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Abstract | Quantum computers are believed to surpass their classical counterparts in

speed-up and efficiency. However, the origin of this speed-up in quantum algorithms is not

yet fully understood. There are indications that entanglement plays an important role in

quantum computation. Quantum algorithms that do not involve entanglement appear to

require an exponential amount of resources and may be efficiently simulated on a classical

computer. Here we discuss the role of entanglement in quantum computation. As an

illustration, we consider Grover’s algorithm and how entanglement arises in this case. We

will show that even though entanglement is present throughout the computation, the

change of entanglement per iteration is exponentially small for large databases.

1. Introduction
In recent years considerable effort has gone into
the realization of practical quantum computers,
though they are still far from reality. Nevertheless,
our understanding about quantum information
has undergone a revolutionary change within the
last two decades. In quantum computation and
quantum information theory we aim to exploit the
principles of quantum mechanics for information
processing. The simplest quantum computation
paradigm involves initial preparation of logical
states followed by the application of a sequence
of unitary evolution operators (prescribed by a
particular quantum mechanical algorithm) and
finally ‘reading out’ the desired answer. This may
be called prepare-compute-measure paradigm of
quantum computing. In this context an important
question has been whether linear superposition
alone is sufficient to yield a speed-up, relative to
conventional computation, or whether quantum
entanglement suffices. Though the existing quantum
algorithms such as Deutsch-Jozsa [1], Grover [2]
and Shor [3] require quantum entanglement it

is not clear whether, in general, entanglement
is the key for quantum speed-up. In particular,
various quantum algorithms have been already
implemented using NMR setups [4–6]. In that
context there has been a debate in the NMR
implementation of quantum algorithms as to what
provides the power to quantum computers if there is
no entanglement generated during computation [7].

The study of quantum entanglement has become
a major area of research due to its potential
applications for quantum information processing.
Quantum entanglement was first recognized by
Schrödinger. Einstein used this notion to argue
that quantum theory apparently allows ‘spooky-
actions’ at a distance [8] — a situation with which
he was very unhappy. However, the spooky-action
provided by quantum mechanics cannot be used
for faster than light communication and so is
not as disturbing as Einstein thought. On the
contrary, supplemented by classical communication,
quantum entanglement can become a resource for
very useful and exotic information processing tasks,
such as: dense coding [9], quantum teleportation
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[10], remote state preparation [11], quantum
cryptography [12], etc.

In addition, quantum entanglement may play
an important role in quantum algorithms [13] by
giving extra power to quantum computers [14].
This leads one to ask whether entanglement is
at the heart of quantum computation? There are
indications that the answer may be affirmative.
Algorithms that do not involve entanglement can
be efficiently simulated on a classical computer.
For example, the Deutsch-Jozsa algorithm for the
single qubit or two qubit case does not involve
entanglement [15]. However, for three or more
qubits it does [16]. Grover’s algorithm for the
two qubit case does not require entanglement.
However, for more than two qubits both the pure
state and pseudo-pure state implementations involve
entanglement [17]. Similarly, Shor’s algorithm
also requires entanglement. Indeed, it has been
argued that since Shor’s algorithm is exponentially
faster than any classical counterpart that it must
make use of entanglement [18]. For any quantum
algorithm operating on pure states one can prove
that the presence of multipartite entanglement, with
a number of parties that increases unboundedly
with input size, is necessary if a quantum algorithm
is to offer an exponential speed-up over classical
computation [19]; this occurrence of increasing
multipartite entanglement has been explicitly
confirmed in Shor’s algorithm [19].

In this article, we throw some light on the role
of entanglement in quantum computation and
consider the implications for the source of the extra
power for quantum computation. The article is
organized as follows. In section II, we briefly discuss
the notion of inherent parallelism in quantum
computers and how to understand quantum
computing algorithms geometrically. In section
III, we discuss the geometry of Grover’s algorithm
and show how to obtain

√
N improvement using

the idea of the Fubini-Study metric. In section IV,
we illustrate the role of entanglement in Grover’s
algorithm implemented on n-qubit pure states.
We will show that even though entanglement is
present throughout the computation, the change
of entanglement per iteration is exponentially
small for large databases. In section V, we discuss
several claims that quantum computing is possible
without entanglement. However, such schemes
are not efficient requiring a heavy price in
resources. Towards the end we briefly discuss the
role of entanglement in the pseudo-pure state
implementations of Grover’s algorithm and find
that not only is entanglement necessary to achieve
a speed-up in quantum searching, but it must be
present throughout the computation [17].

2. Quantum parallelism and the geometry
of quantum computation

Within the simple paradigm of prepare-compute-
measure, a quantum computer consists of n qubits
which are initially all in state |0〉. Thus, the initial
n-qubit register is a product state. One then applies
Hadamard (H) gates to all qubits to prepare an
equal superpositions (which remains a product
state)

|90〉=H⊗n
|00. . .00〉=

1
√

2n

2n
−1∑

x=0

|x〉. (1)

To envision the parallelism in quantum
computation, consider a function evaluation process.
Let a function f : {0,1}n→{0,1} map an n-bit
string to a single bit. In quantum computing,
we represent reversible operations as unitary
transformations U with U†U = U U†

= 1. If
a unitary transformation (the oracle) Uf does
function evaluation on one particular n-bit string
via the map |x〉|0〉 → |x〉|f (x)〉, then a single
application of Uf on the equal superposition
will yield

1
√

2n

2n
−1∑

x=0

|x〉|0〉→
1
√

2n

2n
−1∑

x=0

|x〉|f (x)〉. (2)

This happens because of the linearity of quantum
theory. Thus, one can compute the function for
all possible n-bit strings with a single application
of Uf . This is the inherent parallelism offered
by the quantum world which is not possible in
the classical world (we do not consider classical
wave phenomena). Here, note that even in this
simple function evaluation, if we look at the
state of individual qubits we will typically find
that some of them will be in a mixed state. This
implies that the state obtained after applying Uf
is an entangled state (though it may not be a
genuinely n-qubit entangled state). For example,
if n= 2, one has 1

2

∑3
x=0 |x〉|0〉→

1
2 (|00〉|f (00)〉+

|01〉|f (01)〉+ |10〉|f (10)〉+ |11〉|f (11)〉). Now, if
(say) |f (00)〉=|0〉,|f (01)〉=|1〉,|f (10)〉=|0〉, and
|f (11)〉= |1〉, then the final state is 1

√
2
(|0〉+|1〉)⊗

1
√

2
(|00〉+ |11〉). This shows that the state of the

first qubit is pure (not entangled with other two)
but the second and third qubits are in a maximally
entangled state.

In general, a quantum computation may involve
the application of a sequence of unitary operators.
Now, at any stage of the computation (say the kth
step) we may write the n-qubit state generically as

|9k〉=UkUk−1 ···U1|9i〉=

2n
−1∑

x=0

αx(k)|x〉 (3)
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with initial state |9i〉 = |90〉 as given in (1) and
αx(k) = 〈x|UkUk−1 ···U1|90〉. If these unitary
operators are entangling then they will typically
generate an entangled state during the quantum
computation.

Here, we develop some geometric ideas for
understanding quantum algorithms. Consider a
quantum computer consisting of n-qubits. Let
{|9〉} be a set of vectors in H⊗n. The set of rays of
H⊗n is called the projective Hilbert space P (H⊗n).
The Hilbert space of n-qubits is isomorphic to
CN , with N = 2n. The projective Hilbert space is
P =CN

−{0}/U (1) which is a complex manifold
of dimension N−1. This can also be considered as a
real manifold of dimension 2(N−1). Any quantum
state (product or entangled) of a quantum computer
at a given instant of time can be represented as a
point within P . The evolution of the quantum
computer state can be represented by a curve
0 : t→|9(t)〉 in H whose projection 5(0)= 0̂

lies in P . Here, smooth mappings 0 : [0, t]→L
of an interval into a differentiable manifold are
called smooth curves in the manifold [20,21].
Any computation starts with an initial state and
reaches a final state via a sequence of unitary
operators. Therefore, quantum computation can
be viewed geometrically as a sequence of curves in
the projective Hilbert space of an n-qubit system.
Geometrically any quantum computation is such a
path and the efficiency of an algorithm will depend
on how well we can optimize the path.

The projective Hilbert space of a quantum
computer has a natural metric called the Fubini-
Study metric which can be defined from the inner
product structure of the underlying Hilbert space
[22]. This metric defines the distance between
any two states of a quantum computer. To solve a
problem on a quantum computer, we need to know
the number of steps that is involved in reaching
the desired state (the final state). Using the notion
of distance we can define the number of steps for
any problem that can be tackled on a quantum
computer. If |9i〉= |90〉 is the initial state and |9f 〉

is the final state then the total distance between
them is given by [20–22]

D(|9i〉,|9f 〉)= 2
√

1−|〈9i|9f 〉|
2. (4)

If one application of U takes the initial state to
|9U 〉, then it has moved a distance

D(|9i〉,|9U 〉)= 2
√

1−|〈9i|9U 〉|
2. (5)

Now, we shall suppose that the distance moved in
each step of computation is equal — as one might
expect in optimal geodesic motion. This allows us

to define the number of steps NS to complete the
computation as

NS =
D(|9i〉,|9f 〉)

D(|9i〉,|9U 〉)
. (6)

The success of an algorithm depends on how
to minimize the number of steps. As it is clear
from (6) that D(|9i〉, |9f 〉) is fixed for a given
problem, to minimize NS, one has to maximize
D(|9i〉,|9U 〉). If the system moves along geodesic
paths (shortest paths) in the projective Hilbert
space then D(|9i〉,|9U 〉) can be maximized and
it can reach the desired state fastest. An important
question is whether the presence of entanglement
helps the quantum computer to move along
geodesics. The answer to this question is difficult in
general, but it could be the case that in some cases
entanglement does help. How much entanglement
should be present in an n-qubit state so as to move
along a geodesic is also not known. These are some
of the questions that we hope to answer in the
future.

In the next section we will show that in the
case of Grover’s algorithm the states indeed evolve
along geodesics and the number of steps calculated
using the above formula is O(

√
N ). This was

first observed soon after the discovery of Grover’s
algorithm by one of the authors [23] and it was
one of the first geometric ideas in the context of
quantum algorithms.

3. Geometry of Grover’s algorithm
In this section we illustrate the main geometric idea
with one example and that is quantum searching.
This search algorithm was discovered by Grover.
The role of entanglement in the Grover algorithm
was first pointed out in [17]. The original version of
Grover’s algorithm on multiple qubits in a pure state
necessarily involves quantum entanglement, even
though the initial and ideal target states are product
states. Within pseudo-pure state implementations,
by counting each active ‘molecule’ as contributing
to the computational resources, it has been shown
in a non-asymptotic analysis that not only is
entanglement necessary to achieve a speed-up
in quantum searching, but it must be present
throughout the computation [17].

In quantum searching, we are given an unknown
binary function f (x), which returns 1 for a
unique ‘target’ value x= y and 0 otherwise, where
x= 0, 1, 2, . . . , N−1, with N = 2n. Our goal is to
find y such that f (y)= 1. In Grover’s algorithm, the
N inputs are mapped onto the states of n quantum
bits (qubits) such as spin- 1

2 particles. The quantum
problem thus becomes one of maximizing the
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overlap between the state of these n qubits and
target state |y〉. This is equivalent to maximizing
the probability of obtaining the desired state upon
measurement.

The initial state of the quantum computer is
taken to be an equal superposition of all possible bit
strings

|90〉=
1
√

N

N−1∑
x=0

|x〉. (7)

The Grover operator is defined as G =
−I0 H⊗nIy H⊗n and is used repeatedly in
the algorithm, where I0 = 1I − 2|90〉〈90|,
Iy = 1I− 2|y〉〈y|, with |y〉 the target (ideally the
final) state and H the Hadamard transformation.

The Grover algorithm basically involves the
application of a sequence of Grover operators, finally
reaching the target state in the appropriate number
of steps. The Grover operator corresponds to a
small rotation in the two-dimensional subspace
spanned by the initial and the target states. Each such
rotation requires a single evaluation of f . Thus, after
k iterations of the Grover operator the combined
n-qubit state (7) evolves to

|9k〉=
cosθk
√

N−1

∑
x 6=y

|x〉+ sinθk|y〉, (8)

where θk = (2k+ 1)θ0 and θ0 satisfies sinθ0 =

1/
√

N . The search is complete when we reach
the target state and that happens for θk ' π/2
which takes O(

√
N ) iterations of the Grover

operator. Hence we need O(
√

N ) evaluations of the
function f .

This result can also be understood geometrically
in the manner described in the previous section.
Note that the total distance the quantum state
needs to travel in order to reach the target state
in P is D(|9i〉, |9f 〉) = D(|90〉, |y〉) = cos θ0.
In one application of the Grover operator, the
state travels a distance given by D(|9i〉,|9U 〉)=

D(|90〉,|91〉)= sin2θ0. Here, one can check that
the state indeed passes along a geodesic during the
iteration. We know that if a quantum state evolves
along a geodesic, the it satisfies the parallel transport
condition. The parallel transport condition in this
case will read as 〈

9k

∣∣∣∣d9k

dk

〉
= 0. (9)

From (8) it can be seen that |9k〉 actually satisfies
this condition. Therefore, the number of steps one
needs to find the target state is given by

NS =
D(|90〉,|y〉)

D(|90〉,|91〉)
=

√
N

2
=O(
√

N ). (10)

If the distance is instead measured via the Hilbert-
space angle then the exact number of steps required
is obtained. This shows how the geometry of the
n-qubit state space and the notion of the Fubini-
Study distance help us in understanding the number
of steps required to find a target state in Grover’s
algorithm.

4. Entanglement in Grover’s algorithm
In this section we discuss the role of entanglement
in Grover’s algorithm. We will show that although
the initial and target states are product states
the intermediate states through which quantum
computer evolves are actually entangled. However,
we cannot quantify how much entanglement there
is in these intermediate states as we do not have
a proper measure of multipartite entanglement
for n-qubit states. What we do is consider the
full system as being bipartite, with one subsystem
consisting of a single qubit and the second subsystem
the remaining qubits. Then one can use the
Schmidt decomposition theorem for bipartite
systems. Suppose we are given a bipartite state
|9〉 ∈HN

⊗ t HM with

|9〉=

N M∑
ij=1

Cij|ai〉⊗|bj〉, (11)

where {|ai〉}(i = 1, 2, . . . , N ) and {|bj〉}(j =
1, 2, . . . , M) are the orthonormal basis in
their respective Hilbert spaces. The Schmidt
decomposition theorem tells us that we can always
write |9〉 as

|9〉=

min(N ,M)∑
µ=1

√
lµ|ψµ〉⊗|8µ〉, (12)

where lµ’s are called as the Schmidt coefficients
with

∑
µlµ= 1, and |ψµ〉,|8µ〉, are the Schmidt

basis. Now, the bipartite entanglement is a property
which is invariant under U⊗V and the Schmidt
coefficients are actually invariant under such
local unitary transformations. The entropy of
entanglement is a very good measure of bipartite
entanglement which is defined as the von Neumann
entropy of any one of the reduced density matrix
[24]. The reduced density matrices are given by the
partial traces, i.e.,

ρ1= tr2 (|9〉〈9|) and ρ2= tr1 (|9〉〈9|) (13)

Therefore, the entanglement content of |9〉 is given
by

E(9) = −tr [ρ1 logρ1] =−tr [ρ2 logρ2]

= −

∑
µ

lµ loglµ . (14)
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The value of entanglement is zero for product states
and logN (if N < M) for maximally entangled
states.

Thus, using the Schmidt decomposition
theorem, we can decompose the full state of n-
qubits at step k of the Grover algorithm as

|9k〉=
√

l1(k)|ψ1〉|81〉−
√

l2(k)|ψ2〉|82〉,

(15)
where {|ψ1〉,|ψ2〉} describes an orthonormal basis
for the `th qubit and {|81〉,|82〉} is a pair of Hilbert
space vectors for the remaining (n−1) qubits. Here,
l1(k), l2(k) are the Schmidt coefficients of the state
vector at kth iteration.

This allows us to quantify the bipartite
entanglement. To find the Schmidt coefficients we
calculate the reduced density matrix of any single
qubit. The reduced density matrix of the `th qubit
(say) is

ρ`(k) = tr1,2,..,`−1,`+1,..n (|9k〉〈9k|)

= a2
kH|0〉〈0|H+b2

k|j`〉〈j`|+
akbk
√

N

×(2|j`〉〈j`|+|j̃`〉〈j`|+|j`〉〈j̃`|), (16)

where ak =
√

N/(N−1) cos θk, bk = sin θk −

cos θk/
√

N−1 and the single bit j̃` = 1 − j`,
(j` = 0,1). Without loss of generality we take j` = 1
and the density matrix ρ`(k) can be expressed in
standard form as

ρ`(k)=
1

2
[1I+Es(k) · Eσ] = [1− s(k)]

1I

2
+ s(k)P,

(17)
where Es(k) ≡ tr [ρ`(k)Eσ], Es(k) · Es(k) = s(k)2

≤ 1
and P is a pure state projector. The components of
the Bloch vector Es(k) after k iterations are given by

sx(k) =
N−2

N−1
cos2θk+

1
√

N−1
sin2θk

sy(k) = 0

sz (k) =
1

N−1
cos2θk− sin2θk . (18)

The eigenvalues of the above density matrix
gives us the Schmidt coefficients as

l1(k) =
1

2
[1+

√
1−4A(k)] and l2(k)

=
1

2
[1−

√
1−4A(k)], (19)

where A(k)=
N (N−2)

2(N−1)2 sin2(2kθ0)cos2θk.

The bipartite entanglement in the pure state
may then be characterized by calculating the von

Neumann entropy of this reduced state. The entropy
of entanglement with respect to this bipartite
partition is given by

E(9k) = −tr [ρ`(k) logρ`(k)]

= −
1

2
(1+ s(k)) log

1

2
(1+ s(k))

−
1

2
(1− s(k)) log

1

2
(1− s(k)), (20)

where s(k)=
√

1−4A(k). This entanglement is
independent of the choice of the remaining qubit `,
and therefore, holds for any of the qubits against an
(n−1)-qubit partitioning.

This result shows that the reduced density
matrix of any single qubit does not correspond to a
maximally entangled state of n qubits, as the von
Neumann entropy is not unity. Since the reduced
state of Eq. (16) is not pure the full state must be
entangled. To see how impure the state in Eq. (16)
is one may calculate the linear entropy L(ρ) of it
which is given by

L[ρ`(k)] = 1− tr [ρ`(k)2
] =

1− s(k)2

2

= 2l1(k)l2(k). (21)

If the linear entropy is zero the state is pure and as
it approaches 1

2 the state approaches a completely
random mixture. In the quantum search algorithm
the parameter s(k) can never be zero because
that would mean that both cosθk and sinθk were
simultaneously zero, which cannot be satisfied. So
although the reduced density matrix of the qubit
may lie close to a completely mixed state it can never
become one identically.

We now ask how close this reduced state is to a
maximally entangled qubit (using say the Hilbert-
Schmidt norm criterion). We therefore calculate
the Hilbert-Schimdt norm of the difference of a
completely mixed state from the reduced state.
This Hilbert-Schmidt distance for the kth iteration
during quantum search algorithm is given by

d(k)2
=

wwww1I

2
−ρ`(k)

wwww2

HS
= tr

[
1I

2
−ρ`(k)

]2

=
1

2
−L[ρ`(k)] =

s(k)2

2
. (22)

The distance d(k) provides an idea of how the
reduced state of an individual qubit behaves during
the kth iteration. It shows that the reduced density
matrix of the qubit differs from a completely
random mixture by O(s(k)). From Eq. (18)
and (22) we see that for θ0 = sin−1(1/

√
N ) and
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for θk = π/2 the reduced density matrix of any
remaining qubit is pure, implying that the whole
state must have been non-entangled. Thus, we
see that although the initial and target states are
separable, the intermediate states through which
the system evolves are always entangled.

We know that entanglement is present
throughout the computation. Now we can
discuss how entanglement changes with each
Grover iteration. There are several measures of
entanglement for bipartite partitioning. All of them
are functions of the Schmidt coefficients. One can
define the average bipartite entanglement as

Q(9k)= 2−
2

n

∑
j

tr[ρj(k)2
]. (23)

Since all reduced states are identical the average
bipartite entanglement reduces simply to Q(ψk)=

2L[ρ`(k)]. Therefore, we have

Q(9k)=
2N (N−2)

(N−1)2
sin2(2kθ0)cos2θk . (24)

One can also use the concurrence [25,26] of
the global pure state with respect to any bipartite
partitioning, it is given by

C(9k) =
√

2(1− tr(ρ(k)2)

=

√
2N (N−2)

N−1
sin(2kθ0)cosθk . (25)

This result describes the concurrence as a function
of the kth iteration step during Grover’s algorithm.
Thus, if we want to know how concurrence changes
with each iteration we should consider the derivative
dC(9k)/dk, which is given by

dC(9k)

dk
=

√
2N (N−2)

N−1

×2θ0 cos[(4k+1)θ0]. (26)

For search of a large database (N >> 1), we will
have ∣∣∣∣dC(9k)

dk

∣∣∣∣≤ 2
√

2 θ0. (27)

Thus, we find that for a large database the change of
(bipartite) concurrence per iteration is bounded
by 2
√

2/
√

N , i.e., |dC/dk|≤ 2
√

2/2n/2, as N = 2n.
This means that the entanglement consumed per
iteration is exponentially small. So even though
entanglement is necessary and sufficient for speed-
up its consumption is minimal. This may be one
reason why in quantum search we do not find an

exponential speed-up (but instead only a quadratic
speed-up) relative to classical algorithms. In a recent
paper, it has been shown that for Grover’s algorithm
the change of probability of finding the target state
per iteration is related to the concurrence [27]; one
can also argue for a quadratic speed-up from this
entanglement consideration.

5. Quantum computing without
entanglement

In the literature, one can find papers claiming
that one can do quantum computing just with
linear superposition and one does not need
entanglement. For example, in Ref. [28] one can
see that it is possible to do quantum searching
without entanglement. However, one has to
pay a price to implement Grover’s algorithm
without entanglement. It has been observed that
quantum computers that can do searching without
entanglement are not universal quantum computers
and they generally require exponentially greater
resources. Similarly, in Ref. [29] it has been
suggested that one can obtain some advantage in the
Deutsch-Jozsa algorithm and in Simon’s algorithm
even without entanglement. For example, in the
Deutsch-Jozsa algorithm if one artificially runs
the protocol a single time (i.e., restricting oneself
to a single oracle call) then the information gain
is positive even in the absence of entanglement,
whereas classically this gain is precisely zero.
However, one may argue that this is simply not
what running the Deutsch-Jozsa algorithm actually
is about. It may be mentioned that this kind of
performance or improvement does not fit within
the accepted paradigm of running an algorithm.
One may also note that towards the end of Ref. [29]
the authors do say that there is no real contradiction
between their result and the necessity of requiring
entanglement for quantum computing.

One may wonder if entanglement is also
necessary in mixed state computation. This has
been answered for quantum searching with pseudo-
pure states [17]. These states naturally arise in
liquid-state NMR machines where one faces the
difficulty of accessing a pure state because the system
is in thermal equilibrium at room temperature.
Instead, one implements Grover’s algorithm on
a near random ensemble of molecular spins in a
liquid, with a small preference for the spins to point
along an external magnetic field; the size of this
preference is quantified by the purity parameter
ε [typically O(10−5)]. For a sufficiently low
spin polarization (corresponding to a sufficiently
low purity parameter), the system can be well-
approximated by a pseudo-pure state representation
described by

ρ=
1− ε

N
1IN+ ε|9〉〈9|, (28)
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where 1IN is the identity matrix of dimension N . If
we consider quantum searching on pseudo-pure
quantum states, then after k iterations of the Grover
search operator, one obtains the state

ρ→ ρk =Gkρ G†k
=

1− ε

N
1IN+ ε|9k〉〈9k|,

(29)
where |9k〉 is given by Eq. (8). The boundary
between separability and entanglement for such
states had been obtained in Ref. [17]. If the pseudo-
pure state is separable, then we must have

ε≤ εk ≡
1

1+N
√

l1(k)l2(k)

=
1

1+2n−1C(9k)
. (30)

The density matrix at the kth step of the search
could be entangled whenever ε > εk. This bound
quantifies the separability region of pseudo-pure
states for each iteration k during Grover’s algorithm.
Interestingly, the boundary also depends on the
concurrence at the kth step. Thus, one can tell
at each stage of computation whether the state
is definitely separable for a given value of purity
parameter. One can show for such pseudo-pure
state quantum computing of Grover’s algorithm,
that entanglement is necessary and sufficient for
obtaining a speed-up.

6. Conclusion
Quantum computing exploits two basic features of
the quantum world, namely, linear superposition
and quantum entanglement. However, in recent
years there have been debates as to whether
quantum entanglement is necessary for quantum
computing. In the usual paradigm of quantum
computing (prepare-compute-measure), we find
that entanglement appears to be necessary for
quantum computation. In particular, it has been
shown that for the pure state implementation
of Grover’s algorithm, one needs entanglement.
We find that for large database the entanglement
change per iteration is exponentially small in the
number of qubits. One may be tempted to say that
because of such a tiny consumption of entanglement
that the speed-up in Grover’s algorithm is not
exponential rather only quadratic improvement. Of
course, it remains an open question as to how much
entanglement is required to give an exponential
speed-up over any classical computation. Recently,
it has been claimed that highly entangled states
are not universal for quantum computation [30].
Entanglement should be consumed in the right
amounts in a quantum computation. However, what

is the right choice for consuming entanglement in
order to enhance quantum computing power, only
the future will tell.

Received 18 March 2009.
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