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Abstract 

Numerical fluctuations are of importanceinsolvingunconfined ground water flow problcmaar r< me nodes mayget 
artiflclaliy dropped out of the computation. The Picard iterative methods associated with Succerrive Ovri 
Relaxation method. L ~ n e  Alternating Dtrectlon Implicit method and Strongl) lmplicii Procr lure are compared 
based on two steady-state iest problems with one having a thin saturated zone in part oi the flow domain. SIP  a 
found lo bevastly superiorto the other methods. It is foundthattheuseoflarger numberof~rcr~tionparamcteirin 
the SIP method a not desirable and the best choice may be four pararnpters. A correcthe meuwrc is proposed to 
avoid artificial desaturation without any significant redunion m the convergence rate. 
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1. Introduction 

Because of the nonlinearity involved, unconfined flow problems are difficult to  solve 
than othertypes ofground water flow problems. Analytical solutions forsimplified well field 
problems in unconfined aquifers have been obtained by several in~estigators'-~. In modet- 
ling an unconfined aquifer over a nonhomogeneous region. numerical methods a1.e used. 
There are many methods of linearising the nonlinear unconfined flow equation. The Picard's: 
method5 is one of the most popular methods used in ground water flow 

The unconfined flow equation is nonlinear as the coefficient in ;he flow term. ti?. 

transrnissivity, depends on the unknown water level. In the Picard iterative method. thd 
coefficient is approximated based o n  the water levels obtained in the previous iteration !fcr 
the first iteration, the water levels are assumed). With this approximation. a set of line*? 
equations are obtained for the nodal water levels. The structure uf the resulting matrl-. 
equation facilitates the use of iterative methods for its solution, yuck as Successive O\:r 
Relaxation method (SOR), Line Alternating Direction Implicit methods (LADI) and 
Strongly Implicit Procedure (SIP). 

There are two possible approaches to  the solution. The bct of I!near equations cay hc 
solved to  the required accuracy using SOR, LAD1 or SIP and then the coefficients the 
flow term updated using the improved waterlevels. The next Picard itcration again invi hcs  



solution of the linear matrix equation w ~ t h  the improved coefficients. Alternativily, these 
two steps can be comhincd. whereil:. after each SOR! LAI)I!SIP iteration, the coefficients 
in the flow term can he updated u i n g  the latest water levels. The total computational 
performance is found to he hcttcr ~'OI thc latter approach and hence it is adopted in the 
present studies. 

It has heen t.st,rlilished in recent litcraturc that the Strongly Implicit Procedure8 is one 
the best finite ditf'erence methods to aohe the matrix squation resultingt'rom ground water 
flow problem1~". The Strongly Implicit :'i!)cedurc is an iterative method for solving the 
sparse matrix difference equations arisinfi I ?  om the application of five point formulaforthe 
two-dimensional parabolic (unsteady-stat? : rshlrrns) and elliptic equations (steady-state 
prohlems). The method uses a \ct of i tcrat~ r. mrarneters cyclically to accelerate conver- 
gence. It is generally nssurncd that thc uhoic~. of number of iteration parameters does not 
make R ~ e r i o u ~  difference to the convergence cllar:rcrcristirs, provided at least four parame- 
im ,rA: used5.? The present study shows that the choice of number of iteration parameters 
makes an important difference for nonlinear grouno w.iti!r tlow problems 

A Study is also made to  compare SOR. IADI and S1 P. which are all used with Picard 
approximation (referred as PSOK, PLADI and PSIP). Thrse methods are applied ontwo 
steady-state unconfined flow problems with one having a thin saturuted zone inapart ofthe 
flow domain. Steady-state flow prohlems are used for illustration, as they arc moredifficuli 
to  solve than transient flow prohle!xs". 

While using an iter:~tive method such as S I P  the water level at a node may fluctuate from 
iteration to iteration and in the process may rr~ershoot the final bolntion. The finite 
difference n~ethods used nonlinear prohlems will ihus lcad to satur:~tion oscillationsand 

these oscillations may artificially drop some genuine nodes out of the~om~uta t ions .  Earlier 
several investigators'.' have experie~rced this difficulty, which becomes p d r t i ~ ~ I a r l ~  impor- 
tant if there are regions of thin saturated thickness. Hence the study focusses particular 
attention on numerical fluctuations, that is, the fluctuations in water level at a node over aset 
of SIP iterations. 

2. Governing equation and finite difference approximation 

The governing equation of now in a two-dimensional unconfined aquifer is given by 

where h is the ground water level, B~ is thc bed rock level, K ,  and Ky are hydraulic 
conductivities in r and 4' directions, S, is the specific yield, Qis the net withdrawal rat! qer 
unit area, x, y arc cartmian coordinates and 1 is time. Applying the block centered 
difference scheme t o  eqn. (1) yields (fig. 1) 
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1 
Ro. I. Finite differcncc grid. 

where q,, is the net withdrawal rate at node ( i , j )  for theentire block. Thecoefficientsin eqn. 
(2) are given by 

B. a,, - - - (Ky,,,.t hij-I + K Y , . , ~ u  + KYIJ-I hc,j+KyI, h i l - I )  

2 AYJ ((a YJ t AYrl )  
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In a n  implicit procedure, eqn. (2) is written at all the nodes of  the aquifcr. They wlllgive 
rise to a set of equations which can be solved using any of the iteratibe methods ~uch  as AIll ,~t  
the coefficients are known. However, the coefricients in eqn. (2) are functions of the 
unknown water table head. In the Picard method, the cocfiicients are taken at the latest 
available iteration. 

3. Picard iterative methods 

When eqn. (2 )  is written a t  all the nodes of the aquifer, a set of simultaneous equations for 
unknown water table heads IS obtained. This set can he solved uvng a n  iterative method w~th 
the Picard approximation for the coefficients. In this study. SOR, LAD1 and SIPmethods' 
have been considered. The LAD1 method IS similar to LSOR except that iterations aredone 
both row and columnwise a l te rnau , .  Thu? unhke In the classical AIII', a single value of 
relaxation parameter w is uscd and the ~;pd;..ed valuc of water level is used forprevious row 
(or column). SOR and LAD1 arc selected becauae of lcss numerical fluctuations and SIP is 
selected hecause of its rapid rate olconvergence. LSOR is not considered because it is good 
only for anisotropic problems, and AD1 IS not considered because of severe numer~cal 
fluctuations over iterations. The only change in the Picard method with respect to the 
methods used for linear problems lies in incorporating the coefficients B. D, E, F and 11 
associated wlth the latest availahle h,,, valueq. For example, in a Picard SIP  iteration for 
obtaining h:'", values wdl he used for calculation of B. D. E, F and H in eqn (31, wheren 
refera to the iteration number. As stated earlier, this approach must be distinguished from 
completing the solution of the linear equations and then updating the coefficients. 

The SOR and LAD1 methods arc used with different choices of relaxation parameter win 
the range 1 to 2. For the S I P  method. conlputations are done with different choices ofthe 
number of iteration parameters, P. Once the number of iteration parameter, is chosen, the 
actual parameter values, wl,  W Z ,  .... w ~ .  are obtained based on  the hydraulic conductivity 
values and choicc of A x ,  and A y,, as recommended by stone8.  The value of unfitn d l  be 
greater than rero and the value of w,,, will be less than one. 

4. Test problems 

Two test problems have been chosen to study the relative merits of different Picarditerative 
methods. rhe first test problem has a single pumping well in a rectangular, isotropic flow 
domain (fig. 2). The river acts as a recharge source to  the aquifer through leakage, which 
facilitates a steady-state solution. The bed level is taken to  be homogeneous with the river 
water level 12m above. The hydraulic conductivity is taken to he homogeneous andewalto 



I ' IC'AKD I ' IERATIVF ME7 HODS 
I21 

65,84m!day and the pumping rate is 2447 m3/dag. The leakagecoefficient for the ricer bed is 
0,1O8/day. This test problem is a sllght modification of the problem given by  in'". 

~ h c  second test problem ha? two pumping wells in  a ~ectangular ,sotropic flow dolnalr> 
(fig. 3). pumping well A is pumped at a rate of 221.8 m3/day,  while pumplng uell U is 
pumped at a rate of 1296 m'lday. The bed level is varied from 10 to 0 m as shown in fig. 3. 
The hydraulic conductivities at the nodes are  varied randomly by generation of uniformly 
distributed random numbers. C'onductivities are  varied from 0 to  80 m / d a y  A Dirrchlet 
boundary is imposed a t  the centre of the flow domain to  obtain asteadg-state solution. l-his 
efiectively makes Test problem 2 as twoseparateproblems, with pumbingin a thinand thick 
saturated zone. Thus this problem clearly gives a contrast of the effect of numerical 
fluctuations in thin and thick saturated zones. 

 he solutions for steadv-slate head distribution are also shown in figs. 2 and 3 

- 

head values In meters 

2 b a i l s  of Tat  problem 1. 
- 
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FIG. 3. Details of Testwrohlem 2. 
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5. Discussion of results 

Numerical fluctuations during the early iterations may lead to the water levels at certain 
"odes, to drop below the bed rock level thereby eliminating certain genuine nodes, creating 
spurious desaturation. Figures 4 and 5 Present the water table head at pumping well with 
iterations for PSIP  method for Test problems I and 2. The fluctuations areless for the SOR 
and LAD1 methods. An interesting trend may he observed from the results presented for the 
pslp method (figs. 4 and 5 ) .  with numerical fluctuations showing a clear tendency to 
increase with increase in the numher of parameters. Because of the numerical fluctuations, 
the head at the Pumping well A. goes below bed level for P 2 8 in the PSIP method for Test 
problem 2 (fig. 5). 

10.0 
Bd rock lenl 

FIG. 4. Numerid  fluavations in PSlP method - 
Test problem 1. FIO. 5. Numerical fluduations in PSIP method - 

Tat problem 2. 
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Lacallan Pumping well A 

FIG. 6. Effcct of PSIP parametersonnumerical flue- 
tuations - Test problem 2. 

The effect of parameters on  numerical fluctuation may be clearly seen by considering the 
variable Nf given by 

N/ thus indicates the magnitude of numerical fluctuation during the first cycleof iteration. 
The variations of Nfwith P a t  Pumping wells B and Afor the  PSIPmethod areshown infig. 
6 respectively. The strong effect of number of iteration parameters P o n  fluctuations in zones 
9f thin saturated thickness may be seen from fig. 6. 

Thus the results on numerical fluctuation suggest that it may beadvantageous tochoosea 
smaller number of iteration parameters in the PSIP method. 

5.2. Sensitivity studies of relaxation or iteration paramefers 

This section presents the results of the effect of variation in iteration or relaxation parame- 
ters on the rate of convergence, for the two test problems. For convergence check, the 
maximum norrnalised residue has been used. The residue is calculated using eqn. (2) by 
taking all terms to  one side. This residue is multiplied by the area represented hy thenodeat 
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which the maximum rcsidue occurs and thrs 1s normalisea w ~ t h  respect to thetotalpump~ng 
in the system. The PSOK method is found to  bevery slow eveufor optimal valuefor both the 
test problems. Hence detailed results are not presented for thiq method. 

~pst~rublem 1 

'fie rate of convergence in the PSIP n~ethod is not influenced much by the variation in the 
of iteration parameters. It is found that 4 and 5 parameters give a marginally better 

convergence rate than a larger number of parameters. Unlike PSlP, PLADl shows a clear 
dependence on  the value of the relaxation parameters. For optimal (w,, = 1.95), a maxi- 
mum normalised res~due (K,,,) of 10.' is reached in 160 iterations, while for w = 1.7, in the 
same number of iterations a value of R,,,, = ouly is achieved. 

Tar yrohkm 2 

Unlike the conclusions of  lone', [or nonlinear problems, SIP shows acleardependence on 
the number of parametcrs if there is a zone of thin saturated thickness as in Test problem 2 
For purposes of  the present study, a method is treated to be a failure if during the 
computation, the water level at  any node goes below the bed level (for the steady-statc all 
heads are ahove the bcd lcvel vide fig. 3). It was actually found that for some cases in the 
PSlP method (not always),. where the water level goes marginally below the bed level at 
Pumping well A, convergence was obtained if the coniputations were continued. However, 
such cases are still treated as failures in the prcrent study, as therecovcry of water level ahove 
the bed again depends on the extent of depletion below thc bed leveland alsoas continuation 
of computations lack physical validity once the water level goes bclow the bcd level, unless 
the relebant node is dropped out of the computations. 

In the PSI P method, the number of iteration parameters has been varied from 4to 20and 
the method Eaiis to converge for P > 8, with the water level at the Pumping well A going 
below the bed level (fig. 5). The reason for this may be seen from fig. 6,  which indicates that 
the magnitude of the numerical fluctuation increases with the increase in the number of 
ileration parameters. 

Several techniques may be used to prevent artificial desaturation. Computations are made 
for P =  10 using alternative methods to ensure covergence. Trescott and ~arson~sugges ted  
the use of an underrelaxation parameter, where the SIP corrections in each iteration are 
multiplied by a factor P'< 1.0. Use of a safe underrelaxation parameter p'= 0.3for thecase 
of P = I0 leads to  convergence, but the rate of convergence becomes slow. A residue of 1 076 is 
reached in 192 iterations for p '= 0.3 and P = 10 against 84 iterations for P'= l.Oand P=4.  

A slight variation in the use of the underrelaxation factor accelerates the rate of conver- 
gence very significantly. It has been observed that, while using SIP, numerical fluctuations 
are significant only in the first few iterations. In fact the maximum fluctuations may be i 
expected in the first cycle of computations for a given set of parameters. In view of this, a 
modification is adopted wherein p' = 0.3 is used till the maximum normalised residueisless 
than 0.01 and the dumber of iterations is less than twice the number of parameters (that is 
completion of one cycle of iterations). When both theseconditions are satisfied, underrelax- 
ation factor p r  is changed to 1.0. Thus this method dampens the numerical fluctuations 
which occur initially, without sacrificing the rate of convergence significantly. 
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Symbol M i h o d  R ~ r n a r k s  

FIG. 7. Comparison of convergence rate - T~~~ FIG. 8 .  Comparison of convergence rate - Test 
~roblern 1. problem 2. 

For those cases for which water level does not go below bed level, all the cases studied for 
the PSIP method show convergence at approximately thesame rate, except whenaconstant 
underrelaxation parameter 8' = 0.3 is used. 

5.3 Cornparison ofra te  of convergence 

To compare the rate of convergence of PSIP and PLADl (PSOR is too slow), thehestcases 
among those tested have been selected and the maximum normalised residue is plotted 
against the number of iterations. The work load involved per iteration for each methodhas 
been calculated based on the number of multiplication and division operations and it has 
been found that both these methods take almost the same amount of work per iteration. 

Figures 7 and 8 present a comparison of the rate of convergence for Test problems I and 2. 
It is seen that the PSIP method is considerably superior to  PLADl method (and also PSOR 
method for which results are not presented). It appears that the superiority of the SIP 
method over the other methodsfat least for predominantly isotropic problems) may bemore 
pronounced In nonhnear problems than in linear problems. 
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6. Conclusions 

Aeomparative study of three Picard iterative methods has been made for nonlinearground 
water flow problems. Two steady-state test problems have been considered with oneofthem 
being designed as a critical problem with a zone of thin saturated thickness. Aspects studied 
include sensitivity to  relaxation or iteration parameters, rate of convergence and numerical 
fluctuations. The PSIP method is found to be the best. It is found that the use of a larger 
number of iteration parameters in the PSI!' method is not desirable and the best choice ma) 
be four parameters. Corrective measures to avoid artificial desaturation have been pro- 
p e d .  This method may be used if the PSIP method with four parametersfails to converge. 
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