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Abstract

Numerical fluctuations are of importancein solving unconfined ground water flow problemsas »« me nodes may get
artificially dropped out of the computation. The Picard iterative methods associated with Successive Gver
Relaxation method. Line Alternating Direction Implicit method and Strongly Implicit Proce lure are compared
based on two steady-state test problems with one having a thin saturated 7one in part of the flow domain. SIP s
found 10 be vastly superior to the other methods. It 1s found that the use of larger number of weration parameters in
the SIP method 1s not desirable and the best choice may be four parameters. A corrective measure is proposed to
avoid artificial desaturation without any significant reduction m the convergence rate.
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1. Introduction

Because of the nonlinearity involved, unconfined flow problems are ore difficult to solve
than other types of ground water flow problems. Analyticalsolutions forsimpliﬁcd well field
problems in unconfined aquifers have been obtained by several investigators 4 In model-
ling an unconfined aquifer over a nonhomogeneous region, numerical methods are used.
There are many methods of linearising the nonlinear unconfined flow equation. The Picard’s
method”® is one of the most popular methods used in ground water flow studies™’.

The unconfined flow equation is nonlinear as the coefficient in the flow term, the
transmissivity, depends on the unknown water level. In the Picard iterative method, thy
coefficient is approximated based on the water Jevels obtained in the previous iteration tfur
the first iteration, the water levels are assumed). With this approximation, a set of linear
equations are obtained for the nodal water levels. The structure of the resulting matnin
equation facilitates the use of iterative methods for its solution, such as Successive Ov.r
Relaxation method (SOR), Line Alternating Direction Implicit methods (LADI) and
Strongly Implicit Procedure (SIP).

There are two possible approaches to the solution. The sct of linear equations car be
solved to the required accuracy using SOR, LADI or SIP and then the coefficients v the
flow term updated using the improved water levels. The next Picard itcration again invelves
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solution of the linear matrix equation with the improved coefficients. Alternatively, these
two steps can be combined, wherein. after each SOR/LADI/ SIP iteration, the coefficients
in the flow term can be updated using the latest water levels. The total computational
performance is found to be better for the latter approach and hence it is adopted in the
present studies.

it has been estnhiished in recent literature that the Strongly Tmplicit Procedure® is one of
the best finite difference methods to sofve the matrix equation resulting from ground water
flow problems’. The Strongly Implicit “rocedure is an iterative method for solving the
sparse matrix difference equations arising izom the application of five point formulafor the
two-dimensional parabolic (unsteady-state ; voblems) and elliptic equations (steady-state
problems). The method uses a ser of iterat wrameters cyclically to accelerate conver-
genee. It is generally assumed that the choice of number of iteration parameters does not
make a sericus difference to the convergence characteristics, provided at least four parame-
iern sed ™™ The present study shows that the choice of number of iteration parameters
makes an important difference for nonlingar ground water flow problems.

A study is also made to compare SOR, LADI and 8!P, which are all used with Picard
approximation (referred 25 PSQR, PLADI and PSIP). These methods are applied on two
steady-state unconfined flow problems with one having a thin saturated zone ina part of the
flow domain. Steady-state flow problems are used for illustration, as they are more difficuli ~
to solve than transient flow probiems’.

While using an iterative method such as SIP the water level at a node may fluctuate frqm
iteration to iteration and in the process may overshoot the final solution. The finite
difference methods used for nonlinear problems wiil thus lead to saturation osci_llanons apd
these oscillations may artificially drop some genuine nodes out of the computations. f:',arher
several investigators ™ have experienced this difficulty, which becomes particularly ulnpor-
tant if there are regions of thin saturated thickness. Hence the study focusses particular
attention on numerical fluctuations, that is, the fluctuations in water level ata node over aset
of SIP iterations.

2. Governing equation and finite difference approximation
The governing equation of flow in a two-dimensional unconfined aquifer is given by
3 oh 3 dh ah m
= [Ke(h~ - —_— h~B)—1=8 —+ @
5x Ko=) S5 T+ 5= G (=B 521 = 8

where # is the ground water level, B, is the bed rock level, K and K, are bydrauli
conductivities in x and y directions, .5, is the specific yield, @ is the net withdrawal rat; per
unit area, x, v are cartesian coordinates and ? is time. Applying the block centered finite
ditference scheme to eqo. (1) yields (fig. 1)
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Fic. |. Finite difference grid.

where ¢, is the net withdrawal rate at node (i) for the entire block. The coefficients in eqn.
(2) are given by E

(K_v.,,q h‘,f'l + Kvy,/ h!‘.i + Ky.J-u hr./‘ + K)'m, hlJ'l)
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In an implicit procedure, eqn. (2) is written at all the nodes of the aquifer. They will give
rise to a set of equations which can be solved using any of the iterative methods such as ADI, if
the coefficients are known. However, the coefficients in eqn. (2) are functions of the
unknown water table head. In the Picard method, the cocfficients are taken at the latest
available iteration.

3. Picard iterative methods

When eqn. (2) is written at all the nodes of the aquifer, a set of simultaneous equations for
unknown water table heads is obtained. This set can be solved using an iterative method with
the Picard approximation for the coefficients. In this study, SOR, LADI and SIP methods®
have been considered. The LADI method is similar to LSOR except that iterations are done
both row and columnwise alternacwiy. Thus unlike in the classical AD1’, a single value of
relaxation parameter w is used and the updi.ied value of water level is used for previous row
(or column). SOR and LADI are sclected because of less numerical fluctuations and SIP is
selected because of its rapid rate of convergence. LSOR is not considered because it is good
only for anisotropic probleris, and ADI is not considered because of severe numerical
fluctuations over iterations. The only change in the Picard method with respect to the
methods used for linear problems lies in incorporating the coefficients B, D, E, F and H
associated with the latest available s, values. For example, in a Picard SIP iteration for
obtaining A2, AY) values wil} be used for calculation of B, D, E, Fand H in egn. (3), wheren
refers to the iteration number. As stated earlier, this approach must be distinguished from
completing the solution of the linear equations and then updating the coefficients.

The SOR and LADI methods arc used with different choices of relaxation parameter win
the range 1 to 2. For the SIP method, computations-are done with different choices of the
number of iteration parameters, P. Once the number of iteration parameters is chosen, the
actual parameter values, wi, w2, ... w,, are obtained based on the hydraulic conductivity
values and choice of A x, and A y,, as recommended by Stone®. The value of waa will be
greater than zero and the value of wma will be less than one.

4. Test problems

Two test problems have been chosen to study the relative merits of different Picard iterative
methods. The first test problem has a single pumping well in a rectangular, isotropic flow
domain (fig. 2). The river acts as a recharge source to the aquifer through lcakage, which
facilitates a steady-state solution. The bed level is taken to be homogeneous with the river
water level 12m above. The hydraulic conductivity is taken to be homogeneous and equal to
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¢.84m/day and the pumping rate is 2447 m’/ day. The leakage coefficient for the river bed is
0.108/day. This test problem is a slight modification of the problem given by Lin',

The second test problem has two pumping wells in a 1entangular isotropic flow domain
(fig. 3). Puraping well A xs pumped at a rate of 223.8 m /day, while pumping well B is
pumped at a rate of 1296 m’/day. The bed level is varied from 10 to 0 m as shown in fig. 3.
The hydraulic conductivities at the nodes are varied randomly by generation of uniformly
distributed random numbers. Conductivities are varied from 0 to 80 m/day. A Dirichlet
poundary is imposed at the centre of the flow domain to obtain a steady-state solution. This
effectively makes Test problem 2 as two separate problems, with pumping in a thin and thick
saturated zone. Thus this problem clearly gives a contrast of the effect of numerical
fluctuations in thin and thick saturated zones.

The solutions for steadv-state head distribution are also shown in figs. 2 and 3.
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5. Discussion of results
5.1, Numerical fluctuations

Numerical fluctuations during the early iterations may lead to the water levels at certain
nodes, to drop below the bed rock level thereby eliminating certain genuine nodes, creating
spurious desaturation. Figures 4 and 5 present the water table head at pumping well with
iterations for PSIP method for Test problems I and 2. The fluctuations are less for the SOR
and LADI methods. An interesting trend may be observed from the results presented for the
PSIP method (figs. 4 and 5), with numerical fluctuations showing a clear tendency to
increase with increase in the number of parameters. Because of the numerical fluctuations,
the head at the Pumping well A, goes below bed level for P = 8 in the PSIP method for Test

problem 2 (fig. 5).
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FIG. 6. Effect of PSIP parameters on numerical fhac-
tuations — Test problem 2.

The effect of parameters on numerical fluctuation may be clearly seen by considering the
variable Ny given by

(Npoy =M% [pmyMin ey, =g 2 )

Ny thus indicates the magnitude of numerical fluctuation during the first cycle of iteratiqn,
The variations of Nywith Pat Pumping wells B and A for the PSIP method are shown infig.
6 respectively. The strong effect of number of jteration parameters Pon fluctuations in zones
of thin saturated thickness may be seen from fig. 6.

Thus the results on numerica! fluctuation suggest that it may be advantageous to choosea
smaller number of iteration parameters in the PSIP method.

5.2. Sensitivity studies of relaxation or iteration paramelters

This section presents the results of the effect of variation in iteration or reaxation parame-
ters on the rate of convergence, for the two test problems. For convergence check, the
maximum normalised residue has been used. The residue is calculated using eqn. (2) bY
faking all terms to one side. This residue is multiplied by the area represented by thenodeat .
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which the maximum residue occurs and this 1s normalised with respect to the total pumping
in the system. The PSOR method is found to be very slow even for optimal value for both the
test problems. Hence detailed results are not presented for this method.

Test problem 1

The rate of convergence in the PSIP method is not influenced much by the variation in the
number of iteration parameters. It is found that 4 and 5 parameters give a marginally better
convergence rate than a larger number of parameters. Unlike PSIP, PLADI shows a clear
dependence on the value of the relaxation parameters. For optimal (@, = 1.95), a2 maxi-
mum normalised residue ( Romax) of 107 is reached in 160 iterations, while for w = 1.7,inthe
same number of iterations a value of Ry = 107 only is achieved.

Test problem 2

Unlike the conclusions of Stone®, for nonlinear problems, SIP shows a clear dependence on
the number of parameters if there is a zone of thin saturated thickness as in Test problem 2.
For purposes of the present study, a method is treated to be a failure if during the
computation, the water level at any node goes below the bed level (for the steady-state all
heads are above the bed level vide fig. 3). It was actually found that for some cases in the
PSIP method (not always), where the water Jevel goes marginally below the bed level at
Pumping well A, convergence was obtained if the computations were continued. However,
such cases are still treated as failures in the present study, as the recovery of water level above
the bed again depends on the extent of depletion below the bed level and also as continuation
of computations lack physical validity once the water level goes below the bed level, unless
the relevant node is dropped out of the computations.

Inthe PSIP method, the number of iteration parameters has been varied from 4to 20 and
the method fails to converge for P > 8, with the water level at the Pumping well A going
below the bed level (fig. 5). The reason for this may be seen from fig. 6, which indicates that
the magnitude of the numerical fluctuation increases with the increase in the number of

iteration parameters.

Several techniques may be used to prevent artificial desaturation. Computations are made
for P= 10 using alternative methods to ensure covergence. Trescott and Larson” suggested
the use of an underrelaxation parameter, where the SIP corrections in each iteration are
multiplied by a factor 8”<C 1.0. Use of a safe underrelaxation parameter 8/==0.3 for the case
of P = [0leadsto convergence, but the rate of convergence becomes slow. A residue of 1 0™%is
reached in 192 iterations for 8= 0.3 and P = 10 against 84 iterations for 8’=[.0and P=4.

A slight variation in the usc of the underrelaxation factor accelerates the rate of conver-
gence very significantly. It has been observed that, while using SIP, numerical fluctuations
are significant only in the first few iterations. In fact the maximum fluctuations may be
expected in the first cycle of computations for a given set of parameters. In view of this, a
madification is adopted wherein 87 = 0.3 is used till the maximum normalised residue is less
than 0.01 and the number of iterations is less than twice the number of parameters (that is
completion of one cycle of iterations). When both these conditions are satisfied, underrelax-
ation factor 87 is changed to 1.0. Thus this method dampens the numerical fluctuations
which occur initially, without sacrificing the rate of convergence significantly.
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For those cases for which water level does not go below bed level, all the cases studied for
the PSIP method show convergence at approximately the same rate, except when a constant
underrelaxation parameter 8 = 0.3 is used.

5.3 Comparison of rate of convergence

To compare the rate of convergence of PSTP and PLADI (PSOR is too slow), the best cases
among those tested have been selected and the maximum normalised residue is plotted
against the number of iterations. The work load involved per iteration for each method has
been calculated based on the number of multiplication and division operations and it has
been found that both these methods take almost the same amount of work per iteration.

Figures 7 and 8 present a comparison of the rate of convergence for Test problems land 2.
It is seen that the PSIP method is considerably superior to PLADI method (and also PSOR
method for which results are not presented). It appears that the superiority of the SIP
method over the other methods (at least for predominantly isotropic problems) may be more
pronounced in nonlinear problems than in linear problems.
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Acomparative study of three Picard iterative methods has been made for nonlinear ground
water flow problems. Two steady-state test problems have been considered with one of them
being designed as a critical problem with a zone of thin saturated thickness. Aspects studied
include sensitivity to relaxation or iteration parameters, rate of convergence and numerical
flctuations. The PSIP method is found to be the best. It is found that the use of a larger
number of iteration parameters in the PSIP method is not desirable and the best choice may
be four parameters. Corrective measures to avoid artificial desaturation have been pro-
posed. This method may be used if the PSIP method with four parameters fails to converge.
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