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Vibrations of orthotropic polygonal plates
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Abstract
Vibrations of clamped edged orthotropic polygonal plates have been investigated following complex variable
theory. The frequency equation of different plates is obtained and the numerical results have been presented in

tabular form.
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1. Introduction

Investigations of stresses of irregular-shaped plates are of great interest to design engineers
as they frequently occur in modern designs.

If the boundary of a plate is a curve natural to any of the common co-ordinates, the
governing equations can be solved in terms of known functions. For more ‘exotic’ boundar-
fes, the natural co-ordinates must first be determined and, after this is done, the solution
would inevitably involve some unfamiliar functions. The determination of natural frequen-
cies in this case will then be very complicated. Therefore, a common co-ordinate system and
its associated function are advantageous for plates having complicated boundaries. If the
given domain can be conformally mapped on to a simpler one, ie., the unit circle, the
problem then reduces to the solution of the transformed differential system.

The conformal mapping technique has been used by Laura ** Laura and Shahady’ and
Datta*® to elastic stability problems of thin plates with ‘exotic’ boundaries. Laura and
Faulstich®, Shahady er a/’ and Munakata® have applied the complex variable theory to the
linear vibrations of thin isotropic elastic plates. Laura and co-workers applied conformal
mapping technique to get their solutions which are approximate as theywere obtained by
error minimising method. The deflections of such irregular plates under uniform load have
also been studied by Mansfield®. It is believed that no work bas been reported on the

vibrations of orthotropic plates of irregular shape.
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The object of the present paper is to study the vibrations of polygonal plates of orthotropic
materials. The well known Heaber’s approximation'® has been employed. The frequency
equations have been deduced with the help of conformal mapping technique. The solutiops
thus obtained are given in Table 1. The results of square orthotropic plate have beep
compared with the known results.

The frequencies of different polygonal plates of isotropic materials have also been deduced
from the present study and are found to be in excellent agreement with the known resalts,

Table I

Mapping function co-efficients’

Z =7 =L¢

Polygons of side Co-efficient
‘23 L
Equilateral triangle 1.1353 a
Square 1.08 a
Pentagon 1.0526 a
Hexagon 1.0376 a
Heptagon 1.0279 a
Qctagon 10219 a
Circle of radius a’ a

2. Differential equations and method of solutions

Consider a clamped edge orthotropic plate of thickness ‘4’ Following Timoshenko and
Woinowsky-Krieger'® the differential equation for the vibration of an orthotropic plate can
be written in rectangular co-ordinates as

3 W(x 1) 8 W(xy.0) 3 W(xpt) & wixpt)
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E,, Ej, £’ and G are elastic constants of the material as defined in Timoshenko and

Woinowsky-Krieger'® (pp. 364-365, W (x, y,1) is the deflection of the plate of thickness'}’
and is given by

W (xyt) = & W (xy) v}
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with this form of W (x,y¢). equation (1) reduces to

aw W atw
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Taking H* = D, Dy [Ref. 10. p. 366], equation (3) reduces to

& w pho’
L e W=0
6 323823 De

with the substitution
Zi=xtpry

where p1 is the root of the equation

Dypi+2 Hpi+ D, =0. Clearly p; =i/ 3 where
g = VDi/D,

From equation (4) we have
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where K =

The solution of equation (7) will be of the form

W= Al (KNz 1) + Bl (KVz 51)
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where [y and Jo are Besse! functions of zeroth order, 4 and B are constants to be evaluated

from the boundary conditions of clamped edged plates

W =0
and } on the boundary
aW/dz = ¢
Let
Z=f(§)=L¢E

)

(10)

be the mapping function which maps the domain on to a unit circle where ¢ = v '
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Now with the boundary condition for clamped edged plate as given by (9), one can have,
trom equation (8) and (10} equating the co-efficients of term independent of ¢ on both the
sides, the required frequency equation

L(K) S (K)

|
E

|
i = 0 ay
LKy -5yl
where
K= 120\ pr/De L1+ ) @

The sotution of equation (11) is K” = 3.2. Hence the frequency of a polygonal orthotropic
clamped plate is

. I Delph
1+ gt vV Difp _ (13

Table I1

Fundamental frequency co-efficients for several clamped polygonal plates

Polygon of side ‘2a’ Isotropic material Orthotropic material
F=1 (F = 1.626)
wpkiD & w/ phj Da’ w\ oh!D. @ wNph D&
Present study Known results Present study Knawn results
Equilateral triangle 7.95 8.01 * 5.62 -
Square 8.78 8.85*% 6.22 6.64 Hurx
Pentagon 924 9.32* 6.54 —
Hexagon 9.51 9,59 * 6.73 -
Heptagon 9.70 9774 6.86 -
Octagon 9.81 9,85%* 6.94 -
Circle of radius 'a’ 10.24 10.22%%+ 7.235 -

* Ref 1L, ** Ref. 7, *** Ref. |2, **** Ref, 13
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3, Numerical calculations and discussion
The frequency for free vibrations of orthotropic clamped plates of different shapes are
calculated and are given in Table 11. The frequency for clamped orthotropic square plate has
peen compared with the known result. The corresponding frequencies of clamped isotropic
polygonal plates have been deduced from the present study and compared with the known
results.

From Table 11, it is observed that the results thus obtained by the present study using only the
first term of conformal transformation series to represent polygons having a small number of
sides are in good agreement with the known results from the engineering point of view.

Asingle equation (13) can be used with a good accuracy for predicting vibration of plates of
any shape with less computational labour.
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