1 Indian Inst. Sci., 65(B), Aug. 1984, pp 173-177.

@ Indian Institute of Science, Printed in India.

Short Communication

A note on the separation property of symmetric fourthorder differential expressions

JYOTI DAS AND JAYASRI SETT

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Calcutta 700 019, India.

Received June 6, 1983; Revised on August 11, 1984.

Abstract

The idea of a 'separated' fourth-order differential expression has been introduced. It has been proved that if a fourth-order symmetric differential expression is separated then it satisfies the Dirichlet property and hence it is in the strong limit-2 case at infinity. The above results have been generalized to symmetric even-order differential expressions.

Key words: Strong limit-2 case at infinity, Dirichlet property, separation.

1. We consider the fourth-order differential expression

$$L[f] \equiv (rf^{(2)})^{(2)} - (pf^{(1)})^{(1)} + qf \text{ on } [0, \infty),$$
(1.1)

where the real-valued coefficients r, p and q satisfy the following:

- (i) q is locally Lebesgue integrable on $[0, \infty)$,
- (ii) $r^{(1)}$ and p are locally absolutely continuous on $[0,\infty)$ and
- (iii) r(x) and p(x) are positive for all $x \in [0, \infty)$. (1.2)

The linear manifold $\Delta \subset L^2(0,\infty)$ may be defined as $f \in \Delta$ if (i) $f \in L^2(0,\infty)$ (ii) $f^{(3)}$ is locally absolutely continuous on $[0,\infty)$ and (iii) $L[f] \in L^2(0,\infty)$. (1.3)

We define the *linear manifold* $\Delta_L \subset \Delta \subset L^2(0,\infty)$ as $f \in \Delta_L$, if f satisfies (i) - (iii) of (1.3) and in addition (iv) $f(0) = f^{(1)}(0) = f^{(2)}(0) = 0$ (1.4)

Then both Δ and Δ_L are dense in $L^2(0,\infty)$ [4].

The operator $L[\cdot]$ is said to satisfy the Dirichlet property if

(i)
$$r^{1/2} f^{(2)}, p^{1/2} f^{(1)}, |q|^{1/2} f \in L^2(0,\infty)$$
 for all $f \in \Delta$ and (ii) $\int_0^1 (rf^{(2)} \overline{g}^{(2)} + pf^{(1)} \overline{g}^{(1)} + qf\overline{g}) dx$
= $[(r\overline{g}^{(1)}) f - rf^{(1)} \overline{g}^{(2)} - pf\overline{g}^{(1)}] (0) + \int_0^\infty f L[g].$ (1.5)

 $L[\cdot]$ is said to be separated in Δ if $(rf^{(2)})^{(2)}$, $(pf^{(1)})^{(1)}$ and qf are separately in $L^2(0,\infty)$ for all $f \in \Delta$.

 $L[\cdot] \text{ is said to be in the strong limit-2 case at infinity if } \lim_{X \to \infty} [pf\bar{g}^{(1)} + rf^{(1)}\bar{g}^{(2)} - f^{(1)}\bar{g}^{(2)}] (X) = 0.$ (1.7) for all $f, g \in \Delta$.

We have,

$$\int_{0}^{x} (rf^{(2)}\bar{g}^{(2)} + pf^{(1)}\bar{g}^{(1)} + qf\bar{g}) \, dx = [pf\bar{g}^{(1)} + rf^{(1)}\bar{g}^{(2)} - f(r\bar{g}^{(2)})]_{0}^{x} + \int_{0}^{x} fL[\bar{g}] \, dx$$
(1.8)

for all $f, g \in \Delta$.

÷

In particular, for $f = g \ \epsilon \ \Delta$ we have, from (1.7),

$$\int_{0}^{4} \{ r | f^{(2)} |^{2} + p | f^{(1)} |^{2} + q | f|^{2} \} dx = [p f \vec{f}^{(1)} + r f^{(1)} \vec{f}^{(2)} - f (r \vec{f}^{(2)})^{(1)}] (0) + \int_{0}^{X} f L[f] dx$$
(1.9)

From § 3[1], if (1.9) holds for real-valued functions, then it is also true for complex-valued functions. Hence, though Δ and Δ_{\perp} are defined for complex-valued functions it is sufficientif we consider our results for real-valued functions only.

Some properties of functions, square integrable on $[0,\infty)$ are enlisted in the following lemmata.

Lemma 1. If $f \in L^2(0,\infty)$ or $f \in L(0,\infty)$, and $f^{(1)}$ absolutely continuous on any compact subinterval of $[0,\infty)$ then $f(x), f^{(1)}(x), f^{(2)}(x)$ tend to 0 as $X \to \infty$.

Proof: If
$$\lim_{x \to -\infty} f(x) = \eta \neq 0$$
, then $|f(x) - \eta| < \epsilon$ for $x > X$
i.e., $\eta \stackrel{-}{-\epsilon} \leq f(x) < \eta + \epsilon$ for $x > X$.
As $f \in L^2(0,\infty)$, for $X_1 > X$, $\int_{x}^{X_1} f^2(x) \, dx \le \int_{0}^{\infty} f^2(x) \, dx < \infty$.
But $\int_{x}^{X_1} f^2(x) \, dx > \int_{x}^{X_1} (\eta - \epsilon)^2 \, dx = (\eta - \epsilon)^2 \, (X_1 - X) \to \infty$ as $X_1 \to \infty$

which is contradictory to the above result.

Hence $\lim_{x \to \infty} f(x) = 0$. A similar proof holds if $f \in L(0,\infty)$. Also $\int_{0}^{\infty} f^{(1)}(t) dt = \lim_{x \to \infty} [f(x) - f(0)] = -f(0) = >f^{(1)} \in L(0,\infty) = > \lim_{x \to \infty} f^{(1)}(x) = 0$

Lemma 2. If $f \in L^2(0,\infty)$, and $f, f^{(1)}, f^{(2)}$ are continuous on $[0,\infty)$, then for large $X, f(x)f^{(1)}(x) < 0$ and $f^{(1)}(x) f^{(2)}(x) < 0$.

Proof: If $ff^{(1)}(x) > 0$, then f and $f^{(1)}$ are of the same sign, say f(x) > 0 and $f^{(1)}(x) > 0$; then f(x) > 0 and f is increasing.

But $f \in L^2(0,\infty) => \lim_{x \to \infty} f(x) = 0$ by lemma 1. This leads to a contradiction.

By a similar argument, we can prove that $f^{(1)}(x)f^{(2)}(x) < 0$ for large x.

Lemma 3. For any $f \in \Delta_L$ and q satisfying (1.2) if $qf \in L^2(0,\infty)$, then $|q|^{1/2} f \in L^2(0,\infty)$.

The proof is exactly similar to that of lemma 1, § 3[2] and hence is omitted here.

In this paper we prove the following theorem.

Theorem. If L [·] is separated in $L^2(0,\infty)$, then L [·] satisfies the Dirichlet property and hence L [·] is in the strong limit-2 case at infinity.

Proof: We assume that $L[\cdot]$ is separated *i.e.*, $L[\cdot]$ satisfies (1.6).

Since Δ_L is dense in Δ , it is sufficient if we prove the theorem for $f \in \Delta_L$. So we consider any $f \in \Delta_L$.

From (1.6) we know that $qf \in L^2(0,\infty)$. Hence from lemma 3, we have $|q|^{1/2} f \in L^2(0,\infty) \forall f \in \Delta_L$. (1.11)

Now
$$\int_{0}^{x} pf^{(1)} g^{(1)} dx = p(X) f(X) g^{(1)}(X) + \int_{0}^{x} f[-(pg^{(1)})^{(1)} + qg] dx - \int_{0}^{x} qfg dx$$
 (1.12)

for all $f, g \in \Delta_L$ as $f(0) = g^{(1)}(0) = 0$.

In particular for f = g

$$\int_{0}^{x} pf^{(1)^{2}} dx = (pff^{(1)}) (X) + \int_{0}^{x_{1}} f[-(pf^{(1)})^{(1)} + qf] dx - \int_{0}^{x} qf^{2} dx$$
(1.13)

Since, by the definition of separation, $(pf^{(1)})^{(1)}$ and qf are in $L^2(0,\infty)$ for all $f \in \Delta_L$ and by lemma 3, $|q|^{1/2} f \in L^2(0,\infty)$, each of the integrals on the right hand side of (1.13) tends to a finite limit as $X \to \infty$. Since p(x) > 0 by (1.2) (iii), the left-hand side of (1.13) is positive and tend to $+\infty$ if and only if $(pff^{(1)})(X) \to +\infty$ as $X \to \infty$. But this is not possible, as p(x) > 0 and $f \in L^2(0,\infty)$ implies f and $f^{(1)}$ cannot have the same sign. Hence $pff^{(1)}(X) \to a$ finite limit as $X \to \infty$. So $p^{1/2}f^{(1)} \in L^2(0,\infty)$ for all $f \in \Delta_L$. (1.14)

Hence by (1.11), (1.12) and (1.14), $p(X)f(X)g^{(1)}(X)$ tends to a finite limit as $X \to \infty$.(1.15)

In fact, it can be shown that this limit of (1.15) is zero [with the help of a lemma analogous to a lemma in § 2 [3]].

Hence

$$\lim p(X) f(X) g^{(1)}(X) = 0 \text{ for all } f, g \in \Delta_L.$$

$$(1.16)$$

Now

$$\int_{0}^{X} rf^{(2)^{2}} dx = rf^{(1)}f^{(2)}(X) - (rf^{(2)})^{(1)}f(X) + \int_{0}^{X} (rf^{(2)})^{(2)}f dx, f \in \Delta_{L}$$
(1.17)

As $L[\cdot]$ is separated, $(rf^{(2)})^{(2)} \in L^2(0,\infty)$ and $f \in L^2(0,\infty)$ and so

$$\int_{0}^{1} f(rf^{(2)})^{(2)} \leq \infty \text{ as } X \to \infty$$

By (1.2) (iii), r(x) > 0 and hence

$$rf^{(1)}f^{(2)}(X) - (rf^{(2)})^{(1)}f(X) \to +\infty \text{ if } \int_{0}^{X} \{rf^{(2)}\}^{2} \to \infty \text{ as } X \to \infty$$

Now $rf^{(1)}f^{(2)}(X) - (rf^{(2)})^{(1)}f(X) \rightarrow +\infty$ would mean at least one of the terms will tend to $+\infty$. We shall show that this leads to a contradication.

Suppose $-(rf^{(2)})^{(1)}f(X) \to +\infty$ *i.e.*, $(rf^{(2)})^{(1)}f(X) \to -\infty$ as $X \to \infty$. Then f(X) and $(rf^{(2)})^{(1)}(X)$ must be of different sign *i.e.*, if f(X) > 0, then $(rf^{(2)})^{(1)}(X) < 0$. By lemma $1, f \in L^2(0,\infty)$ implies $f(X) \to 0$ as $X \to \infty$. Hence it must be that $(rf^{(2)})^{(1)}(X) \to -\infty$ as $X \to \infty$. But this implies $rf^{(2)}(X) \to -\infty$ as $X \to \infty$. Again, as $r(x) > 0, f^{(2)}(X)$ must be < 0 which, by lemma 2, is impossible, since f(X) > 0. The case f(X) < 0 may be similarly discussed.

If $rf^{(1)}f^{(2)}(X) \to +\infty$, r(X) being positive, it follows that $f^{(1)}, f^{(2)}$ are of the same sign. But by lemma 2 this is not possible. Hence $rf^{(1)}f^{(2)}(X) + \infty$ as $X \to +\infty$.

Therefore, not only $rf^{(1)}f^{(2)}(X) - (rf^{(2)})^{(1)}f(X) \rightarrow a$ finite limit as $X \rightarrow \infty$, but both $rf^{(1)}f^{(2)}(X)$ and $(rf^{(2)})^{(1)}f(X)$ must tend to finite limits as $X \rightarrow \infty$. It then follows from (1.17) that $r^{1/2}f^{(2)} \in L^2(0,\infty)$ for all $f \in \Delta_L$. (J.18)

In fact, we shall show that
$$\lim_{X \to \infty} rf^{(1)} f^{(2)}(X) = \lim_{X \to \infty} (rf^{(2)})^{(1)} f(X) = 0.$$
 (1.19)

If possible, suppose $\lim_{X\to\infty} (rf^{(2)})^{(1)}(X) = +\infty$. Then $\lim_{X\to\infty} rf^{(2)}(X) = +\infty i.e.$, given M>0, there exists X>0, such that $r(x) f^{(2)}(x) > M$ for x > X. So, for x > X, (note that r(x) > 0 $r'x \in [0,\infty)$), $\int_{v}^{x} f^{(2)}(x) > \int_{v}^{x} M/r(r) dt$

This implies that

 $f^{(1)}(X) \rightarrow +\infty$ as $X \rightarrow \infty$, which is contradictory to lemma 1.

A similar contradiction can be obtained for the case $\lim_{X\to\infty} (rf^{(2)})^{(1)}(X) = -\infty$. Hence, $(rf^{(2)})^{(1)}(X)$ tends to a finite limit as $X \to +\infty$. As $f \in L^2(0,\infty)$, it therefore follows that $\lim_{X\to\infty} (rf^{(2)})^{(1)}(X) = 0$.

Now suppose, $\lim_{X \to \infty} r f^{(2)} f^{(1)}(X) = \text{finite} = C$ (say) and $C \neq 0$.

Then $| rf^{(1)} f^{(2)}(x) | > C_1 > 0$ for large X.

This implies, for $X > X_0 \int_{x_0}^{x} rf^{(2)^2} dx > C_1 [\log f^{(1)}(X_0) - \log f^{(1)}(X)] \to +\infty$ as $X \to +\infty$, by lemma 1. On the other hand, by (1.18), $\lim_{X \to \infty} \int_{x_0}^{x} rf^{(2)^2} < \infty$.

This is a contradiction and hence $\lim_{X \to \infty} r f^{(2)} f^{(1)}(X) = 0$ and (1.19) follows. In particular

$$\lim_{X \to \infty} \{ rf^{(2)} g^{(1)} (X) - (rf^{(2)})^{(1)} g(X) \} = 0 \text{ for all } f, g \in \Delta_L.$$
(1.20)

Combining (1.11), (1.14), (1.16), (1.18), and (1.19), it may be see that L [·] satisfies the Dirichlet conditions and is in the strong limit-2 case at infinity.

2. The above theorem can be generalized to the case of linear ordinary differential expression $M[\cdot]$ of order 2n (n=1,2,3), given by, $M[f] = (-1)^n (pf^{(m)})^{(n)} + qf$ on $[0,\infty)$. (2.1)

where the coefficients p and q are real valued on $[0,\infty)$ and satisfy the following

(i) p⁽ⁿ⁾ is continuous on [0,∞) and p(x) > 0 (0 ≤ x < ∞)
 (ii) q is locally Lebesgue integrable on [0,∞)

In fact, it can be shown that if $M[\cdot]$ is separated in $L^2(0,\infty)$, then $p^{1/2}f^{(n)}$ and

 $|q|^{1/2} f \in L^2(0,\infty)$ and $M[\cdot]$ is in the strong limit - n case at infinity.

Proof is similar to that of the theorem in § 1.

Acknowledgement

The authors thank the referee for constructive suggestions.

References

1.	Everitt, W.N.	Some positive definite differential operators, J. Lond. Math. Soc. 1968, 43, 465-473.
2.	Giertz, M. and Weidmann, J.	Some remarks on a separation and limit-point criterion of second-order ordinary differential expressions, <i>Math.Ann.</i> 1973, 200 , 335-346.
3.	Everitt, W.N.	A note on the Dirichlet condition for second-order differential expressions, Can J. Math., 1976, 28(2), 312-320.
4,	NAIMARK, M.A.	Linear differential operators, Part II, Frederick Ungar, N.Y., 1968.