Singularities in a three-layered fluid medium

B.N. Mandal and R.N. Chakrabarti
leparment of Applied Mathematics, University College of Science, 92, A.P.C. Road, Calcutta 700009 , India.

Tacenved on February 8, 1984; Revised on July 11, 1984.

Abstract

Yetocity potentials due to the presence of different types of singularities oscillating harmonically with small mapittedes located in one of the three fluids of a three-layered fuid medium with horizontal surfaces of feparation. the middle fluid being of finite depth and the other two fluids being of infinite height and depth respectively, are owned. These are required to study internal waves at the surfaces separating the fluids. If the density of the upper fand made zero, known results are recovered.

Key words: Three-fluid problem, surface of separation (SS), linearised theory, Laplace's equation, SS condition. oselating line and point singularities, potential functions.

1. Introduction

Different types of singularities that can be used in solving one-fluid problems concerning seattering or generation of surface waves of small amplitudes by obstacles present in the fluid have been surveyed in some detail initially by Thorne ${ }^{1}$ who neglected the effect of surface tension and later by Rhodes-Robinson ${ }^{2}$ who included it. The singularities are mainly submerged in an one-fluid medium of finite or infinite depth. The study of internal waves as the surfaces of separation of a multi-layered fluid medium necessitates the consideration of different types of singularities in the fluid. For the two-fluid case, velocity potentials describing different types of singularities were obtained by Gorgui and Kassem ${ }^{3}$ when the upper fluid is unbounded and the lower fluid is of either finite or infinite depth, and by Kassem ${ }^{4}$ when both the fluids are of finite depths, the surface tension effect being neglected in all the astrs. The effect of surface tension is included in the problem considered independently by Rhodes-Robinson' ${ }^{5}$ and Mandal ${ }^{6}$ when both the fuids are unbounded and later by Chakrabini ${ }^{7}$ when the upper fluid is unbounded and the lower fluid is of finite depth. Also Thakrabarti and Mandal ${ }^{8}$ considered different types of singularities submerged in a twofurd medium where the upper fluid is of finite depth with a free surface and the lower fluid is Ifinfinite depth, the surface tension being neglected.
These two-fluid probiems naturatly motivate us to extend the results for a multi-layered nedium. For this reason, a three-layered fluid medium is considered where the upper fluid is inbounded, the middle fluid is of finite depth and the lower fluid is of infinite depth, the two urfaces of separation being horizontal planes of infinite extent. In the present paper, we give
atiscunion of the basic line and point singularities oscillating wit h small amplitudes present in ant: the three fluids. The time harmonic singularities are described by harmome fon ntellenctions which are typical singular solutions of Laplace's equation in the neigh20: fiow of the singularities. Under the given boundary conditions at the two mean surfaces \because : r ration and the radiation condition that there are only outgoing waves in the farffeld, :A , shentinn win be found for each type of singularity concerned, the proofs depending apon the tise of appropriate integral representations for singular harmonic functions. Detation method of calculations for finding the different potential functions in different nessix: zuen in the case of a line singularity present in the middle fluid only. For other cases the tinh esults are mostly stated.

2. whtment and formulation of the problem

We consider the irrotational motion of three non-viscous fluids under the action of gravity. The middle fluid is of finite depth ' h ' while the upper and lower fluids are unbounded. The two mean surfaces of separation are horizontal planes of infinite extent. The motion is due to a singularity oscillating harmonically with small amplitudes in one of the three fluids. The motion in each case can be described by velocity potentials which are simple harmonic in time with period $2 \pi / c$ and thus it is more convenient to use complex valued potentials ϕ, $\exp (-i \sigma t)(j=1,2,3)$ of which the actual velocity potentials are real parts, where the subscripts $1,2,3$ are used for lower, middle and upper media respectively.

The origin O is taken on the mean surface of separation of the middle and lower fluidsand the axis Oy pointing vertically downwards into the lower fluid is chosen in such a way that it passes through the singularity, so that the point at which the velocity potential has a singularity is taken conveniently as any one of the points $(0, \eta),(0,-\eta),(0,-2 h+\eta)(\eta>0)$ according to which the singularity is in the lower, middle or upper fluid respectively. The velocity potential then satisfy

$$
\begin{array}{ll}
\nabla^{2} \phi_{\mathrm{I}}=0, & y>0 \\
\nabla^{2} \phi_{z}=0, & -h<y<0 \\
V^{2} \phi_{\mathrm{y}}=0, & y<-h
\end{array}
$$

except an the point of singularity. The linearised surface of separation conditions are

$$
\begin{align*}
& K \phi_{:}+\frac{\partial \phi_{1}}{\partial y}=s_{1}\left(K \phi_{2}+\frac{\partial \phi_{2}}{\partial y}\right) \text { on } y=0, \\
& K \phi_{z}+\frac{\partial \phi_{z}}{\partial y}=s_{2}\left(K \phi_{3}+\frac{\partial \phi_{3}}{\partial y}\right) \text { on } y=-h, \tag{2.2}\\
& \phi_{y} \\
& \theta_{y},
\end{align*}
$$

i:

$$
\frac{\theta \phi_{2}}{\partial y}=\frac{\partial \phi_{3}}{\partial y} \phi n y=-\hat{\theta}
$$

 radation condition. This states that the potential function should reprextifdiberates it a at at a large cistance from the singularity.

3. Line singularity submerged in the middle fluid of finite depth

fet a line singularity be placed at the point $(0,-\eta)$ in the middle fluid. Then

$$
\begin{equation*}
\phi_{2}-\log R_{1} a_{1} R_{0}^{\prime}=\left\{x^{2}+(y+\eta)^{2}\right\}^{12} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Now $\phi_{1 .} \phi$. ϕ, can be represented as

$$
\begin{align*}
& \phi_{\mathrm{y}}=\sum_{i}^{\infty} f_{j} \log R_{j}+\sum_{0}^{\infty} g_{j} \log R_{j}^{\prime}+\int_{b}^{\infty} A(k) \exp \left(-k y^{\prime}\right) \cos k x d R \tag{182}\\
& \phi_{2}=\sum_{-\infty}^{\infty} c_{j} \log R_{j}+\sum_{-\infty}^{\infty} d_{j} \log R_{j}^{\prime}+\int_{0}^{\infty}[B(k) \cos h k(h+y)+C(k)
\end{align*}
$$

$$
\sin h k(h+y)] \cos k x d k
$$

$$
\phi_{y}=\sum_{0}^{\infty} p_{-} \log R_{-}+\sum_{0}^{\infty} q_{-j} \log R_{-}^{*}+\int_{0}^{\infty} \rho(k) \exp (k, \cos A \pi d R
$$

watere

$$
R^{2}=x^{2}+(y+2 j h-\eta)^{2}, R_{j}^{-2}=x^{2}+(y+2 j h+\eta)^{2}, j=0, \pm 1, \pm 2 \ldots
$$

Fecause of (3.1) we choose $d_{0}=1$. Conditions (2.5) and (2.6) are automaticatty satiantien $A(k), B(k), C(k), D(k)$ and $f_{j}, g_{i}, c_{j}, d, p_{j}, q$, are to be so chosen that the condikions $(2,)_{+}$ 2.2, (2.3) and (2.4) are satisfied and the different integrals converge. The radiation eondim tion will be dealt with in the sequel.

The following integral representations will be needed itt our calculations:

$$
\begin{align*}
& \text { gian } \cos _{3} \rightarrow 0 \text { as } y \rightarrow-\infty \text {. } \tag{array}\\
& \text { 15.5: }
\end{align*}
$$

$$
\frac{\partial}{\partial y}\left(\log R_{f}^{\prime}\right)= \pm \int_{0}^{\infty} \exp \{\mp k(y+2 j h+\eta)\} \cos k x d k, y \geqslant-(2 j h+\eta)
$$

where the upper signs are for ' $>$ ' cases and the lower signs are for the ' $<$ ' cases. Hence

$$
\begin{aligned}
& \text { on } y=-h, \frac{\partial}{\partial y} \quad\left(\log R_{j}\right)= \pm \int_{0}^{\infty} \exp [\mp k\{(2 j-1) h-\eta\}] \cos k x d k, \\
& \text { on } y=-h, \frac{\partial}{\partial y} \quad\left(\log R_{j}^{\prime}\right)= \pm \int_{0}^{\infty} \exp [\mp k\{(2 j-1) h+\eta\}] \cos k x d k, \\
& \text { on } y=0, \frac{\partial}{\partial y} \quad\left(\log R_{j}\right)= \pm \int_{0}^{\infty} \exp [\pm k(2 j h-\eta)] \cos k x d k,
\end{aligned}
$$

where the upper signs are for $j=1,2, \ldots$ and the lower signs for $j=0,-1,-2 \ldots$, and

$$
\text { on } y=0, \frac{\partial}{\partial y}\left(\log R_{j}\right)= \pm \int_{0}^{\infty} \exp [\mp k(2 j h+\eta)] \cos k x d k
$$

where the upper sign is for $j=0,1,2, \ldots$ and the lower sign is for $j=-1,-2 \ldots$ After using these integral representations in appropriate places the condition (2.1) gives

$$
\begin{align*}
& K\left[\sum_{1}^{\infty} f_{j} \log \left\{x^{2}+(2 j h-\eta)^{2}\right\}^{1 / 2}+\sum_{0}^{\infty} g_{j} \log \left\{x^{2}+(2 j h+\eta)^{2}\right\}^{1 / 2}+\right. \\
& \left.+\int_{0}^{\infty} A \cos k x d k\right]+\int_{0}^{\infty}\left[\sum_{1}^{\infty} f_{j} \exp \{-k(2 j h-\eta)\}+\right. \\
& \left.+\sum_{0}^{\infty} \exp \{-k(2 j h+\eta)\}-k A\right] \cos k x d k \\
& =s_{1} K\left[\sum_{1}^{\infty} c_{j} \log \left\{x^{2}+(2 j h-\eta)^{2}\right\}^{1 / 2}+\sum_{0}^{\infty} c_{-j} \log \left\{x^{2}+(2 j h+\eta)^{2}\right\}^{1 / 2}+\right. \\
& +\sum_{0}^{\infty} d_{j} \log \left\{x^{2}+(2 j h+\eta)^{2}\right\}^{1 / 2}+\sum_{1}^{\infty} d_{-,} \log \left\{x^{2}+(2 j h-\eta)^{2}\right\}^{1 / 2}+ \\
& \left.+\int_{0}^{\infty}(B \cosh k h+C \sin h k h) \cos k x d k\right]+s_{1} \int_{0}^{0}\left[\sum_{1}^{\infty} c_{j} \exp \{-k(2 j h-\eta)\}\right. \\
& \sum_{0}^{\infty} c_{-\jmath} \exp \{-k(2 j h+\eta)\}+\sum_{0}^{\infty} d_{j} \exp \{-k(2 j h+\eta)\}-\sum_{1}^{\infty} d_{-j} \exp \{-k \\
& (2 j h-\eta)\}+k(B \sin h k h+C \cosh k h] \cos k x d k . \tag{3.5}
\end{align*}
$$

By equating the coefficients of similar logarithmic terms (3.5) gives

$$
\left.\begin{array}{l}
f_{j}=s_{1}\left(c_{j}+d_{-\jmath}\right), j=1,2, \ldots \tag{3.6}\\
g_{j}=s\left(d_{j}+c_{-j}\right), j=0,1,2, \ldots .
\end{array}\right\}
$$

Since $d_{0}=1$ we obtain $g_{0}=s_{1}\left(c_{0}+1\right)$.
Again, the condition (2.2) similarly gives

$$
\begin{align*}
& K\left[\sum_{1}^{\infty} c_{j} \log \left\{x^{2}+((2,-1) h-\eta)^{2}\right\}^{1 / 2}+\sum_{0}^{\infty} c_{-\jmath} \log \left\{x^{2}+((2 j+1) h+\eta)^{2}\right\}^{1 / 2}\right. \\
& +\sum_{1}^{\infty} d_{j} \log \left\{x^{2}+((2 j-1) h+\eta)^{2}\right\}^{1 / 2}+\sum_{0}^{\infty} d_{j} \log \left\{x^{2}+((2 j+1) h-\eta)^{2}\right\}^{1 / 2}+ \\
& \left.+\int_{0}^{\infty} B \cos k x d k\right]+\int_{0}^{\infty}\left[\sum_{1}^{\infty} c_{j} \exp \{-k((2 j-1) h-\eta)\}-\right. \\
& -\sum_{0}^{\infty} c_{-j} \exp \{-k((2 j+1) h+\eta)\}+\sum_{1}^{\infty} d_{j} \exp \{-k((2 j-1) h+\eta)\} \\
& \left.-\sum_{0}^{\infty} d_{-j} \exp \{-k((2 j+1) h-\eta)\}+k C\right] \cos k x d k= \\
& =s_{2} K\left[\sum_{0}^{\infty} p_{-j} \log \left\{x^{2}+((2 j+1) h+\eta)^{2}\right\}^{1 / 2}+\sum_{0}^{\infty} q_{-j} \log \left\{x^{2}+\left((2 j+1) h-\eta^{2}\right\}^{1 /}\right.\right. \\
& \left.+\int_{0}^{\infty} D \exp (-k h) \cos k x d k+s_{2}\right\}_{0}^{\infty}\left[-\sum_{0}^{\infty} p_{-\jmath} \exp \{-k((2 j+1) h+\eta)\}\right. \\
& \left.-\sum_{0}^{\infty} q_{-j} \exp \{-k((2 j+1) h-\eta)\}+k D \exp (-k h)\right] \cos k x d k \tag{3.7}
\end{align*}
$$

from which we obtain similarly

$$
\begin{equation*}
c_{j+1}+d_{-J}=s_{2} q_{-,} \text {and } d_{j+1}+c_{-j}=s_{2} p_{-j}, j=0,1,2 \ldots \tag{3.8}
\end{equation*}
$$

so that $c_{1}+1=s_{2} q_{0}$ as $d_{0}=1$. Condition (2.3) gives

$$
\begin{align*}
& \sum_{1}^{\infty}\left(f_{j}-2 c_{j}+\frac{f_{j}}{s_{1}}\right) \exp \{-k(2 j h-\eta)\}+\sum_{0}^{\infty}\left(g_{j}-2 d_{J}+\frac{g_{j}}{s_{1}}\right) \\
& \exp \{-k(2 j h+\eta)\}=k(A+B \sinh k h+C \cosh k h] . \tag{3.9}
\end{align*}
$$

For convergence of the integrals in (3.2), (3.3) and (3.4), the expression in the left side of (3.9) must vanish for $k=0$ so that

$$
\sum_{i}^{\infty}\left(f_{j}-2 c_{j}+\frac{f_{j}}{s_{1}}\right)+\sum_{0}^{\infty}\left(g_{j}-2 d_{j}+\frac{g_{j}}{s_{1}}\right)=0
$$

This is satisfied by choosing

$$
\begin{equation*}
f_{1}=\frac{2 s_{1}}{1+s_{1}} \quad c_{j} \quad j=1,2, \ldots \tag{3.10}
\end{equation*}
$$

and

$$
g_{j}=\frac{2 s_{1}}{1+s_{1}} d_{j} \quad j=0,1,2, \ldots
$$

Finally the condition (2.4) gives

$$
\begin{align*}
& \sum_{1}^{\infty}\left[c_{j+1}-\frac{f_{j}}{s_{1}}+c_{j}+\frac{1}{s_{2}}\left(\mathrm{c}_{j+1}+\frac{f_{j}}{s_{1}}-c_{j}\right)\right] \exp [-k\{(2 j+1) h-\eta\}]+ \\
& +\sum_{0}^{\infty}\left[-\frac{g_{j}}{s_{1}}+d_{j}+d_{j+1}+\frac{1}{s_{2}}\left(d_{j+1}+\frac{g_{j}}{s_{1}}-g_{j}\right)\right] \exp [-k\{(2 j+1) h+\eta\}] \\
& +\left\{c_{1}-1+\frac{1}{s_{2}}\left(c_{1}+1\right)\right\} \exp \{-k(h-\eta)\}+k\{D \exp (-k h)-C\} \tag{3.11}
\end{align*}
$$

The left side of (3.11) must vanish for $k=0$ from the convergence consideration so that

$$
\begin{aligned}
& \sum_{1}^{\infty}\left[\left(1+\frac{1}{s_{2}}\right) c_{1+1}+\left(1-\frac{1}{s_{2}}\right) c_{1}+\left(\frac{1}{s_{2}}-1\right) \frac{f_{1}}{s_{1}}\right]+\sum_{0}^{\infty}\left[\left(1+\frac{1}{s_{2}}\right) d_{j^{+1}}+\right. \\
& \left.\left(1-\frac{1}{s_{2}}\right) d_{j}+\left(\frac{1}{s_{2}}-1\right) \frac{g_{1}}{s_{1}}\right]+\left[\left(\frac{1}{s_{2}}+1\right) \cdot c_{1}+\left(\frac{1}{s_{2}}-1\right)\right]=0
\end{aligned}
$$

This is satisfied by choosing

$$
\begin{align*}
& c_{j+1}-\gamma c_{j}+\frac{\gamma}{s_{1}} f_{j}=0 \quad j=1,2, \ldots \\
& d_{j+1}-\gamma d_{j}+\frac{\gamma}{s_{1}} g_{1}=0 \quad j=0,1,2, \ldots \tag{3.12}\\
& c_{1}=-\gamma \text { where } \gamma=\left(1-s_{2}\right) /\left(1+s_{2}\right)
\end{align*}
$$

Then from (3.6), (3.8), (3.10) and (3.12), we can obtain

$$
\begin{array}{ll}
f_{j}=\frac{2 s_{1}}{1+s_{1}}(-1)^{j} \gamma^{j} \mu^{j-1} & j=1,2,3, \ldots \\
g_{j}=\frac{2 s_{1}}{1+s_{1}}(-1)^{j}(\mu \gamma)^{j} & j=0,1,2, \ldots \\
c_{j}=(-1)^{j} \gamma^{j} \mu^{j-1} & j=1,2,3, \ldots \\
d_{j}=(-1)^{j}(\mu \gamma)^{j} & j=0,1,2, \ldots \tag{3,13}\\
c_{-j}=(-1)^{j} \gamma^{j} \mu^{j+1} & j=0,1,2, \ldots \\
d_{-j}=(-1)^{j}(\mu \gamma)^{j} & j=01,2,3, \ldots \\
p_{-j}=\frac{2}{1+s_{2}}(-1)^{j} \gamma^{j} \mu^{j+1} & j=0,1,2, \ldots \\
q_{-j}=\frac{2}{1+s_{2}}(-1)^{j}(\mu \gamma)^{j} & j=0,1,2, \ldots
\end{array}
$$

where $\mu=\left(1-s_{1}\right) /\left(1+s_{1}\right)$.
Using these in (3.5), we can obtain
$(k-K) A+s_{1}(K \cosh k h+k \sinh k h) B+s_{1}(K \sinh k h+k \cosh k h) C$

$$
\begin{equation*}
=\frac{2 s_{1} \mu[\exp (-k \eta)-\gamma \exp \{k(\eta-2 h)\}]}{1+\mu \gamma \exp (-2 k h)}=E(k) \text {, say } . \tag{3.14}
\end{equation*}
$$

(3.7) gives

$$
\begin{align*}
& K B+K C-s_{2}(k+K) \exp (-k h) D \\
& \quad=\frac{2 \gamma \exp (-k h)\{\mu \exp (-k \eta)+\exp (k \eta)\}}{1+\mu \gamma \exp (-2 k h)}=F(k), \text { say }
\end{align*}
$$

and from (3.9) and (3.11) we can obtain

$$
\begin{align*}
& A+B \sinh k h+C \cosh k h=0 \tag{3.16}\\
& D \exp (-k h)-C=0 \tag{3.17}
\end{align*}
$$

solving for A, B, and D from (3.14), (3.15), (3.16) and (3.17), we can obtain

$$
\begin{align*}
& A=-\frac{F}{K} \sinh k h+\left[\frac{1}{K}\left\{k-s_{2}(k+K)\right\} \sinh k h-\cosh k h\right] \frac{W}{\Delta} \\
& B=\frac{F}{K}+\frac{1}{K}\left\{s_{2}(k+K)-k\right\} \frac{W}{\Delta} \tag{3.18}\\
& C=\frac{W}{\Delta} \\
& D=\frac{W}{\Delta} \exp (k h)
\end{align*}
$$

where $W(k)=E-\frac{F}{K}\left\{\left(K-k+s_{1} K\right) \sinh k h+s_{1} K \cosh k h\right\}$

$$
\text { and } \begin{align*}
\Delta(k) & =\left\{\frac{1}{K}\left(K-k+s_{1} k\right)\left(s_{2} k+s_{2} K-k\right)+s_{1} K\right\} \sinh k h+ \\
& +\left\{s_{1} s_{2}(k+K)+K-k\right\} \cosh k h \tag{3.20}
\end{align*}
$$

Now $\Delta(k)$ has three zeros at $k=K_{1}, k_{0,}, k_{6}^{\prime}$, say, all on the real axis and complex zeros at k $=k_{n}$, say, $(n \geq 1)$, where $k_{n}=\alpha_{n}+i{ }_{n}^{\prime}$, say. It may be noted that when $s_{2}=0, K_{1}$ becomes K. Thus $A(k), B(k), C(k)$ and $D(k)$ have simple poles at $k=K_{1}$ and $k=k_{0}$ on the positive real axis. In the line integrals from 0 to ∞ we make indentations below these poles which account for the behaviour of the potential functions at infinity particularly as $|x| \rightarrow \infty$. This will be evident later.
Thus using the above results, we can obtain

$$
\begin{aligned}
\phi_{1}= & \frac{2 s_{1}}{1+s_{1}} \sum_{1!}^{\infty}(-1)^{j}(\mu \gamma)^{\prime} \log R_{j}+\frac{2 s_{1}}{1+s_{1}} \sum_{0}^{\infty}(-1)^{i}(\mu \gamma)^{\prime} \log R_{j}^{\prime} \\
& -\int_{0}^{\infty} \frac{F}{K} \sinh k h \exp (-k y) \cos k x d k+
\end{aligned}
$$

$$
+\Psi_{0}^{\infty} \frac{1}{K}\left[\left\{k-s_{2}(K+k)\right\} \sinh k h-\cosh k h\right] \frac{W}{\Delta} \exp (-k y) \cos k x d k
$$

$$
\begin{align*}
& \phi_{2}=\sum_{1}^{\infty}(-1)^{j} \gamma^{j} \mu^{j-1} \log R_{j}+\sum_{0}^{\infty}(-1)^{j} \gamma^{j} \mu^{j+2} \log R_{-j}+\sum_{0}^{\infty}(-1)^{j} \cdot(\mu \gamma)^{j} \tag{3.21}\\
& \log R_{j}^{\prime}+\sum_{1}^{\infty}(-1)^{j}(\mu \gamma)^{j} \log R_{j}^{\prime}+\int_{0}^{\infty} \frac{F}{K} \cosh k(h+y) \cos k x d k+ \\
& +\oint_{0}^{\infty}\left[\frac{1}{K}\left\{s_{2}(k+K)-k\right\} \cosh k(h+y)+\sinh k(h+y)\right] \frac{W}{\Delta} \cos k x d k \tag{3.22}
\end{align*}
$$

$$
\begin{align*}
\phi_{3}= & \frac{2}{1+s_{2}}\left[\sum_{0}^{\infty}(-1)^{j} \gamma^{j} \mu^{j+1} \log R_{-,}+\sum_{0}^{\infty}(-1)^{j}(\mu \gamma)^{j} \log R_{-,}^{\prime}\right]+ \\
& +\oint_{0}^{\infty} \frac{W}{\Delta} \exp (k(h+y)) \cos k x d k \tag{3.23}
\end{align*}
$$

Putting $s_{2}=0$ we find that the expressions for ϕ_{1} and ϕ_{2} agree with the corresponding results in the case of a two-fluid medium with upper fluid of finite depth and the lower fluid of infinite depth obtained by Chakrabarti and Mandal ${ }^{8}$, and further letting $h \rightarrow \infty$ (the case of a two-fluid medium when both the fluids are unbounded) the results given by Gorgui and Kassem ${ }^{3}$ are recovered. Also, if we put $\rho_{1}=\rho_{2}=\rho_{3}$, then the three-layered medium reduces to a single fluid medium of infinite extent, and in that case $s_{1}=1, s_{2}=1$ so that $\mu=0, \gamma=0$. Then it is easily seen that (3.21), (3.22) and (3.23) readily give $\phi_{1}=\phi_{2}=\phi_{3}=\log R_{6}^{\prime}$ which is in fact the potential function in an infinite fluid due to a line singularity of logarithmic type at $(0,-\eta)$.

Now to investigate the behaviour of ϕ_{1}, ϕ_{2} and ϕ_{3} for large $|x|$ we note that we have to zonsider only the behaviour of the last integral in each expression. We put $2 \cos k x=\exp$ ($i k$ $|x|)+\exp (-i k|x|)$ in these integrals so that

$$
\begin{align*}
& \left.\oint_{0}^{\infty} 1 / K\left\{k-s_{2}(k+K)\right\} \sinh k h-\cosh k h\right] \exp (-k y) \frac{W}{\Delta} \cos k x d k \\
& =\oint_{0}^{\infty} I e^{i k|x|} d k+\oint_{0}^{\infty} I e^{-j k|x|} d k, \text { say. } \tag{3.24}
\end{align*}
$$

For the first integral of (3.24) we consider in the complex k-plane a contour in the first juadrant bounded by a portion of the real axis of large length X_{1} with indentations below the soles at $k=K_{1},=k_{0}$, a circular arc Γ of radius X_{1} with centre at the origin and the line oining the origin with point $X_{1} e^{i \alpha}$ where $0<\alpha<\pi / 2$. Now the integrals along the arc Γ and
this line become exponentially small for large $|x|$. The contribution from the poles $\alpha_{m}+$ $i \beta_{m}$, say, in the tirst quadrant which lie inside the contour has also a factor $\exp \left(-\beta_{m}|x|\right)$ which becomes exponentially small for large $|x|$. The line may cross some complex zeros of $\Delta(k)$ in the first quadrant. To account for this, if it crosses a zero of $\Delta(k)$ we indent the line about it so that it lies outside the region bounded by these contours, and the contribution for this indentation will also contain a factor which becomes exponentially small for large $|x|$. Thus for considering the behaviour as $|x| \rightarrow \infty$, we only need to consider the behaviour of the integral arising from the residues at $k=K_{t}$ and $k=k_{0}$. Hence making $X_{1} \rightarrow \infty$ we find that, as $|x| \rightarrow \infty$

$$
\begin{aligned}
& \oint_{0}^{\infty} I \exp (i k|x|) d k \cdot-2 \pi i\{\text { sum of the residues of } \\
& \left.I \exp (i k|x|) \text { at } k=K_{1} \text { and } k=k_{0}\right\} .
\end{aligned}
$$

For the second integral of (3.24) we consider in the complex k-plane a contour in the fourth quadrant bounded by the real axis from 0 to X, with indentations below the poles at k $=K_{1}$ and $k=k_{0}$, a circular arc Γ^{\prime} of radius X_{1} with centre at the origin and the line joining the origin with the point $X_{1} \exp (-i \alpha)$ where $0<\alpha<\pi / 2$. Since now the singularities on the positive real axis are taken to be outside this contour, following a similar argument as above we obtain as $|x| \rightarrow \infty$.

$$
\begin{aligned}
& \oint_{0}^{\infty} I \exp (-i k|x|) \mathrm{dk} \rightarrow 0 . \text { Hence we find that as }|x| \rightarrow \infty . \\
& \phi_{1} \rightarrow \pi i\left[\frac{1}{K}\left\{K_{1}-s_{2}\left(K_{1}+K\right)\right\} \sinh K_{1} h-\cosh K_{1} h\right]\left(\frac{W}{\Delta^{\prime}}\right)_{k=K_{i}} \\
& \quad \times \exp \left\{K_{1}(i|x|-y)\right\}+\pi i\left[\frac{1}{K}\left\{k_{0}-s_{2}\left(k_{0}+k\right)\right\}\right. \\
& \left.\quad \sinh k_{0} h-\cosh k_{0} h\right]\left(\frac{W}{\Delta^{\prime}}\right)_{k=k_{n}} \exp \left\{k_{0}(i|x|-y)\right\}
\end{aligned}
$$

where $\Delta^{\prime}=\mathrm{d} \Delta / d k$.

Similarly, we can obtain as $|x| \rightarrow \infty$,

$$
\begin{aligned}
& \phi_{2} \rightarrow \pi i\left[\frac{1}{K}\left\{s_{2}\left(K_{1}+K\right)-K_{1}\right\} \cosh K_{1}(h+y)+\sinh K_{3}(h+y)\right] \times \\
& \times\left(\frac{W}{\Delta^{\prime}}\right)_{k=x_{1}} \exp \left(i K_{1}|x|\right)+\pi i\left[\frac{1}{K}\left\{s_{2}\left(k_{0}+K\right)-k_{0}\right\} \cosh k_{0}(h+y)+\right. \\
& \left.+\sinh k_{0}(h+y)\right]\left(\frac{W}{\Delta^{\prime}}\right)_{k=k_{1}} \exp \left(i k_{0}|x|\right),
\end{aligned}
$$

$$
\begin{gathered}
\phi_{3}-\pi i\left(\frac{W}{\Delta^{\prime}}\right)_{k=K_{1}} \exp \left\{K_{I}(h+y+i|x|)+\pi i\left(\frac{W}{\Delta^{\prime}}\right)_{h=i_{n}}\right. \\
\exp \left\{k_{0}(h+y+i|x|)\right\} .
\end{gathered}
$$

Thus $\phi_{1}, \phi_{2}, \phi_{3}$ satisfy the radiation condition as $|x|-\infty$ Putting $s_{2}=0$, the far field behaviour of ϕ_{1} and ϕ_{2} agrees with the results obtained earlier by Chakrabarti and Mandal ${ }^{8}$

4. Line singularity submerged in lower fluid

Let there be a logarithmic type singularity at the point $(0, \eta)$, then $\phi_{1} \rightarrow \log R_{0}$ as $R_{0} \rightarrow 0$.

Proceeding similarly as in § 3, we can obtain

$$
\begin{align*}
& \phi_{1}=\log R_{0}-\mu \log R_{0}+\frac{4 s_{1}}{\left(1+s_{1}\right)^{2}} \sum_{0}^{\infty}(-1)^{j} \gamma^{j} \mu^{j^{-1}} \log R \\
& \\
& \quad-\int_{0}^{\infty} \frac{F_{1}}{K} \sinh k h \exp (-k y) \cos k x d k+ \\
& +\int_{0}^{\infty}\left[\frac{1}{K}\left\{k-s_{2}(k+K)\right\} \sinh k h-\cosh k h\right] \frac{W_{1}}{\Delta} \exp (-k y) \cos k x d k, \\
& \phi_{2}= \\
& +\frac{2}{1+s_{1}}\left[\log R_{0}+\sum_{1}^{\infty}(-1)^{j} \mu^{j} \gamma^{j} \log R_{-j}+\sum_{1}^{\infty}(-1)^{j} \mu^{j-1} \gamma^{j} \log R_{--}^{\prime}\right] \\
& +\int_{0}^{\infty} \frac{F_{1}}{K} \cosh k(h+y) \cos k x d k \\
& +\int_{0}^{\infty}\left[\frac{1}{K}\left\{s_{2}(k+K)-k\right\} \cosh k(h+y)+\sinh k(h+y)\right] \frac{W_{1}}{\Delta} \cos k x d k, \tag{4.4}\\
& \phi_{3}= \\
& \left(1+s_{1}\right)\left(1+s_{2}\right) \\
& \sum_{0}^{\infty}(-1)^{j} \gamma^{j} \mu^{\prime} \log R_{-j} \\
& +\int_{0}^{\infty} \frac{W_{1}}{\Delta} \exp \{k(h+y)\} \cos k x d k
\end{align*}
$$

Where Δ is given by (3.20), and

$$
W_{1}=E_{1}-\frac{F_{1}}{K}\left\{\left(K-k+s_{1} k\right) \sinh k h+y_{1} K \cosh k h\right\},
$$

$$
\begin{align*}
& E_{1}=-2 \mu \exp (-k \eta)\left[1+\frac{2 s_{1} \gamma \exp (-2 k h)}{\left(1+s_{1}\right)(1+\mu \gamma \exp (-2 k h))}\right] \\
& F_{1}=\frac{4 \gamma \exp \{-k(h+\eta)\}}{\left(1+s_{1}\right)[1+\mu \gamma \exp (-2 k h)]} . \tag{4.5}
\end{align*}
$$

If we now put $\rho_{1}=\rho_{2}=\rho_{3}$ so that $\mu=\gamma=0$ in (4.3), (4.4), (4.5) then we obtain $\phi_{1}=\phi_{2}=\phi_{3}=\log R_{0}$ which is the potential function for a line source at $(0, \eta)$ in an infinite fluid,

As $|x| \rightarrow \infty$ we can show that
$\phi_{1} \sim \pi i\left[\frac{1}{K}\left\{K_{1}-s_{2}\left(K_{1}+k\right)\right\} \sinh K_{1} h-\cosh K_{1} h\right]\left(\frac{W_{1}}{\Delta^{\prime}}\right)_{k=K_{1}} \times$

$$
\times \exp K_{1}(i|x|-y)+
$$

$+\pi i\left[\frac{1}{K}\left\{k_{0}-s_{2}\left(k_{0}+K\right)\right\} \sinh k_{0} h-\cosh k_{0} h\right]\left(\frac{W_{1}}{\Delta^{\prime}}\right)_{k=k_{0}} \times$ $\times \exp \left\{k_{0}(i|x|-y\}\right.$,
$\phi_{2} \sim \pi i\left[\frac{1}{K}\left\{s_{2}\left(K_{1}+k\right)-K_{1}\right\} \cosh K_{1}(h+y)+\sinh K_{1}(h+y)\right]\left(\frac{W_{1}}{\Delta^{\prime}}\right)_{. k=K_{1}} \times$ $\times \exp \left(i K_{1}|x|\right)+$
$+\pi i\left[\frac{1}{K}\left\{s_{2}\left(k_{0}+K\right)-k_{0}\right\} \cosh k_{0}(h+y)+\sinh k_{0}(h+y)\right]\left(\frac{\boldsymbol{W}_{1}}{\Delta^{\prime}}\right)_{k=k_{0}} \times$
$\times \exp \left(i k_{0}|x|\right)$,
$\phi_{3} \sim \pi i\left(\frac{W_{1}}{\Delta^{\prime}}\right)_{k=K_{1}} \exp \{X(h+y+i|x|)\}+\pi i\left(\frac{W_{1}}{\Delta^{\prime}}\right)_{k=k_{n}} \exp \left\{k_{0}(h+y+i|x|)\right.$
where $\Delta^{\prime}=\mathrm{d} \Delta / d k, \Delta$ being given by (3.20).

5. Line singularity submerged in upper fluid

In this case, the singularity is situated at the point $(0,-2 h+\eta)$, say, so that

$$
\begin{equation*}
\phi_{3} \sim \log R_{1} \text { as } R_{1} \rightarrow 0 \tag{5.I}
\end{equation*}
$$

Proceeding as in $\$ 3$, it can be shown that

$$
\begin{align*}
& \phi_{1}=\frac{4 s_{1} s_{2}}{\left(1+s_{1}\right)\left(1+s_{2}\right)} \sum_{1}^{\infty}(-1)^{\prime-1}(\mu \gamma)^{y-1} \log R_{1}-\int_{0}^{\infty} \frac{F_{2}}{K} \sinh k h \\
& \times \exp (-k y) \cos k x d k+\oint_{0}^{\infty}\left[\frac{1}{K}\left\{k-s_{2}(k+K)\right\}\right. \\
& \sinh k h-\cosh k h] \frac{W_{2}}{\Delta} \exp (-k y) \cos k x d k \tag{5.2}\\
& \phi_{2}=\frac{2 s_{2}}{1+s_{2}} \sum_{1}^{\infty}(-1)^{j-1}(\mu \gamma)^{j-1} \log R_{y}+\frac{2 s_{2}}{1+s_{2}} \sum_{1}^{\infty}(-1)^{j^{-1}} \mu^{j} \gamma^{j-1} \log R^{\prime}-+ \\
& +\oint_{0}^{\infty} \frac{F_{2}}{K} \cosh k(h+y) \cos k x d k+ \\
& +\oint_{0}^{\infty}\left[\frac{1}{K}\left\{s_{2}(k+K)-k\right\} \cosh k(h+y)+\sinh k(h+y)\right] \frac{W_{2}}{\Delta} \cos k x d k, \tag{5.3}\\
& \phi_{3}=\log R_{1}+\gamma \log R_{0}^{\prime}+\frac{4 s_{2}}{\left(1+s_{2}\right)^{2}} \sum_{1}^{\infty}(-1)^{j+1} \mu^{\prime} \gamma^{j-1} \log R_{-j}^{\prime}+ \\
& +f_{0}^{\infty} \frac{W_{2}}{\Delta} \exp \{k(h+y)\} \cos k x d k
\end{align*}
$$

where

$$
\begin{aligned}
& W_{2}=E_{2}-\frac{F_{2}}{K}\left\{(K-k) \sinh k h+s_{1}(K \cosh k h+k \sinh k h)\right\} \\
& E_{2}=\frac{4 s_{1} s_{2} \mu \exp \{k(\eta-2 h)\}}{\left(1+s_{2}\right)\{1+\mu \gamma \exp (-2 k h)\}} \\
& F_{1}=\frac{2 s_{2}}{1+s_{2}} \exp \{-k(h-\eta)\}\left[s_{2}+\frac{\mu \gamma \exp (-2 k h)-1}{1+\mu \gamma \exp \{-2 k h\}}\right]
\end{aligned}
$$

As earlier, by putting $\rho_{1}=\rho_{2}=\rho_{3}$, it is easily verified that $\phi_{1}=\phi_{2}=\phi_{3}=\log R_{1}$ which is the sotential function in an infinite fluid due to a line singularity at the point ($0,-2 h+\eta$).
The behaviour of ϕ_{1}, ϕ_{2}, and ϕ_{3} as $|x| \rightarrow \infty$ can be shown as the outgoing waves

$$
\begin{aligned}
& \phi_{1} \sim \pi i\left[\frac{1}{K}\left\{K_{1}-s_{2}\left(K_{1}+K\right)\right\} \sinh K_{1} h-\cosh K_{1} h\right] \exp \left(-K_{1} y\right) \times \\
& \left(\frac{W_{2}}{\Delta^{\prime}}\right)_{k=K_{1}} \exp \left(i K_{1}|x|\right) \\
& +\pi i\left[\frac{1}{K}\left\{k_{0}-s_{2}\left(k_{0}+K\right)\right\} \sinh k_{0} h-\cosh k_{0} h\right] \exp \left(-k_{0} y\right) \times \\
& \times\left(\frac{W_{2}}{\Delta^{\prime}}\right)_{k=k_{0}} \exp \left(i k_{0}|x|\right), \\
& \phi_{2} \sim \pi i\left[\frac{s_{2}\left(K_{1}+K\right)-K_{1}}{K} \cosh K_{1}(h+y)+\sinh K_{1}(h+y)\right]\left(\frac{W_{2}}{\Delta^{\prime}}\right)_{k=K_{1}} \times \\
& \times \exp \left(i K_{1}|x|\right)+ \\
& +\pi i\left[\frac{s_{2}\left(k_{0}+K\right)-k_{0}}{K} \cosh k_{0}(h+y)+\sinh k_{0}(h+y)\right]\left(\frac{W_{2}}{\Delta^{\prime}}\right)_{k=k_{0}} \\
& \exp \left(i k_{0}|x|\right), \\
& \phi_{3} \sim \pi i\left(\frac{W_{2}}{\Delta^{\prime}}\right) k=K_{1} \exp \left\{K_{1}(h+y+i|x|)\right\}+\pi i\left(\frac{W_{2}}{\Delta^{\prime}}\right) k_{k}=k_{i} \\
& \exp \left\{k_{0}(h+y+i|x|)\right\} .
\end{aligned}
$$

6. Multipoles submerged in the middle fluid

We consider only point singularities for which the y-axis is an axis of symmetry, so that ϕ_{1}, ϕ_{2}, ϕ_{3} are independent of the azimuthal angle, and satisfy the same set of equations of $\S 2$.

In the present case, let there be a point source at $(0,-\eta)$, then

$$
\begin{equation*}
\phi_{2} \sim \frac{P_{n}(\cos \theta)}{R_{0}^{\prime n+1}} \text { as } R_{0}^{\prime}=\left\{r^{2}+(y+\eta)^{2}\right\}^{1 / 2} \rightarrow 0, n=0,1,2, \ldots \tag{6.1}
\end{equation*}
$$

Where r is the distance from the y-axis and $\theta=\tan ^{-1}\left(\frac{r}{y+\eta}\right)$.
Let us assume

$$
\begin{equation*}
\phi_{1}=\int_{0}^{\infty} A(k) \exp (-k y) J_{0}(k r) d k \tag{6.2}
\end{equation*}
$$

$$
\phi_{2}=\frac{P_{n}(\cos \theta)}{R_{0}^{h^{+1}}}+\int_{0}^{\infty}\{B(k) \cosh k(n+y)+C(k) \sinh k(h+y)\} J_{0}(k r) d k
$$

$$
\begin{equation*}
\phi_{3}=\int_{0}^{\infty} D(k) \exp (k y) J_{0}(k r) d k \tag{6.3}
\end{equation*}
$$

The following integral representation is necessary,

$$
\begin{align*}
& \frac{P_{n}(\cos \theta)}{R_{0}^{n+1}}=\frac{1}{n!} \int_{0}^{\infty} k^{n} \exp \{-k(y+\eta)\} J_{0}(k r) d k, y>-\eta \\
& =\frac{(-1)^{n}}{n!} \int_{0}^{\infty} k^{n} \exp k(y+\eta) J_{0}(k r) d k, y<-\eta \tag{6.5}
\end{align*}
$$

Using this integral representation and proceeding somewhat similar to § 3, we can obtain

$$
\begin{aligned}
& \phi_{1}=\int_{0}^{\infty} \frac{k^{n}}{n!}\left[\exp (-k \eta)+(-1)^{n}\left(1-s_{2}\right) \frac{k+K}{K}-\sinh k h \exp \{-k(h-\eta)\}\right] \\
& \quad \times \exp (-k y) J_{0}(k r) d k+ \\
& +\oint_{0}^{\infty}\left[\frac{k-s_{2}(k+K)}{K} \sinh k h-\cosh k h\right] \exp (-k y) \frac{V}{\Delta} J_{0}(k r) d k \\
& \phi_{2}=\frac{P_{n}(\cos \theta)}{R_{0}^{n^{n+1}}+\frac{(-1)^{n}}{n!} \frac{s_{2}-1}{K} \int_{0}^{\infty}(k+K) k^{n} \exp \{-k(h-\eta)\}} \\
& +\oint_{0}^{\infty}\left[\frac{1}{K}\left\{s_{2}(k+K)-k\right\} \cosh k(h+y)+\sinh k(h+y)\right] \frac{V}{\Delta} J_{0}(k r) d k \\
& \phi_{3}=\frac{(-1)^{n}}{n!} \int_{0}^{\infty} k^{n} \exp \{k(\eta+y)\} J_{0}(k r) d k+ \\
& f_{0}^{\infty} \frac{V}{\Delta} \exp k(h+y) J_{0}(k r) d k
\end{aligned}
$$

Where Δ is given by (3.20) and

$$
\begin{aligned}
& V=\frac{\left(1-s_{1}\right)}{n!}(k-K) k^{n} \exp (-k \eta) \\
& +\frac{\left(1-s_{2}\right)(-1)^{n}}{K}(k+K) k^{n}\left(K-k+s_{1} k\right) \sinh k h+ \\
& \left.\quad s_{1} K \cosh k h\right\} \exp \{-k(h-\eta)\} .
\end{aligned}
$$

By substituting $\rho_{1}=\rho_{2}=\rho_{3}$ it is verified that

$$
\phi_{1}=\phi_{2}=\phi_{3}=\frac{P_{n}(\cos \theta)}{R_{0}^{n+1}}
$$

which is obviously the potential in an infinite fluid due to a point source at $(0,-\eta)$.
Now putting $2 J_{0}(k r)=H_{0}^{(1)}(k r)+H^{(2)}(k r)$ and rotating the contour in the integrals involving $H_{0}^{(1)}(k r)$ in the first quadrant and in the integrals involving $H_{0}^{(2)}(k r)$ in the fourth quadrant, we can reduce the integrals into suitable forms from which the farfield behaviour of $\phi_{1}, \phi_{2}, \phi_{3}$ as $r \rightarrow \infty$ have the following forms

$$
\begin{aligned}
& \phi_{1} \sim \pi i\left[\frac{1}{K}\left\{K_{1}-s_{2}\left(K_{1}+K\right)\right\} \sinh K_{1} h-\cosh K_{1} h\right] \times \\
& \times\left(\frac{V}{\Delta^{\prime}}\right\}_{k=K_{1}^{\prime}} \exp \left(-K_{1} y\right) H_{0}^{(1)}\left(K_{1} r\right)+ \\
& +\pi i\left[\frac{1}{K}\left\{k_{0}-s_{2}\left(k_{0}+K\right)\right\} \sinh k_{0} h-\cosh k_{0} h\right]\left(\frac{V}{\Delta^{\prime}}\right)_{k=k_{0}} \\
& \exp \left(-k_{0} y\right) H_{0}^{(1)}\left(k_{0} r\right), \\
& \phi_{2} \sim \pi i\left[\frac{1}{K}\left\{s_{2}\left(K_{1}+K\right)-K_{1}\right\} \cosh K_{1}(h+y)+\sinh K_{1}(h+y)\right] \\
& \left(\frac{V}{\Delta^{\prime}}\right)_{k=K_{1}} H_{0}^{(1)}\left(K_{1} r\right) \\
& +\pi i\left[\frac{1}{K}\left\{s_{2}\left(k_{0}+K\right)-k_{0}\right\} \cosh k_{0}(h+y)+\sinh k_{0}(h+y)\right] \\
& \left(\frac{V}{\Delta^{\prime}}\right)_{k}=k_{0} H_{0}^{(1)}\left(k_{0} r\right),
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{3} \sim \pi i \exp \left\{K_{1}(h+y)\right\}\left(\frac{V}{\Delta^{\prime}}\right)_{k=K_{1}} H_{0}^{(y)}\left(K_{1} r\right)+\pi i \exp \left\{k_{0}(h+y)\right\} \\
& \quad\left(\frac{V}{\Delta^{\prime}}\right)_{k=k_{0}} H_{0}^{(1)}\left(k_{0} r\right)
\end{aligned}
$$

7. Multipoles submerged in the fower fluid

Inthis case $\phi_{1}-\frac{P_{n}(\cos \psi)}{R_{0}^{n+1}}$ as $R_{0}=\left\{r^{2}+(y-\eta)^{2}\right\}^{1 / 2} \rightarrow 0 \quad n=0,1,2$,
Where $\psi=\tan ^{-1}(r /(y-\eta))$. It can be shown that

$$
\begin{aligned}
& \phi_{1}=\frac{p_{n}(\cos \psi)}{R_{0}^{n+1}}+\frac{(-1)^{n}}{n!} \int_{0}^{\infty} k^{n} \exp \{-k(y+\eta)\} J_{0}(k r) d k- \\
& -1 / K \oint_{0}^{\infty}\left[\left\{s_{2}(k+K)-k\right\} \sinh k h+\cosh k h\right] \frac{V_{1}}{\Delta} \exp (-k y) J_{0}(k r) d k, \\
& \phi_{2}=\oint_{0}^{\infty}\left[1 / K\left\{s_{2}(k+K)-k\right\} \cosh k(h+y)+\sinh k(h+y)\right] \frac{V_{1}}{\Delta} J_{0}(k r) d k \\
& \phi_{3}=\int_{0}^{\infty} \frac{V_{1}}{\Delta} \exp \{k(h+y)\} J_{0}(k r) d k
\end{aligned}
$$

where $V_{1}=2 K \frac{(-1)^{n}}{n!} k^{n} \exp (-k \eta)$ As $r \rightarrow \infty$,

$$
\begin{aligned}
& \phi_{1} \sim-\pi i 1 / K\left[\left\{s_{2}\left(K_{1}+K\right)-K_{1}\right\} \sinh K_{1} h+\cosh K_{1} h\right]\left(\frac{V_{1}}{\Delta^{\prime}}\right)_{k=K_{1}} \\
& \exp \left(-K_{1} y\right) H_{0}^{(1)}\left(K_{1} r\right), \\
& \begin{aligned}
& \phi_{2} \sim-\pi i \frac{1}{K}\left[\left\{s_{2}\left(k_{0}+K\right)-k_{0}\right\} \sinh k_{0} h+\cosh k_{0} h\right]\left(\frac{V_{1}}{\Delta^{\prime}}\right)_{k=k_{0}} \times \\
& \times \exp \left(-k_{0} y\right) H_{0}^{(1)}\left(k_{0} r\right), \\
& \phi_{3} \sim \pi i\left(\frac{V_{1}}{\Delta^{\prime}}\right)_{k=k_{1}} \exp K_{1}(h+y) H_{0^{(1)}\left(K_{1} r\right)+\pi i\left(\frac{V_{1}}{\Delta^{\prime}}\right)_{k=k_{0}}} \\
& \exp \left\{k_{0}(h+y)\right\} H_{\delta}^{(1)}\left(k_{0} r\right) .
\end{aligned}
\end{aligned}
$$

8. Multipoles submerged in the upper fuid

In this case

$$
\phi_{3}-\frac{P_{n}(\cos x)}{R_{1}^{n^{+1}}} \text { as } R_{1}=\left\{r^{2}+(2 h+y-\eta)^{2}\right\}^{1 / 2} \rightarrow 0 n=0,1,2 \ldots
$$

where $x=\tan ^{-1}\{r /(2 h+y-\eta)\}$. The velosity potentials are given by

$$
\begin{aligned}
& \phi_{1}=-\frac{2 s_{2}}{n!} \int_{0}^{\infty} k^{n} \sinh k h \exp \{-k(h+y-\eta)\} J_{0}(k r) d k+ \\
& +f_{0}^{\infty}\left[\frac{1}{K}\left\{k-s_{2}(k+K)\right\} \sinh h h-\cosh k h\right] \frac{V_{2}}{\Delta} \exp (-k y) J_{0}(k r) d k, \\
& \phi_{2}=\frac{2 s_{2}}{n!} \int_{0}^{\infty} k^{n} \exp \{-k(h-\eta)\} \cosh k(h+y) J_{0}(k r) d k+ \\
& \left.+\oint_{0}^{\infty} \left\lvert\, \frac{1}{K}\left\{s_{2}(k+K)-k\right\} \cosh k(h+y)+\sinh k(h+y)\right.\right] \frac{V_{2}}{\Delta} J_{0}(k r) d k, \\
& \phi_{3}=\frac{p_{n}(\cos x)}{R_{1}^{n+1}+\int_{0}^{\infty} \frac{k^{n}}{n!} \exp \{k(y+\eta)\} J_{0}(k r h / k+} \\
& +\oint_{0}^{\infty} \frac{V_{2}}{\Delta} \exp \{k(h+j)\} J_{0}(k r) d h,
\end{aligned}
$$

 As $r \rightarrow \infty$ we can show that

$$
\begin{aligned}
& \phi_{1} \sim \pi i\left[\frac{1}{K^{\prime}}\left\{K_{t}-s_{2}\left(K_{1}+K^{\prime}\right) \mid \text { sirt } H, b \cdot \cosh K_{1} h\right] \times\right. \\
& \times\left(\frac{V_{2}}{\Delta^{\prime}}\right)_{k=K_{1}^{\prime}} \exp \left(-K_{x}, H_{0}^{(h)}\left(K_{1} r\right)\right.
\end{aligned}
$$

+ a similar expression with K_{I} replaced by k.

$$
\left.\phi_{2}-\pi i \frac{1}{K}\left\{s,\left(K_{1}+K\right)-K_{1}\right\} \cosh K_{1}(h+y)+\sinh K_{1}(h+y)\right) \times
$$

$$
\times\left(\frac{r^{2}}{\Delta}\right)_{h=K} H_{0}^{1!}\left(K_{1} r\right)
$$

+ a similar expression with N_{1} replaced :\% $1 .$.
 by k_{om}

9. Conclusion

Integral representations of the potential function in different fluids of a three-layered fluid medium are obtained. When the upper medium is taken to be vacuo earlier results for the case of a two fluid medium are recovered ($c f$. Chakrabarti and Mandal ${ }^{8}$). Again, when the thre-fluid medium is reduced to an infinite one-fiuid medium by making the densities equal, the corresponding results for the infinite one-fluid medium are readily recovered. Also, the extension of the problem to the case where the lower fluid is of finite depth H, say, instead of infinity is not difficult, although the final result will be more complicated.

It may be noted that in the construction of the line source potentials in the present paper by the image method, an infinite set of image sources due to the two surfaces of separation has been introduced. Usefulness of this image method can be demonstrated as follows.
In the simple case of a line source at $(0, \eta)$ in a single layer of finite constant depth, there exists an infinite set of image sources due to the free surface and the bottom. Without using the whole set of images, Thorne ${ }^{1}$ used only the image source due to the free surface and constructed the potential function as

$$
\begin{align*}
& \phi=\log \frac{R_{0}}{R_{0}^{\prime}}+2 \int_{0}^{\infty}\left\{\frac{\cosh k(h-\eta) \cosh k(h-y)}{K \cosh k h-k \sinh k h}\right. \\
& \left.-\frac{\exp (-k h)}{k} \sinh k \eta \sinh k y\right\} \frac{\cos k x}{\cosh k h} d k \tag{9.1}
\end{align*}
$$

where R_{0} is the distance from the source and R_{0}^{\prime} is the distance from the image source. However, if we introduce all the image sources then we obtain

$$
\begin{align*}
& \phi=\log \frac{R_{0}}{R_{0}^{\prime}}+\sum_{0}^{\infty}(-1)^{\prime}\left(\log \frac{R_{j}}{R_{j}^{\prime}}+\log \frac{R_{-j}}{R_{-2}^{\prime}}\right) \\
& +2 \oint_{0}^{\infty} \frac{\sinh k(h-\eta) \cosh k(h-y)}{K \cosh k h-k \sinh k h} \frac{\cos k x}{\cosh k h^{\prime}} d k \tag{9.2}
\end{align*}
$$

By using the representation

$$
\log \frac{x^{2}+\alpha^{2}}{x^{2}+\beta^{2}}=2 \int_{0}^{\infty} \frac{1}{k}\{\exp (-\beta k]-\exp (-\alpha k)\} \cos k x d k
$$

it can be shown that (9.2) reduces to (9.1). Thus the sum of the image potericals (excepting the image at $(0,-\eta)$) in (9.2) can be expressed as an integral and can be combined with the integral in (9.2) to give the integral in (9.1).

This naturally will motivate one to construct the potential functions in a layered medium by a similar technique used by Thorne ${ }^{1}$. However, this will lead to the appearance of some divergent integrals in the resulting expressions of the potential functions. To demonstrate this, we now take a simple case where we consider the construction of potentials in two superposed infinite fluids with a line source present in the lower fluid at $(0, \eta)$. By using the image method (there is only one image due to the surface of separation), Gorgui and Kassem ${ }^{3}$ obtained the following result

$$
\begin{align*}
& \phi_{1}=\log R_{0}-\frac{1-s}{1+s} \log R_{0}^{\prime}-\frac{2(1-s)}{1+s} \oint_{0}^{\infty} \frac{\exp \{-k(y+\eta)\}}{\Delta} \cos k x d k, y>0 \\
& \phi_{2}=\frac{2}{1+s} \log R_{0}+\frac{2(1-s)}{1+s} f_{0}^{\infty} \frac{\exp \{k(y-\eta)\}}{\Delta} \cos k x d k, y<0 \tag{9.3}
\end{align*}
$$

where $\Delta=(1-s) k-(1+s) K, s$ being the ratio of the densities of the upper and lower fluids respectively. One may note that the integrals in (9.3) are convergent but ϕ_{1} 's become unbounded at infinity although grad ϕ_{1} 's remain bounded. We can also construct ϕ_{1}, ϕ_{2} by the method ${ }^{1}$ as

$$
\begin{aligned}
& \phi_{1}=\log \frac{R_{0}}{R_{0}^{\prime}}+\int_{0}^{\infty} X \exp (-k y) \cos k x d k, y>0 \\
& \phi_{2}=\int_{0}^{\infty} Y \exp (k y) \cos k x d k, y<0
\end{aligned}
$$

where X, Y can be obtained from the two $S S$ conditions. The resulting expressions for $\phi_{\mathrm{I}}, \phi_{2}$ are

$$
\begin{align*}
& \phi_{1}=\log \frac{R_{0}}{R_{0}^{\prime}}+2 f_{0}^{\infty}\left\{\frac{s(k+K)}{k}-1\right\} \frac{\exp \{-(y+\eta)\}}{\Delta} \cos k x d k, y>0 . \\
& \phi_{2}=-2 \int_{0}^{\infty} \frac{\exp \{k(y-\eta)\}}{k} \cos k x d k-2 f_{0}^{\infty}\left\{\frac{s(k+K)}{k}-1\right\} \tag{9.4}\\
& \frac{\exp \{k(y-\eta)\}}{\Delta} \cos k x d k, y<0 .
\end{align*}
$$

It is obvious that the integrals in (9.4) are divergent as the integrands have a pole at $k=0$. However, the expressions in (9.4) can be identified with those in (9.3) if one is willing to replace the divergent integrals

$$
\left.\int_{0}^{\infty} k^{-1} \exp \{-k(y+\eta)\} \cos k x d k \text { and } \int_{0}^{\infty} k^{-1} \exp \{-k / y+\eta)\right\} \cos k x d k
$$

appearing in (9.4) by the unbounded functions $\log R_{0}$ and $\log R_{0}$ respectively. In fact, the appearance of divergent integrals in (9.3) is not unexpected and this reflects the unbounded nature of the potential functions. We may point out here that in a single layer fluid, this unbounded nature of the potentials does not exist.
Thus to avoid the appearance of divergent integrals in the potentials, the image method used here seems to be convenient.

Acknowledgement

We take this opportunity of thanking the referees for their comments and suggestions in revising the paper. We also thank one of the referees for his various criticisms which led us to include the discussion on the divergent integrals presented in the latter part of the Conclusion, and another referee for drawing our attention to Rhodes-Robinson's ${ }^{5}$ paper.

References

I. Thorne, r.c.

Proc. Camb. Phil. Soc., 1953, 49, 707-716.
2 Rhodes-Robinson, P.F. Bull. Aust. Math. Soc., 1970, 2, 317-333.
3. Goratt, M.A. AND Q. J. Mech. Appl. Marh., 1978, 31, 31-48.

Kassem, S.E.
4. Kassem, S.E. Math. Proc. Camb. Phil. Soc., 1982, 91, 323-329.
5. Rhodes-Robinson P.F. Maih. Proc. Camb. Phil Soc., 1980, 88, 183-191.
6. Mandal., B.N. J. Tech., 1981, 26, 11-22.
7. Chakrabarti, R.N. Bull. Cal. Math. Soc., 1983, 75, 271-282.
8. Chakrabarti, R.N. and Imi. J. Math. Math. Sci, 1983. 6, 737-754. Mandal, b.n.

