdx,fem (1.17)
Q
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As L[+1is separated, (rf ®)® ¢ L? (0,%) and f & L* (0,%) 2nd so

Jf flftB Lo as X~ 0. )
By (1.2) (iti), r(x) > 0 and hence

oL (O S(X) =+ if{f‘:‘{ W)~ as X — e

Now rf ' & (X) = (rf ™) (X} = 420 would mean at least one of the terms will tend to
o0, We shall show that this leads to a contradication.

Suppose = (/™" f(X) —~ + oo he., (1f ) F(X) ~ — = as X —~ o Then f(X) and
(f 2y ( x) must be of different sign i.e., if f( X)>0, then(rf‘“)“)(X)<O Bylemmal,fe
L2 (0,%) implies £ { X)— 0 as X — co. Hence it must bethat (if @) (X) —~c0 a5 X o0 By
this implies rf @ (X) — — 0 as X ~ co. Again, as 7(x) > 0,/ (X) must be < 0 which, by
lemma 2, is impossible, since f(X) > 0. The case f(X) < 0 may be similarly discussed.

If rf 9 £ (X) ~ + o0, r( X) being positive, it follows that ",y are of the same sign. But
by lemma 2 this is not possible. Hence rf™ f® (X) + o0 as X — + o,

Therefore, not only rf' £ (x) = (rf*™)" f( X) — a finite limit as X — %, but both
rfO £ Xy and ()" £ X) must tend to finite limits as X~ oo, It then follows from(L.17)

that #"72 f® ¢ L* (0,00) for all f¢ Ay (L18)
In fact, we shall show that lim U (x) = lim_ (™M pxy=0. (1.19)
If possible, suppose lim (/™" xy=+-o0 Then lim r/P(X)=4ceie., given M>0, there
exists X>0,rsuch that rx(x)f‘“ (x)> M for x> X. So, for x> X, (note that r(x)>0
Pxe[0,20), [ £% () > Mr() ar

This impliesl that 4

FU(X) ~ 4+ o as X ~ oo, which is contradictory to lemma 1.

A similar contradiction can be obtained for the case lim  (xf ®)¥ (X)=~oo. Hence, (e
(X) tends to a finite limit as X ~ + 0, As fe L7 (0, °°) it therefore follows that hm (o
(x)f(X)=0.

Now suppose, 1)'}!31an rf® £ (X) = finite = € (say) and C# 0.
Then | rf" £ (x) | > C1> 0 for large X.

This implies, forX>Xof R dx>C1[Iogf“)(Xo) logf ™ (X)]—+oas X~+oo by
lernma 1. On the other hand by (1.18), hm f ! < oo,

This is a contradiction and hence lim_ rj"‘“f‘” (X) = Q,and (1.19) follows. In particular

lim (1 g™ (X) = (f ™)™ g(X) } = 0 for all fig €Ay, (1.20)
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Combining (1.11), (1.14), (1.16), (1.18), and (1.19), it may be see that L [] satisfies the
Dirichlet conditions and is in the strong limit-2 case at infinity.

9. The above theorem can be generalized to the case of linear ordinary differential
expression M [-] of order 2n (n=1,2,3)), given by, M[ £ 1= (-1)" (pf ") + qf on
[0,%). @.1)

where the coefficients p and g are real valued on [0,%°) and satisfy the following

(i) p™ is continuous on [0,%) and p(x) >0 (0 < x < )
(ii) ¢ is locally Lebesgue integrable on [0,90) 22

In fact, it can be shown that if M[-] is separated in L* (0,%), then p**f'” and
lql*fe L2 (0,%) and M[-] is in the strong limit - # case at infinity.

Proof is similar to that of the theorem in § I.
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