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Abstract

Yeloeity potentials due to the presence of different types of si ities oscillating h ically with smalt
smplitudes located in one of the three finids of a three-layered fluid medium with horizontal surfaces of separation,
#he middle fluid being of finite depth and the other two fluids being of infinite height and depth respectively, are
abtsined. These are required to study internal waves at the surfaces separating the fluids. I the density of the upper
find is made zero, known results are recovered.

Key words: Three-fluid problem, surface of separation(S5), lincarised theory, Laplace's equation, SS condition,
osaiflating line and point singularities, potential functions.

1. Introduction

Different types of singularities that can be used in solving one-fluid probiems concerning
seattering or generation of surface waves of small amplitudes by obstacles present it the fiuid
have been surveyed in some detail initially by Thorne' who neglected the effect of surface
tension and later by Rhodes-Robinson® who included it. The singularities are mainly
submerged in an one-fluid medium of finite or infinite depth. The study of internal waves at
the surfaces of separation of a multi-layered fluid medium necessitates the consideration of
different types of singularities in the flnid. For the two-fluid case,velocity potentials describ-
ing different types of singularities were obtained by Gorgui and Kassem® when the upper
Huid is unbounded and the lower fluid is of either finite or infinite depth, and by Kassem™
when both the fluids are of finite depths, the surface tension effect being neglected in alt the
sses. The effect of surface tension is included in the problem considered independently by
Rhodes-R obinson® and Mandal® when both the fluids are unbounded and later by Chakrab-
wti’ when the upper fluid is unbounded and the lower fluid is of finite depth. Also
“hakrabarti and Mandal® considered different types of singularities submerged in a two-
Tuid medium where the upper fluid is of finite depth with xfree surface and the Jower fluid is
¥ infinite depth, the surface tension being neglected.

These two-fluid problems naturally motivate us to extend the results for a multi-layered
2edium. For this reason, a three-layered fluid medium is considered where the upper fluid is
rbounded, the middle fluid is of finite depth and the lower fluid is of infinite depth, the two
erfaces of separation being horizontal planes of infinite extent. Inthe present paper, we give
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i thiseunsien of the basic line and point singularities oscillating with small amplitudes presen
wie o the three fluids. The time harmonic singularities are described by harmosic

v L ivuctions which are typical singular solutions of Laplace’s equation in the aeigh-
i rhigead of the singularities. Under the given boundary conditions at the two mean surtaces
: ‘etien and the radiation condition that there are only outgoing waves in the far field.
uiinn will be found for each type of singularity concerned, the proofs depending
upun (e use of appropriate integral representations for singular harmonic functions,
thei method of caleulations for finding the different potential functions in different
1in the case of a line singularity present in the middle fluid only. For other cases
the tina cesults are mostly stated.

.y

2. Sturement and formulation of the problem

We consider the irrotational motion of three non-viscous fluids under the action of gravity,
The middle fluid is of finite depth ‘h” while the upper and lower fluids are unbounded. The
two mean surfaces of separation are horizontal planes of infinite extent. The motion is duetc
a singularity oscillating harmonically with small amplitudes in one of the three {luids. The
motion in each case can be described by velocity potentials which are simple harmonic in
time with period 27/ ¢ and thus it is more convenient to use complex valued potentials ¢,
exp (—ior) (j=1,2,3) of which the actual velocity potentials are real parts, where the
subscripts 1, 2, 3 are used for Jower, middle and upper media respectively.

The origin O is taken on the meansurface of separation of the middle and lower fluids and
the axis Oy pointing vertically downwards into the lower fluid is chosen in such a way thatit
passes through the singularity, so that the point at which the velocity potential has a
singularity is taken conveniently as any one of the points (0, 1), (0, —1). (0, -2k + n)}{5 >0}
according to which the singularity is in the lower, middle or upper fluid respectively. The
velocity potential then satisfy

Vg =0, r>0
=0 ~h<y<o0
Viga =0, y<-h

exeept at the point of singularity. The linearised surface of separation conditions are

&y

K:ﬁx-r-—*j‘]—‘*:sz(Kgbz 5¢2 Jony=0, (2.1
Jr ay
2 8 I
Ky + ”“,T = 5(Kd; + a"i’ Yony=rp, 2o
& o i
TEL . .(.;%V np =0, (R
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2 93 on :
= yo= g 2
3 L (X}

PBOHD T pripn 5= ps pa g being the gravity, p
demsities of the fower, middle and upper fluids respectively (g: > ps

s und py being the
s gy Also

grad ¢y — 0 as p — + oo,

grad Py — 0 as pr — —oo- i2.5

lnere is another condition to be satisfied by ¢, (j=1, 2, 3} as Vel ~sowhichis the so-cuiled

radiation condition. This states that the potentjal function should represent dive
at & large distance from the singuolarity.

3. Line singularity submerged in the middle fleid of finite depth

Let a line singularity be placed at the point (0, ~n¥ in the middle fluid. Then
$:~log Rias Ro= { "+ + 'l —o. 3.5
Now ¢y, i ¢3 can be represented as
oy = ?.jj log R, + ;gg, log R,"F_Z,A(i() exp {~ky}cos k x dk, (2
#:= 3 clog R+ % d, log R,’+Z [ Btk) cos hk (h+ x) + C(&)

sin i k(h+y) ] cos k x dk, (3.3

s = Uip_, log R-, + ;{:% log RS, 4.-_7 Dik)exp{ky)cos & x dk, {3.4}
E
where

Ri=x '+ 4+ 2jh-—m Ri=x+(x+ 2+t =0+ L& 2.

Because of (3.1) we choose do = 1. Counditions (2.5) and (2.6) are automatically satisfied.

ALk), BUK), C(k), D(k)and £}, gj. € 4y, P1o 4, ar¢ to be so chosen that fhe cu:*n'digions (2.8},
122}, (2.3) 2nd (2.4) are satisfied and the different integrals converge. The radiation condi~

tion will be dealt with in the sequel.

The following integral representations will be needed in our calculations:

£ (tog R} = ij exp | Fa(y+2ih-qy | cos ko die, v &~ Lja+n
¥ (A
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3
ay

(log R)) = :tZexp {Fk(y+2ih+n)} coskxdk, yz-Qjn+ )
where the upper signs are for “>> cases and the lower signs are for the ‘<’ cases. Henee

3
ony=-h, —= (log R)) = irzexp [F&{@i-10nr-n}]cos kxadr,

2 @
ony=-h, — (log R,’)=:l:fexp[:Fk{(2j—l)h+ n})cos kxdk
ay ) ’

2

37 (1ogR,)=iZexp[:tk(zjh—n)]coskxdk,

ony =0,
where the upper signs are for j = I, 2, ... and the lower signs for j = 0, -1, -2 ... , and
.2
ony=0,—a—y— (log R;)) =j:jexp [ F k(27 h+n)] cos kx dk,
0

where the upper sign is for j = 0, 1, 2, ... and the lower sign is for j = -1, ~2 ...

After using these integral representations in appropriate places the condition (2.1) gives
K[3710g { x” +@jh-m)" Y+ 3g log { x* +@jhtn) 1" +
+[ 4 cos kxdk]+Zi[$f,exp{—k @ih-m}+
+§exp {~k (2jh+m) )~k A]cos kx dk
=51 K [T)icj log { x* + ik ~n)?}? + ?C-}‘ log { x* + @i+ m*}"+
+3d,log { x>+ @jh+m)* 7+ Fdlog {x7+ @ih-m* Y+
+Z (Bcosh ki + Csin h kh) cos kx dk ] +SlI[$Cj exp { ~k Qjr-n}
Seexp {~k Qjh+ )} + $d, exp { -k @k +m) }-3 d exp {4

(2jh — 1) Y+ k (Bsin h kh -+ C cosh kh] cos kx dk. ¢4



SINGULARITIES IN A THREE-LAYERED FLUID MEDIUM 227 -

By equating the coefficients of similar logarithmic terms (3.5) gives

1

fEsilo+dy),i=12 . }

3.6
g =s(dtes)j =012 .. (3.6)

Since do = 1 we obtain go = 51 (¢o + 1).

Again, the condition (2.2) similarly gives
K[$e log (5" + (21 h=m)* 1 + ¥ o) log { x* + (@j+ 1) h+n)? }
+3d,10g {2 + (=0 A+ PP+ 3d, 1og {x + i+ D) h=m)P }7 +
+z3cos kxdk] +Z[ ?c, exp {~k (@i~ h-n}-
~Ee, exp{~k (D h+n) )+ Fdyexp (-k (=D h+m)}
~3d exp {~k(@F+Dh=n)}+kC]coskxdk=
=s2 K[ 3p-,log { x* + (Qj+17h+m)* 17 + g log { x* + (2+1) h=n*}"
+I D exp (~kh) cos kx dk + s;‘z [ =3 pyexp {—k (Qi+1) htn) }

-~ (;Eq_,- exp { —k ((2j+1) h—n) } + kD exp (=kh) ] cos kx dk 3.7

from which we obtain similarly

ce1tdy = sigyand dji + oy = 521 P-4 J=0, 1,2 ... 3.8)
sothat ¢ + I = s5; qo as do = 1. Condition (2.3) gives

® ® . g

S (s-2 + Lyexp {~kn-m}+ Sig,-24, + &

exp {—k (2jh+n)} =k (A + Bsinh kh+ Ccosh kh ] (3.9)

For convergence of the integrals in (3.2), (3.3) and (3.4), the expression in the left side of (3.9)
must vanish for k = 0 so that
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w, ; 2 g
220+ f—j)+ 2 (g ~2d,+55) =0

This is satisfied by choosing

251
= —— ¢ i=1,2,...
5 1+s, < j >
and (3.10)
281
= d, j=0,1,2,...
& 145, & g

Finally the condition (2.4) gives

- i
e }f;*+t',f+s—2— (cjer + {L—c'j)]GXP[“k{(2j+l)h-n}]+
5
3 L:13 1 & _ .
t3l-rdtdat —(dat T og)]en] k{@i+Dh+n}]
2 !
1
+{c1~1+§ (ecrx+DYexpf{—k(h—-n)} +k{Dexp(~kh)-C}.
@311

The left side of (3.11) must vanish for k == 0 from the convergence consideration so that

= 1 1 I 7 o 1
[+ =—)eat(l-—)e+(— -1 3 — Ydum
FLa+ T emt -+ (-0 P IHELA+ ) dm
1 1 g 1 1
I-—)di+(—~~1 == - g —_ =0.
( sz) ! (Sz )sx]+[(52+1)'”+( 52 bl
This is satisfied by choosing

o =yt —}f, =0 =12 ..
1

dei=ydt T g =0 j=0.12..
1

(3.12)

¢y =—y where y = (I —52) [ (I + 52).
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Then from (3.6), (3.8), (3.10) and (3.12), we can obiain

28

L= m(*l)"y’u"“’ F=1,2,3,...
2s i
&= T—&T‘;(“])J(lw)’ J=0,1,2,...
= (1Y A T P=1.23
=1 v w J=1,23,.

; KRER
dy= (1Y (uyy F=0,1,2,.. (
o= (- 1Y A i=0,1,2..
doy = (= 1Y (pyY J=01,2,3,...

=2 oy W j=0,1,2
P =TT (=1Y v/ F=0,1,2,...
2 / / j=0,1,2
T T (=1 (py) j=0,1,2,...

where p = (1 — s} / (1 + 5.
Using these in (3.5), we can obtain

(k-K) A + s, (K cosh kh + k sinh kh) B+ sy (K sinh kh + k cosh kh) C

o 2siplepCin)-yep k(=211 _ poy 0

(3.14)
1+ uyexp(—2kh)
(3.7) gives
KB+ KC-s,(k+ K)exp(-kh) D
= Lyexp (Ckh) (pexp Chmitexp(m . gy o0 3.155

1+ uyexp(—2kh)
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and from (3.9) and (3.11) we can obtain
A + Bsinh kh + C cosh kh =0,
Dexp(-kh)-C=0;

solving for 4, B, and D from (3.14), (3.15), (3.16) and (3.17), we can obtain

A=- i sinhkh+ [ —Il(—{k—SZ(k-FK)}sinhkh—coshkh]%V,
B= —2 + ——;—{—-{s;(k+K)—k}%v

c= —g":

D= —Au:exp(kh),

where W(k) = E- -;I;— {(K~k+s1K)sinhkh+s Kcoshkh}

and A(k) = { % (K—k+s1k) (s2k+5: K~k) + 51 K } sinh kh +

+ { 51 52 (k+K)+ K-k } cosh kh.

G.16)

Qa1

(.18)

(3.19)

(3.20)

Now A (k) has three zeros at k = K1, ko, ~k#é, say, all on the real axis and complex zeros atk
=k, say, (n21), where k» = a, + i4, say. It may be noted that when s; =0, K; becomesK.
Thus A (k), B(k), C(k)and D(k)have simple poles at k = K, and k = k, on the positive
real axis. In the line integrals from 0 to ® we make indentations below these poles which
account for the behaviour of the potential functions at infinity particularly as | x | — . This

will be evident later.
Thus using the above results, we can obtain

2 = 2 o ;
"3 (=1Y (uyYlog Rt = & (~1) (ny)log R

T T 1451

F . N
—Z x sinh kh exp (—ky) cos kx dk +
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| . w
+)f) ra [ { k=s2 (K+k)} sinh kh - cosh kh ] 3 exp (—ky) cos kx dk,
(3.21)
¢2= (=17 ¥y log Ry+ 3 (-1Y ¥ W log Ryt E (-1Y - (uyY
; ¥ J J , F
log R; + % (—1Y (uvy)Y log R%, + x cosh k (h+y) cos kx dk +

|
+)(:0 [ ' {52 (k+K)~k} cosh k (h+p) + sinh k(h+y) ] -ZK cos kx dk,

(3.22)
2 = D = .
¢ = 5[ 2 1YY e og R+ 3 (1) (Y log R, ]+
£ W
+f — exp (k (h+») ) cos kx dk. (3.23) -
A

Putting s; = 0 we find that the expressions for ¢ and ¢, agree with the corresponding results
in the case of a two-fluid medium with upper fluid of finite depth and the lower fluid of
infinite depth obtained by Chakrabarti and Mandal®, and further letting h—oo (the case of a
two-fluid medium when both the fluids are unbounded) the results given by Gorgui and
Kassem® are recovered. Also, if we put p; =p,=p;, then the three-layered medium reduces to
asingle fluid medium of infinite extent, and in that case s; = |, s, = 1 so that u=0, ¥y = 0.
Then it is easily seen that (3.21), (3.22) and (3.23) readily give ¢ = ¢ = p2=log R§ whichis in
fact the potential function in an infinite fluid due to a line singularity of logarithmic type at
(0,~7).

Now to investigate the behaviour of ¢, ¢, and ¢ for large | x| we note that we have to
sonsider only the behaviour of the last integral in each expression. We put 2 cos kx =exp (ik
|x]) + exp (—ik x| ) in these integrals so that

g w
§ UK {k=5 (k+K)} sinh kh - cosh kh ] exp (=ky) A cos kx dk
0

Te™ = gk + f Je-*1¥ dk, say. (3.24)
0

o€mg

“or the first integral of (3.24) we consider in the complex k-plane a contour in the first
luadrant bounded by a portion of the real axis of large length X; with indentations below the
soles at k=K;, = ko, a circular arc I' of radius X; with centre at the origin and the line
oining the origin with point X; e’ where 0<<a<w/2. Now the integrals along the arc I"and
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this line become exponentially small for large | x{. The contribution from the poles ent
1 fim, S2Y, 10 the tirst quadrant which lie inside the contour has also a factor exp (~8,, [x])
which becomes exponentially small for large | x |. The line may cross some complex zeros of
A (k) in the first quadrant. To account for this, if it crosses a zero of A (k) we indent the line
about it 50 that it lies outside the region bounded by these contours, and the contribution for
this indentation will also contaln a factor which becomes exponentially small for large |x 1.
Thus for considering the behaviour as | x | — @¢, we only need to consider the behaviour of the
integral arising from the residues at k= K and k = k0. Hence making X, -~ oo we find that, as
[x] = oo,

o

‘:P Texp (ik |x|)dk-— 2xi { sum of the residues of
0
Texp (fk |x{)atk = K, and k = ko }.

For the second integral of (3.24) we consider in the complex k-plane a contour in the
fourth quadrant bounded by the real axis from 0 to X; with indentations below the polesat k
= K, and k = ky, a circular arc I'’ of radius X, with centre at the origin and the line joining

-the origin with the point X', exp (—ia) where 0 <a <7/ 2. Since now the singularities on the
positive real axis are taken to be outside this contour, following a similar argument asabove
we obtain as | x| — .

I
j: Texp (~ik|x|) dk — 0. Hence we find that as | x| — .
0

1 W
¢y~ il % {Ki—s2(K1+ K)}sinh K1 A~cosh K k] (T)“K‘

1
Xexp { Ki(iix|-»} +ai[ K {kos:(kotk)}

sinh koh ~ cosh kuhl(% )k_k exp { ko (Glxl -1}

where A’ = dA/dk.
Similarly, we can obtain as | x| — oo,
1
b1~ wi [—E {s2(Ki+K)— K1 } cosh K, (h+y) + sinh K; (h+y)]X

w 1
X (7 hemxexp (LK Ix )+ i [ {52 (kot K) = ko Jeosh ko (hty)t

+ sinh ko (A+y) ] (A—uf )k—‘-k., exp (iko 1x] ),
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¥ W
e wi (7)o exp { K (hby+ilxl) +mi(57)

A= de

exp { ko (Aty+ilx|) )

Thus ¢1, ¢2, 3 satisfy the radiation condition as | x| - °o. Putting s, = 0, the far field
pehaviour of ¢ and ¢2 agrees with the results obtained earlier by Chakrabarti and Mandal®

4, Line singularity submerged in lower fluid

Let there be a logarithmic type singularity at the point (0, %), then ¢ — log Ro as Ro— 0.

@.1)
Proceeding similarly as in § 3, we can obtain
¢ = log Ro—plog Ro+ (—lf—~ £ -1y ¥ Wt log R
[ Fo
- f ~— sinh khexp (—ky) cos kx dk +
o K
F | : w, -
f ? — 52 (k+K) } sinh kh — cosh kh | A oxp (~ky)cos kx dk,
(]
Py = —— 1+ [IogRo+ 2( 1Y &’y log R+ %(—l)f,ﬁ“yinog}e',,]

+ cosh k (h+y) cos kx dk

g

Rl
K
7 1 . i4]

[ ra h(k+1<)—k}coshk(h+y)+smhk(h+y)]7coskxdk,

4

[ 4 R.;
AT rag s CV Y wee

¢3 =

+ J % exp{k(h+y)} coskxdk 44

where A is given by (3.20), and

W, = E, - % { (K—k+s51 k) sinh &h + 5, K cosh kh 1
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251 v exp (—2kh) ]
(1+s) (t+puyexp(=2kh)) ©

E = -2pexp(—kn) [ 1 +

4y exp {—k (h+n)}

b= Ao T ayexp (261 “3)

If we now put p1=p:=p; so that u=vy=0 in (4.3), (4.4), (4.5) then we obtain
é1 = ¢ =3 =log Ro which is the potential function for a line source at (0, ) in an infinite
fluid,

As | x| — o0 we can show that
1 . Wi
by ~ i [? { K1~ 52 (K1 +k) } sinh Ky h—cosh Ki i ] ( —A—’—)k=Kx X
Xexp Ky (i [x)—y) +
1 . 241 .
+ i [ —E{ko—sz(ko+K)}smhkoh—coshkoh] (X‘—)k:"ku x
Xexp { ko (ilxi-y},
i ! H ﬂ./!. X
¢2~1r1[7<‘ { s (K + k)~ K1 } cosh K1 (h+y) + sinh Ki (h+3) ] ( A ) k=K
X exp (IK; | x| )+
o . i
+ mwi[ % { 52 (ko+K) ~ ko } cosh ko (h+yp) + sinh ko (h+y)](X,- ) e

X exp (iko|x]),

Ps~mi( lAV-»‘_)k=Kx exp { K (k+y+i|x] Y+ il %) exp { ko (h+y+i Ix1)

;= ko

where A” = dA/dk, A being given by (3.20).
5. Line singularity submerged in upper fluid

In this case, the singularity is situated at the point (0,~2k+7), say, so that

@3~ log Ryas Ry —~ 0. Gh
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Proceeding as in § 3, it can be shown that

—_ A3 -1 F. |
¢ = ¥ (140 D I"gR"Z“E sinh &k

Xexp(—ky)coskxdk+>£ [ 71(- { k—s2 (k+K) }
o

W
sinh k& - cosh kh ] —A—’ exp (k) cos kx dk, (5.2)
2 = 2 (- (uyY log Ry + 2§ (1Y Wy g R+
? Sl 3 o P # B 1+4s2 1 ¥ &

F F.
+£) ?2— cosh k(h+y)coskxdk-+

oc N W ' .
+4 [—11; {sz(k+K)—k}coshk(h+y)+sinhk(h+y)]73 cos kx dk, (5.3)
0

45 = -
T 5 0 ey Ry +

¢s=log Ry +ylogR§ +
+}: LZ—Z- exp{ k(h+y)} cos kxdk
0
where

Wi=FE; ~ —FKi {(K—k)sinh kh+51 (K cosh kh+k sinh kh) },

o Asisipexplk(n—2R)} é
(I+s2) {1+ pyexp(~2kh)}

E>

py exp (=2kh)-1

252
= —k(h- + :
Fo= 52 e {~kUmils + 500 o o2k

As earlier, by putting p1 = p2= ps, it is easily verified that ¢, =¢,=¢:=log R, whicn is the
sotential function in an infinite fluid due to a line singularity at the point (0, -2k + 7).

The behaviour of ¢1, ¢z, and ¢ as | x| — o can be shown as the outgoing waves
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1 ; - .
¢;~7ri[—E— {Ki=s:(Ki+K)}sinhKi h-cosh K 1 A] exp(- K,3) X
s .
(%5 ) k=g %0 UK Ix])

i JIE { ko=52(ko+K) } sinhkoh~coshkoh] exp(—koy)X

) (E2y oy exp Gkl XD,
Py 5__(.&%’9_‘.5_1 cosh X (h+y)-+sinh K1 (h+1)] ( %V- ) i X

Xexp(iKi|x|)+

§2 (ko + K) ~ko

+ 7wil X

coshko(h+y)+sinhko(A+y) ] ( -l:/—,z )k =k

exp (iko{x]),

W W
&5 ~ i Tf Yi=xexp{Ki(hty+ilx))}+mi ( —A—,i Y k= ko
exp { ko (hty+ilx])}
6. Multipoles submerged in the middle fluid

We consider only point singularities for which the y-axis is an axis of symmetry, so that ¢:.
&2, ¢3 are independent of the azimuthal angle, and satisfy the same set of equations of § 2.

In the present case, let there be a point source at (0,—7), then

P, (cos 8)

Ay

as Ry = {r’+(y+9) }#—~0.n=0,1,2,... 6.h

where r is the distance from the y-axisand 6 =tan™" (

y+n
Let us assume

2 =fA(k) exp (~ky) Jo (kr) dk, (6.2)
o
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P, (cos 6) 7
b2 = T +[q B(k)coshk(n+y)+ C(k)sinhk(h+y)} Jo(kr)dk,
o
(6.3)
Py = Z D(k) exp (ky) Jo (kr) dk. (6.4)
The following integral representation is necessary,
P, (cos 8 1 .
—‘;577:?') == Z krexp{ ~k(y+m) } Jo(krydk,y>- 7
0 n!
" (6.5)
= COT o cxpkeytm) Jo (k) ik, y<
= expk(y+n)Jolkrydk, y<<-n.

Using this integral representation and proceeding somewhat similar to § 3, we can obtain

k" k+K
¢ = ] ;[ exp (—kn) +(—1)"(1-s2) % —sinhkhexp { —k(h-7) } ]

X exp (~ky) Jo (kr) dk +

2 ey ,
+ )EQ [__’_2_(;*’_’0 sinh kh~coshkh ] exp(-ky) 1 Jo (kr) dk,
Pa(cos 6) =17 s2-1 N
S AT —_ T - h_
@2 RiET + = % f (k+K)k"exp { —k(h—-7)}

cosh k(h+y) Jo (kr) dk

g V
+ f [JIZ { s2(k+K)-k } coshk(h+y)~+sinhk(h+y) ]X Jo (kr) dk,
°

¢y = (:11') Z‘ k"exp { k(n+y) } Jo(krydk+

o~y

14
e expk(h+y)Jo(kr)dk

where A is given by (3.20) and



238 B.N. MANDAL AND R.N. CHAKRABARTI

=50 s‘) (k~K) k" exp(~ky)

4+ Uzs( 1)

= (k+K)k"(K-k+s1 k)sinh kh+

sy Kcosh kh}exp {—k{(h—-n)}.
By substituting p; = p; = p3 it is verified that

P, (cos 8)

S ==y = R

which is obviously the potential in an infinite fluid due to a point source at (0,~7).

Now putting 2Jo (kr) = HE" (kr) + H? (kr) and rotating the contour in the integrals
involving H§ (kr) in the first quadrant and in the integrals involving H¢” (kr)in the fourth
quadrant, we can reduce the integrals into suitable forms from which the farfield behaviour
of ¢1, P2, ¢3 as r —~ o0 have the following forms '

b1~ i ['11? { Ki=s:(K1+K) } sinh Kih—coshKih ] %

x( -7 Ye=x,%p (~K1y) H" (Kir) +

-
+ri[ ? { ko—s2(ko+K) } sinhkoh—coshkoh ] (T ) =k
exp (~koy) H" (kor),

b2 ~ i [% { 52(Ki+K)~K: } cosh K1 (h+y)-+sinh Ki(h+y) ]
vV

("‘,— )k:k HY (K\r)
A 1

+ wi [ % { s20ko + K)~ko } cosh ko (h-+y)+ sinh ko.(h+Y) ]

V
( a Yi= ko H§Y (kor),
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. v (1
¢s~ miexp { Ki(h+y) } (‘ET Y=g HE (Kiry + wiexp { ko (h+y) )

v
( —A—r),(=kO HE (kor)

7. Muitipoles submerged in the lower fluid

P, (cos )

R A Re= { rP+-n*} V~0 n=0,1,2
0

[nthiscase ¢~

where ¥ = tan”! (r/(y=mn)) It can be shown that

g = P L ED P ey (k4 } Jolhrydk

-1/1<\J£:° [ { s2(k+K)~k } sinhkh+coshkh ]—‘-;l exp(~ky)Jo (kr) dk,
¢ = )5:[1/1( {52 (k+K)—k} coshk(h+y)+sinhk(h+y)]—z-‘10(kr)_dk
by = Z —Z‘— exp { k(h+yp) } Jo(kr) dk

where 1y = 2K ﬁ:—l—')—— k" exp(—kn). As r—oo,
n!

14
¢1~—mil) K[ { s2(Ki+K)~Ki } sinh Kih+coshKih ] (z%)kﬂ
exp (—K1y) H{" (K1),

¢~—n~z—[{s;(k0+K) ko}51nhkoh+coshkoh]( Yian X
X exp (—koy) HE® (kor),
(1) L
¢3~rr1( =V ior oxp Ko (hty) BV (Kary+ i (5 ey,

exp { ko (A+y) } HE (kor).
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8. Multipoles submerged in the upper fluid
In this case
Pr(cos x)

e R { rP42hty-n) PP =0 n=0,12..
1

b3

where y = tan™ { r/{2h+y-n) }. The velocity potentials are given by

0=~ 22 [hrsinnkhexp{~k(hty=n)} Jothr)dk+
n: 0

» v
+4: [ 71\: { k52 (k+K)} sinh Ak~ cosh k] Kz exp (~ky} Jo (kr) 2k,

b2 = .ZL’Z fk"exp f=k(h—n)}coshk (h+y)Jolkr)dk+
nt 5
+4q 71 {52 (k-HK) ~k } cosh k (hekp) + sinh k(h+1) ] ,A’iz Jo (kry di,
0 £

cosx) . F A )
gy = 28X [ k) ek TR+
Ri v Al
kd [/2 . )
+§ T ep Lkt } o (er) dh,
oA

3

where ¥y = ~ 13, L,’ exp { ~k (B (R ks Ry simbAdr oo Seash kb
nt
As r - o0 we can show that
]
¢~ i [ % { Ki=sa (Ku-FAY Y sieh bob - eosh KA T X
v, i
X | _A'T)k:K, exp (~K,v) HYY (Kir)
+ a similar expression with K, replaced by ko,
| .
P~ i % { s, (Ki+K)~ Ky } cosh Ky (h+y) + sinh K, (h+y) )} X
)
X { W Yiag HY(KD)
+ a similar expression with Ky replaced 7y 4,
2
.

G~ (=5 ) aexp L KU(h+p) F Y (Kory Fasing oo o s with Ky replesd

.y

oy ko
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3, Conclusion

Integral representations of the potential function in different fluids of a three-layered fluid
medium are obtained. When the upper medium is taken to be vacuo earlier results for the
case of a two ﬂgid medium are recovered (¢f. Chakrabarti and Mandal®). Again, when the
three-fluid medium is reduced to an infinite one-fluid medium by making the densities equal

the corresponding results for the infinite one-fluid medium are readily recovered. Also, thé
extension of the problem to the case where the lower fluid is of finite depth H, say, instead of
infinity is not difficult, although the final resuit will be more complicated.

It may be noted that in the construction of the line source potentials in the present paper by
the image method, an infinite set of image sources due to the two surfaces of separation has
been introduced. Usefulness of this image method can be demonstrated as follows.

“In the simple case of a line source at (0, 1) in a single layer of finite constant depth, there
exists an infinite set of image sources due to the free surface and the bottom, Without using
the whole set of images, Thorne' used only the image source due to the free surface and
constructed the potential function as

v

cosh k(h—n) cosh k(h—y)

Ro
=log~2 + 2
b =log Ty {{ Kcosh kh — k sinh kA

_ exp (=kh) . i cos kx g
— sinh k7 sinh &y} oy . ©.n

where Ro is the distance from the source and R is the distance from the image source.
However, if we introduce all the image sources then we obtain

= Ro $ (=1V R Ry
¢ = log Ri + § (=1Y (log R + log R, )
® sinh k (h-n)coshk(h=y) cos kx ’
+ .
fo K cosh kh ~ k sinh kh  cosh kh” k -2

By using the representation

x'+ e’ r1
log i 2Df - { exp (-Bk]~exp(~ak) } coskxdk

it can be shown that (9.2) reduces to (9.1). Thus the sum of the image potentials (excepting
the image at (0,—#) ) in (9.2) can be expressed as an integral and can be combined with the

integral in (9.2) to give the integral in (9.1).
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This naturally will motivate one to construct the potential functions in a layered medium
by a similar technique used by Thorne'. However, this will lead to the appearance of some
divergent integrals in the resulting expressions of the potential functions. To demonstrate
this, we now take a simple case where we consider the construction of potentials in two
superposed infinite fluids with a line source present in the lower fluid at (0, ). By using the
image method (there is only one image due to the surface of separation), Gorgui and
Kassem® obtained the following result

_ -5 . 2(1=s) fexp{~k(ytn)}
¢ = logRo — Tos log R4 s _*g A coskxdk,y>0,
2 2(1-5) oce:xp{k(v'n)}
= + - ; <
b2 T log Ro T fo A cos kx dk, y<0, 9.3)

where A= (I-s) k—(1+s) K, s being the ratio of the densities of the upper and lower fluids
respectively. One may note that the integrals in (9.3) are convergent but ¢, become
unbounded at infinity although grad ¢ /s remain bounded. We can also construct ¢, ¢: by
the method ' as

Ro
RE

¢ = log +f Xexp(—ky)coskxdk,y >0
[
¢ = f Y exp (ky) cos kx dk, y<0,
0

where X, Y can be obtained from the two SS conditions. The resulting expressions for ¢1, ¢2
are¢

R oos (kHK ~(y+
g1 =tog 22+ 2§ { MAERL g R RO (o ag 0,
G

0 k A

& = _2]" exp{k(y—n)}

st )
0 K ¢

coskxdk~2)£’ { -1} (9.4
')

exp fk(y-n)}

A cos kx dk, y<0.

It is obvious that the integrals in (9.4) are divergent as the integrands have a pole at k=0.

However, the expressions in (9.4) can be identified with those in (9.3) if one is willing to
replace the divergent integrals

of K exp {-k (y+m)} coskrdk'andf k7 exp {—k/y-+m)} cos kx dk
[
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appearing in (9.4) by the unbounded functions log R{ and log Ry respectively. In fact, the
appearance of divergent integrals in (9.3) is not unexpected and this reflects the unboux}ded
nature of the potential functions. We may point out here that in a single layer fluid, this
wbounded nature of the potentials does not exist.

Thus to avoid the appearance of divergent integrals in the potentials, the image method
used here seems to be convenient.
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