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Singularities in a three-layered fluid medium 
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Mo& potentials due to the presence of different types of singuiarities Mcibting harmonisally with x d l  
mpliruda located in one of the three fluids of a thrc~layendfluid medium with horironulrurf.o~ofsepamtian. 
tts middlc fluid being of finite depth and the other two fluids being of infinite height and depth respeaivcly. art 
* i d .  Theseare required to study internal waves at the surfam separating the fluids. lithedrnrily oftheupper 
fad i e  made zero, known results arc recovered. 

kl mdr: Three-fluid problem, surface of separarion(SS). Lincarixd thmry. Laplads equation. SS wnditkm, 
mdhting line and point singularitis, potential fumions. 

I. Introduction 

Different types of singularities that can be used in solving one-fluid problems concerning 
mttering or generation of surface waves of small amplitudes by obstacles present in thenuid 

been surveyed in some detail initially by Thorne' who neglected the effect of surface 
lension and later by ~hodes-Robinson2 who included it. The singularities are mainly 
wbmerged in an one-fluid medium of finite or infinite depth. Thestudy of internal wavesac 
!k surfaces of separation of a multi-fayeied fluid medium necessitates the considrrntion of 
different types of singularities in the fluid. For the two-fluid case,velocity potentlls dewrib- 
in8 different types of singularities were obtained by Gorgui and Kassem3 when the upper 
nuid is unbounded and the lower fluid is of either finite or infinite depth, and by  asse em' 
ahen hoth the fluids are of finite depths, the surfacc tension effect being negiccted in all the 
%%Ms. The effect of surfam tension is included in the problem considered independently by 
bfk-robinsons and h4anda16 when both thefluidsan unbounded and htce by Ckkrab- 
mi' when the upper fluid is unbounded and the lower flaid is of finite depth. All80 
&krabarti and ~ r n d a l ~  considered different typm of s i u ~ r i t i e s  subme* in a two- 
hid medium wherc: the u p ~ r f l u i d  L of finite deprhwithafrecsurfaceirnd thelowerfluid is * Emfinite depth, the surfacc tension king  neglected. 

rhrx two-fluid probi-s naturaiiy motivate us to extend the results for a multi-layered 
3edium. For this *son, =three-kyered fluid mediumisconsidered where !he uppcrfluidis 
cnboundcd. the middle fluid is of finite depth and the lower nuid is of infinite depth, the two 
Maces of separation being, horizontal planes of infinite extent. In  the present paper. wt Site 
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;; ~i,.:.,,,~,.;~ oi the bitsic lineand point singuiarities oscillating with small ampiiludes preirni 
i .:,< i. .,. !iir three fluids. The time harmonic singularities are described by harnTon:c 
! ;; . . ? I . ,  : i~ , !~r t ionc  ithich are typical singular solutions of Laplace's equation in the neigh. 
:,(, .!I,,<,,: oft he bingulariiies. Under thegiven houndary conditions at the two meansuiraorr 
.:' . , .#. l i t  .! and the radiation condition that there are only outgoing waves in the far field. 
:.-. , ... ..,'l!;;~>i; will be found for each type of singularity concerned, the proofs depending 
::pi,,, ::re I,SC o f  appropriate integrai representations for singular harmonic functinnr, 
I h :;::9:.,r .n.r<hod of calculations for finding the different potential functions in dlffcfcrrni 
r . ,  .r!::. i .  :.i.c 1 in the case o f a  line singularity present in the middle fluid only. For othercaws 
i t:< 1:il.l ~ u l t s  are mostly stated. 

2 .  ?turenrent and  formulation of the problem 

Wc consider the irrotational motion of three non-viscous fluids under the action of grakitj;. 
T h s  middle fluid is of finite depth 'h' while the upper and lower fluids are unbounded. The 
two mean surfacesofseparation are horizontal planes of infiniteextent. The motion is due to 
a singularity oscillating harmonically with small amplitudes in one of the three fluids.Th~ 
motion in each case can be described by velocity potentials which are simple harmonic in 
time with period 2rrJ G and thus it is more convenient t o  use complex valued potentiab 6; 
exp ( - j o t )  (j=1,2,3) of which the actual velocity potentials are real parts, where ahc 
subscripts I ,  2, 3 are used for  lower, middle and upper media respectively. 

The origin 0 is taken on the mean surface of separation of the middle and lowerfluidsard 
the axis Oji pointing vertically downwards into the lower fluid is choseninsucha way tharia 
passes through the  singularity. so that the point at which the velocity potential has a 
singuiarity is takcn conveniently as any one of the  points (0,  q ) .  ( 0 ,  -q ) . (O, -2h+ q)(q>O? 
according to  which the singularity is in the lower, middle o r  upper fluid respectively. 'fie 
vel~xi ty  potential then satisfy 

e-~\..cpt a t  the pojnt of smgularrty T h e  lmearised surface of Feparatlon cond~tion\ &re 



Ihcrrisanoth~r condition to  he satisfied by + : ( j =  1 .  2.3) as I .r ' -swhil:h ~\thci~.-~;~ilc. i l  
r~diation condition. This states that the potential functionshould rcpr:,er.t :!it ;.r:.- 
ci b large distance from the singularirj. 

h-ause of (3.1) we choose do = I .  Conditions (2.5) and (2.6) are anuromaticali~ >atlalied 
taik?, Bfk), C ( k ) ,  D(k)and fj ,8;,c, .d, ,p, ,q,an:toksuchosen thalthecotadltionrid.El, 
11.21. (2.3) and (2.4) are satisfied and the different integrals converge. The radiation eoaldi- 
tkp. ail i  be dealt with in the sequel. 

The Foliowing integral representations will be needed irt  our cal~ularionz: 
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a - (log R;) = rt exp + k(y+2,ih + 7 )  } cos k x  d k ,  y 2 -(2jh + ,,) 
a Y I { 

where the upper signs are for '>' cases and the lower signs are for the '<' cases. Hence 

a 
ony=-h, - 

a 5 ,  

a 
on y = 0, - (log R,) = + * k (2 j  h - q )  ] cos k x  dk ,  

a Y 

where the upper signs are f o r j  = 1 ,  2, ... and the lower signs for j = 0, -1, -2 ... ,and 

where the up,per sign is for j = 0, 1 ,  2, ... and the lower sign is for j = -1, -2 .... 
After using these integral representations in appropriate places the condition (2.1) gives 

K [Ffi log ( r2 + ( 2 j h - ~ ) '  ) ' I2+ $g,  log { x 2  +(2jhi-7)' ' } L / 2  + 

+ z e x p  ( -k (2 jh  + q )  } - k A ] cos k x  d k  

= s l  K [?r, log { x 2  + (2 jh  - 1 ) 2 } ' 1 2  + Z c ,  log ( x 2  + (2 jh  f 11)' l i n t  

+ Zd,  log { x' + (2 jh  + 7)' } ' I 2  + ? d ,  log { x Z  + (2 jh  -7)' + 

+[(L3C0shkh + ~ s i n h k h ) c o s k x d k ] +  s l y [ $ c , e x p { - k ( 2 j h - q ) }  

Z c - , e ~ p { - k ( 2 j h + ~ ) ]  + $ d , e ~ ~ { - k ( 2 ~ h + t ) ) } - $ d - , e x ~ ( - k  

(2 jh  - 7 )  }+ k ( B  sin h k h  + C cosh k h ]  cos k x  dk. (3.51 
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BY equating the coefficients of similar logarithmic terms (3.5) gives 

Since do = 1 we obtain g o  = s t  ( ~ a  + I). 
Again, the condition (2.2) similarly gives 

K [ Tc, log ( xZ + ( (2,-1) h - ~ ) '  )'IZ + $ c-, log { x 2  + ( (2 j+l )  h+q12 jL/' 

+ ~ d J ~ o g { x 2 + ( ( 2 j - l ) h + g ) ' } 1 1 2 + ~ d J ~ o g { x 2 + ( ( 2 j + ~ ) h - 1 ) z } 1 1 2 +  

+ j a ~ o ~ k ~ d k I + ~ [ f ~ , e x ~ ~ - k ( ( 2 ~ - l ) h - ~ ) l -  

= sz K [ ? p ,  log ( x Z  + ((2j+ l J  h + 7)' }112 + Z q ,  log { x 2  + ((2j-k 1) h-v2 } I 1  

from which we obtain similarly 

c,+, + d ,  = s l  q, and di+l + c-, = sz p-j, j = O ,  1, 2 .... 

so that E C  + 1 = sz q0 as do = 1. Condition (2.3) gives 

exp (-k (2 jh+q)  } = k (A + B sinh k h  + C cosh k h  1. (3.9) 

~o rc~nve r~encc  of the integrals in(3.2), (3.3) and (3.41, the expression in the left side of (3.9) 
must vanish for k = 0 so that 
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f m  T y ; - 2 c , +  $ ) + Z ( g J - - 2 d l + e )  = 0 .  

This is satisfied by choosing 

2s 1 fl = (; j=  1.2. .... 

and 

Finally the condition (2.4) gives 

The left side of (3.1 1) must vanish for k = 0 from the convergence considerat~on so that 

I 1 I 
( l - ~ ) d j + (  s ; - ~ )  f ] + [ ( L + ~ ) . r , + (  s 2 - - 1 ) ] = 0 .  s 2 

This is satisfied by choosing 
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rhrn from (3.6), (3.8). (3.10) and (3.12), we can obtain 

where p = ( I  - s,) / ( 1  + s t ) .  

Using these in (3.5), we can obtain 

( k - K )  A + s ,  ( K  cosh k h  + k  sinh k h )  B + S I  ( K  sinh k h  + k cosh k h )  C 

(3.7) gives 

K B f  K C - s l ( k + K ) e x p ( - k h ) D  



230 B.N. MANDAL AND R.N. CHAKRABARTI 

and from (3.9) and (3.1 1) we can obtain 

A + Bsinh kh + C cosh k h = O .  

D exp (-kh) - C = 0 ;  

solving for A, B, and D from (3.141, (3.15), (3.16) and (3.17), we can obtain 

F 
where W(k) = E- - { ( K - k + s ~ K ) s i n h k h + s ~  K c o s h k h }  

K 
(3.19) 

+ { s, s2 ( k + K )  f K-k ) C O S ~  kh. (3.20) 

Now A ( k )  has three zeros at k = KI, ko, -kb, say, all on the real axis and complexzeros atk 
= k., say, ( n S  1 ), where k. = a. + is,, say. It may be noted that when $2 =0, Kt becomesK 
Thus A (k) ,  B(k),  C(k)  and D ( k )  have simple poles a t  k = K ,  and k = ka on thepositive 
real axis. In the line integrals from 0 to m we make indentations below these poles which 
account for the behaviour of the potential functions a t  infinity particularly as I x I -OD. This 
will be evident later. 

Thus using the above results, we can obtain 

-1 $ sinh kh ex. (-ky) cos k x  d k  k 
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" 1 W +% K [ { k-sz ( K +  k )  1 sinh k h  - cosh kh ] - exp (-ky) cos k x  dk, 
A 

" 1 W +% [ K ( $2  ( k+K)  - k } cash k ( h f y )  + sinh k(h+y)  ] - cos k x  dk, 
A 

Putting h = 0 we find that the expressions for 61 and $2 agree with thecorresponding results 
in the case of a two-fluid medium with upper fluid of finite depth and the lower fluid of 
infinite depth obtained by Chakrabarti and MandalB, and further letting h-m (the case of a 
two-fluid medium when both the fluids are unbounded) the results given by Gorgui and 
Kassern3are recovered. Also, if we put p l=pz=p~ ,  then the three-layered medium reduces to 
a single fluid medium of infinite extent, and in that case SI = 1, $2 = 1 so that p = 0, y = 0. 
Then it is easily seen that (3.21), (3.22) and (3.23)readily give @I =&=&=log Rb whichis in 
tact the potential function in an infinite fluid due to a line singularity of logarithmic type at 
(0,-v). 

Now to investigate the behaviour of 41, $2 and $2 for large I x  1 we note that we have to 
:onsider only the behaviour of the last integral in each expression. We put 2 cos kx= exp (ik 
1x1) + exp (-ik 1x1 ) in these integrals so that 

W [ l i K  ( k - n  (k+K)  ) sinh k h  - cosh k h  ] exp (-ky) - cos k x  d k  A 

'01 the first integral of (3.24) we consider in the complex k-plane a contour in the first 
luadrant bounded by a portion of the realaxis oflargelen,gth XI with indentations below the 
10lcs at k=&, = ko, a circular arc r of radius XL with centre at the origin and the line 
oining the origin with point X,  el" where O<rr<a/2. Now the integrals along the arc r a n d  
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this line become exponentially small for large I XI. The contribution from the poles 
r pmr say, In the tirst quadrant which lie inside the contour has also a factor exp ( -8 ,  I ) 
which becomes exponentially small for large 1 x 1. The line may cross somecomplex zeros of 

A ( k )  in the first quadrant. T o  dccount for this, if it Crosses a zero of A (k)  we indenttheline 
about it so that it lies outside (he region bounded by these contours, and thecontributionfor 
this indentation will also contaln a factor which becomes exponentially small for large 1 x l ,  
Thus for considering the hehaviour as I x I - =, We only need to consider the behaviour ofthe 
integral arising from the residues at ~ = K I  and k = h .  Hence making X l  - m we find that,as 
1x1 - m ,  

[ I e x p  ( i k  1x1) dk.-  2 r i  { r u m  of the residues of 

I exp ~ ( i k  1x1) a t ,k  = KI and k = ko 1. 

For the second integral of (3.24) we consider in the complex k-plane a contour in the 
fourth quadrant bounded by thereal axis from 0 to  X I  with indentations below thepolesatk 
= K, and k = ko, a circular arc r ' o f  radius X I  with centre at the origin and the linejoining 

.the origin with the point XI exp(-ia) where 0 <a < rr / 2. Since now the singularitiesonthe 
positive real axis are taken to be outside this contour, following a similar argument as above 
we obtain as I x I - m. 

I 

f 1 exp (-ik 1 X I  ) dk - 0. Hewe we find that as 1 x 1 - -. 

1 
X exp { KI ( i  1x1 - 4 s )  } + ri [ ( ko-$2 (ko+k) 1 

W 
s i n h k a h - c o s h k o h l ( - ; r ;  e x p ( k o ( i l x 1 - Y ) )  

where A' = d A / d k .  

Similarly, we can obtain as I x 1 - m. 
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~ h u s  61, + 2 ,  # x  satisfy the radiation condition as 1x1 - m. Pottings2 = 0, the far field 
behaviour of $1 and & agrees with the results ohtainedearlierby Chakrabarti and ~ ~ ~ d ~ 1 ~  

4. Line singularity submerged in lower nuid 

Let there he a logarithmic type singularity at the point ( 0 , ~ ) .  then 6, - log Ro as Ro - 0. 

(4.1) 

Roceeding similarly as  in $ 3, we can obtain 

- [ 2 sinh k h  c rp  (-ky) cos k x  dk  + 
" I wc 

+$ [ { k - sz ( k + K )  } sinh kh - cosh k h ]  - exp (-ky)cos k x  dk, 
0 A 

shere A is given by (3.20), and 

Fl 
f.t'i = El - - ( ( K - k f  s t  k )  sinh kh f s, K  cosh kh 1, 

K 
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2 s1  y exp ( -2kh)  
El = -2pexp( -k? )  [ I + 

( l + s l )  ( l + p y  exp( -2kh) )  I' 

If we now put p ~ = p z = p l  so that P'Y'O in (4.3). (4.4), (4.5) then we obtain 
61 = 4 2 = + 3  = log RO which is the potential function for a line source at (0, q )  in an infinite 
fluid, 

As I x 1 - m we can show that 

1 Wl 
0 2  - rri [ - { sr ( K I  + k)  - K I  } cosh K1 (h-ky)  f sinh KT ( h + y ) ]  ( ;ri; ) k = K ,  X 

K 

1 R; + ri [ ( sz (kg+ K) - ko } cosh ko ( h f y )  + sinh ko ( h + y )  I ( ) .I=". 

where A '  = dAldk ,  A being given by (3.20). 

5. Line singularity submerged in upper fluid 

In this case, the singularity is situated at the point (0,-2h-i-0). say, so that 
T.; 

0 3 -  log Ri as R I  - 0  
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proceeding as in 3, it can be shown that 

w2 
sinh k h  - cosh k h  ] - exp (-ky) cos k x  dk, 

A (5.2) 

" I w2 + { r K  {sz(k+K)-k}~oshk(h+y)+sinhk(h+~)]- cos k x d k ,  (5.3) 
A 

4 s 
+3=logRl+y logR6  + - (-l)It' p' yJ-' log R', + 

(1 +s2)' 

w2 +jGo 7 exp { k(h+y)  } cos k x d k  

where 

F 
W2=E2 - 2 ((K-k)sinh k h +  sl (Kcosh k h + k  sinh kh)  ), 

K 

2 $2 p y  exp (-2kh)-1 
F 2  = - exp{-k(h-.rl)}[s2 + I + p y e x p ( - 2 k h }  1. I + s 2  

As earlier, by putting =p2=p , ,  it is easily verified that +, =+2=+3=log R I  which is the 
lotential function in an infinite fluid due to a line singularity at the point (0, - 2h + 11). 

The behaviour of d l ,  + 2 ,  and + 3  as I x l  - w can be shown as the outgoing waves 
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t ni [ W 
""o' KY'ka cosh kn (h+y)+s inhko(h+y)  ] ( 5 ) ,.& 

K 

6. Multipoles submerged in the middle fluid 

We consider only paint singularities far which the y-axis is an axis of symmetry, so that $1. 

42, 43 are independent of the azimuthal angle, and satisfy the same set of equations ofg2. 

In the present case, let there be a point source at (0,-q), then 

P, (cos 6) C 2 - ------ asR6  = { r Z f  ( y + q ) t ) 1 ' 2 - ~ , n = 0 , 1 , 2 , . . .  (6.1) 
R6"" 

where r is thedistance from they-axis and @= tan" ( k 1. 
Let us assume 
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The following integral representation is necessary, 

Using this integral representation and proceeding somewhat similar to 5 3, we can obtain 

X exp (-ky) JO ( k r )  dk + 

v + ( [ *-"gtK) sinhkh-cosbkh ] erp(-ky) - Jo (kr)  dk, 
A 

cosh k ( h + y )  Jo (kr)  d k  

" 1 v 
i- $ [ { s 2 ( k + K ) - k  ] coshk(h+y)+sinhk(h+y) la JO (kr) dk, 

where A is given by (3.20) and 
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s, K cosh k h  1 exp ( - k  ( h - T )  1 .  

By substituting p~ = p2 = p l  it is verified that 

which is obviously the potential in an infinite fluid due to a point source at (0,-11). 

Now putting 2 J o  ( k r )  = Hi1' ( k r )  + Hb2' ( k r )  and rotating the contour in the integrals 
involving H A ' '  ( k r )  in the first quadrant and in the integrals involving ~ d ~ ' ( k r )  in thefourth 
quadrant, we can reduce the integrals into suitable forms from which the farfield behaviour 
of @ I ,  42, 4) as r - = have the following forms 

exp ( - k o y )  ~ b "  ( k o r ) ,  

+ [ [ s ~ ( k g + K ) - k o  ] cosh ka ( h + y ) +  sinh ko..(hf Y )  1 
K 



7, Multipoles submerged in the lower fluid 

*) a s R ~ =  { r2+(y-s )2  } Ii2-0 n=0,1 ,2 ,  Inthis case 4 I - ---- 
Ro"+l 

where $ = tan-' ( r / ( y - 7 )  ). I t  can be shown that 

where VI = 2 K  (-l)n knexp(-krj). As r-m, 
n ! 

v 
bi--rril/  K [ ( sz (Ki+K)-KI  1 sinh Klh+ coshKlh ] ( + ) k = f i  A 

exp ( -Kly)  ~ d "  ( K i r ) ,  



=-. tan-' ( r / ( 2 h + y - p )  1. The velocity potentials 3~ given by 
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9. Conclusion 

integral representations of the potential function in different fluids of a three-layered fluid 
medium are obtained. When the upper medium is taken to be vacuo earlier results for the 

a two fluid medium are recovered (cf. Chakrabarti and Mandala). Again, when the 
threenuid medium is reduced to an infinite one-fluid medium by making the densitiesequai, 
the corresponding results for the infinite one-fluid medium are readily recovered. Also, the 
extension of the problem to the case where the lower fluid is offinitedepth H, say, instead of 
infinity is not difficult, although the final result will be more complicated. 

~t may be noted that in the construction of the line source potentials in the present paper by 
the image method, an infinite Set of image sources due to  the two surfaces of separation has 
been introduced. Usefulness of this image method can be demonstrated as follows. 

In the simple case of a line source at (0, ?) in a single layer of finite constant depth, there 
exists an infinite set of image sources due to the free surface and the bottom. Without using 
the whole set of images, Thorne' used only the image source due to the free surface and 
constructed the potential function as 

R " cosh k(h-7) cosh k ( h - y )  
.$=log-++ 2 1  { 

R~ Kcosh k h  - k sinh k h  

-- cos k x  
sinh k ?  sinh kg )  a dk 

k 

where Ro is the distance from the source and Rb is the distance from the image source. 
However, if we introduce all the image sources then we obtain 

" sinhk(h-q)coshk(h-y) cos k x  
dk.  

+ 2 %  K c o s h k h - k s i n h k h  coshkh. 

By using the representation 

it can be shown that (9.2) reduces to (9.1). Thus the sum of the image poter.::als (excepting 
the image at ( O , - T )  ) in (9.2) can be expressed as an integral and can be combined with the 
integral in (9.2) to give the integral in (9.1). 
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This naturally will motivate one to  conStrUCt the potential functions in a layered medium 
by a similar technique used by ~ h o r n e ' .  However, this will lead to the appearance of 
divergent integrals in the resulting expressions of the potential functions. To dcmonsrrate 
this, we now take a simple case where we consider the construction of potentials in two 

superposed infinite fluids with a line source present in the lower fluid at (0, q). By "singthe 
image method (there is only one image due to the surface of separation), Gorgui and 
 asse em' obtained the following result 

where A = (I-s) k-(I +s)  K, s being the ratio of the densities of the upper and lower fluids 
rcspectivcly. One may note that the integrais in (9.3) are convel-gent but 6 , ' s  hecome 
unbounded at infinity although grad 4:s remain bounded. We can also construct O1, $>by 
the method ' as 

R " 
61 = log + X e x p i - k . ~ ) c o s k x d k , p > O  

R6 

where X, Y can be obtained from the two SS conditions. The  resultingexpressions for dl,$? 
are 

R 
4, -= log  2 + 2 " s ( k + K )  

RE, t ( 7 - 1  } coskxdk.y>O 

It is obvious that the integrals in (9.4) are divergent as the integrands have a pole at f i=o  
However, the expressions in (9.4) can be identifled with those in (9.3) if one is w l l k  '0 
replace the divergent integrals 
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in (9.4) by the unbounded functions log Rii and log Ro respectively. In fact, the 
,parance of divergent integrals in (9.3) is not unexpected and this reflects the unbounded 
,,["re of the potential functions. We may point out here that in a single layer fluid; this 
,,,,bounded nature of the  potentials does not exist. 

~ h u s  to avoid the appearance of divergent integrals in the potentials, the image method 
here seems t o  be convenient. 

We take this opportunity of thanking the referees for their comments and suggestions in 
revising the paper. We also thank one of the referees for his various criticisms which led us to  
inelude the discussion o n  the divergent integrals presented in the latter part of the Conclu- 
sion, and another referee for drawing our attention to Rhodes-Robinson'sS paper. 
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