Raylefgh waves in magneto-thermoelastic rotating media with thermal relaxation

H.S. PaUl. AND R. NARASIMHAN
Department of Mathematios, Indian Institutc of Technology, Madras 600 036, India.

Abstract

Following a hatar theory of magneto-thermoelasticity with thermal relanation, the prorngaticnat Rayieigh waves in a sem-infinite, homogeneous, isotropic, electically and thermally condubting terdy pmmaned by a magnetic uniform angulan velocity. Frequency equation is obtained and is analysed for '3int wat furge values of the and the surface wave speed is grapheally shown.

Key wowls: Spin velocity, thermal relaxation time, perturbation.

1. Introduction

The study of coupled bulk magnetothermoelastic surface waves has been the subiect of nany works by applied physicists and theoretical mechanicians alike. Nayfeh and Nemat-Maseer ${ }^{\text {i }}$ have analysed propagation pattern of Rayleigh surface waves in a thermoelastic half-space. Explicit expressions have been obtained for various parameters that characterize these waves. Tomita and Shindo ${ }^{2}$ have shown that the variation of Rayleigh wave speed against the magnetic presture number is perceptible taking the thermal relaxation time parameters 7ero. Koy Choudhuri and Debnath ${ }^{3-4}$ have considered the plane wave problemin a rotating medum. They have shown that the rotation causes the medium to be dispersive and ansothopic The objective of the present paper is to consider a problem of surface waves in a thermoelastic medium permeated by a primary uniform magnetic field, rotating with a aniform angular velocity. A detailed numercial work is undertaken to find out the nature of dependence of surface wave speed on angular velocity. It is observed that even ten-fold inctrasc in the spin velocity has only little effect on the Rayleigh wave speed. However, the change is appreciable in a particular range of frequency. The computations are carried out for the large angular trequencies.

2. Formulation and basic equations

We consider a semi-infinite homogeneous, isotropic, thermally and electrically-conducting elastic solid permeated by a primary magnetic field. $\underline{B}_{0}\left(B_{1}, B_{2}, B_{3}\right.$). The entire elastic medium
is rotating uniformly with an angular velocity $\Omega=\Omega \underline{\omega}$, where $\underline{\omega}$ is the unit vector representing the direction of the axis of rotation. The displacement equation is given by

$$
\begin{align*}
& \rho[\underline{u}+\underline{\Omega} \times(\underline{\Omega} \times \underline{u}) \times 2 \underline{\Omega} \times \underline{u}]=(\lambda+\mu) \nabla(\nabla \cdot \underline{u})+\mu \nabla^{2} \underline{u}+ \\
& \underline{I} \times \underline{B}-\beta \nabla T \tag{1}
\end{align*}
$$

where the terms. $\underline{\Omega} \times(\underline{\Omega} \times \underline{\underline{u}})$ and $2 \underline{\Omega} \times \underline{u}$ are centripetal and coriolis accelerations respectively. $\boldsymbol{L} \times \underline{B}$ is electromagentire force. J is the current density, $\underline{B}=\underline{B}_{0}+\underline{b}$ is the total magnetic field, $\underline{b}\left(b_{x}, b_{y} ; b_{7}\right)$ is the perturbed magnetic field assumed to be small, T is the increase in temperature above the reference temperature T^{*}

The generalized heat conduction equation with thermal relaxation time is

$$
\begin{equation*}
\kappa \nabla^{2} T=\rho C_{v}\left(\dot{T}^{\prime}+\tau \ddot{T}\right)+\beta T^{*}(\dot{\Delta}+\tau \ddot{\Delta}) \tag{2}
\end{equation*}
$$

Here, τ is the thermal relaxation time, Δ is the dilatation, κ is the coefficient of thermal conductivity and C_{ν} is the specific heat of solid at constant volume.

The electromagnetic field is governed by the Maxwell equations with the displacement current and charge density neglected

$$
\begin{equation*}
\text { carl } \underline{H}=\underline{J}, \operatorname{curl} \underline{E}=-\partial \underline{B} / \partial t, \operatorname{div} B=0 \tag{3}
\end{equation*}
$$

where $\underline{B}=\mu_{e} \underline{H} \mu_{e}$ is the magnetic permeability.
The generalized Ohm's law is

$$
\begin{equation*}
\underline{J}=\sigma[\underline{E}+(\partial \underline{u} / \partial t+\underline{\Omega} \times \underline{u}) \times \underline{B}] \tag{4}
\end{equation*}
$$

For the Rayleigh surface waves, we shall deal with the half-space defined by $z \geq 0$, where we assume that both the surface tractions and the temperature gradient vanish on the plane $z=0$. The solution of the problem can be expressed as

$$
\begin{align*}
& \underline{u}=\left(p_{0}, q_{0}, r_{0}\right) \exp [-\alpha z+i \omega t+i k x] \\
& T=T_{0} \exp [-\alpha z+i \omega t+i k x] \\
& \underline{f}=\left(J_{1}, J_{2}, J_{3}\right) \exp [-\alpha z+i \omega t+i k x] \\
& \underline{B}=\left(b_{1}, b_{2}, b_{3}\right) \exp [-\alpha z+i \omega t+i k x] \\
& \underline{\Omega}=\left[\Omega_{1}, \Omega_{2}, \Omega_{3}\right] \exp [-\alpha z+i \omega t+i k x] \\
& \underline{E}=\left[E_{1}, E_{2}, E_{3}\right] \exp [-\alpha z+i \omega t+i k x] \tag{5}
\end{align*}
$$

and for the Rayleigh waves we require α to have positive real part. The solutions (5) represent plane harmonic waves which propagate in the positive x-direction and these waves decay exponentially with the depth in the positive z-direction.
Substitution from (5) into (3) and (4) yields

$$
\begin{equation*}
\underline{I}=\left(J_{1}, J_{2}, J_{3}\right)=\left[\frac{b_{2} \alpha}{\mu_{e}} \quad \frac{b_{2} \alpha-b_{3} i k}{\mu_{e}}, \frac{b_{2} i k}{\mu_{e}}\right] \tag{6}
\end{equation*}
$$

as div $\underline{B}=0$ leads to $b_{1} i k=\alpha b_{3}$ for $t \geq 0$

$$
\begin{align*}
J_{1}= & \sigma\left[E_{1}+i \omega\left(B_{3} q_{0}-B_{2} r_{0}\right)+B_{3}\left(p_{0} \Omega_{3}-r_{0} \Omega_{1}\right)-B_{2}\left(q_{0} \Omega_{1}-p_{0} \Omega_{2}\right)\right] \tag{7}\\
J_{2}= & \sigma\left[-b_{3} \frac{\omega}{k}+i \omega\left(B_{1} r_{0}-B_{3} p_{0}\right)+B_{1}\left(q_{0} \Omega_{1}-p_{0} \Omega_{2}\right)\right. \\
& \left.-B_{3}\left(r_{0} \Omega_{2}-q_{0} \Omega_{3}\right)\right] \tag{8}\\
J_{3}= & \sigma\left[\left(\frac{\omega}{k}\right) b_{2}-E_{1} \frac{h_{1}}{b_{3}}+i \omega\left(B_{2} p_{0}-B_{1} q_{0}\right)+B_{2}\left(r_{0} \Omega_{2}-q_{0} \Omega_{3}\right)\right. \\
& \left.-B_{1}\left(p_{0} \Omega_{3}-r_{0} \Omega_{1}\right)\right]
\end{align*}
$$

Here $\underline{E}=\left[E_{1},-b_{3} \frac{\omega}{k}, \frac{\omega}{k} \quad b_{2}-E_{1} \frac{b_{1}}{b_{3}}\right]$
Eliminating \underline{y} from (8) by using (6), and the first equation of which defines E_{1}, we get,

$$
\begin{align*}
& p_{0}\left[-i \omega B_{3}-B_{1} \Omega_{2}\right]+q_{0}\left[B_{1} \Omega_{1}+B_{3} \Omega_{3}\right]+r_{0}\left[i \omega B_{1}-B_{3} \Omega_{2}\right] \\
& =b_{3} \frac{\omega}{k}-\frac{b_{1} \alpha+b_{3} i k}{\sigma \mu_{e}} \tag{10}\\
& p_{0}\left[-\frac{i \alpha}{k}\left(B_{3} \Omega_{3}+B_{2} \Omega_{2}\right)+i \omega B_{2}-B_{1} \Omega_{3}\right] \\
& +q_{0}\left[-\frac{i \alpha}{k}\left(i \omega B_{3}-B_{2} \Omega_{1}\right)-i \omega B_{1}-B_{2} \Omega_{3}\right] \\
& +r_{0}\left[-\frac{i \alpha}{k}\left(i \omega B_{2}-B_{3} \Omega_{i}\right)+B_{1} \Omega_{i}+B_{2} \Omega_{2}\right] \\
& =b_{2} \frac{i k}{\sigma \mu_{e}}-\frac{\omega}{k}-\frac{i \alpha^{2}}{k \sigma \mu_{e}} \tag{11}
\end{align*}
$$

Equation (1), using (5) gives,

$$
\begin{align*}
& \left.p_{0}\left[-\beta\left(\omega^{2}+\Omega \frac{2}{2}+\Omega^{2}\right)+(\lambda+2 \mu) k^{2}-\mu \alpha^{2}\right]+q_{0}\left[\rho_{(} \Omega_{1} \Omega_{2}-2 i \omega_{\Omega_{3}}\right)\right] \\
& \text { tro } \left.\left[\rho_{\left(\Omega_{1} \Omega_{3}+2 i m \Omega\right.}\right)+(\lambda+\mu) i k 0\right]=-\frac{B_{3}}{\mu_{1}}\left(b_{1 f}+i k b_{3}\right) \\
& -\frac{B_{2}}{L_{2}} \quad i k b_{2}-\beta T_{t 1} i k \tag{12}
\end{align*}
$$

$$
\begin{align*}
& +m_{0}\left[\beta_{1}\left(h_{2}-2 i \omega \Omega_{1}\right)\right]=\frac{i B_{1} b_{2} k}{\mu_{r}}-\frac{h_{2}, h_{1} v}{h} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& +\operatorname{Fa}_{0}\left[-\rho\left(\alpha^{2}-n^{2}+n^{2}\right)-(\lambda+\mu) \alpha^{2}-\mu\left(\alpha^{2}-h^{2}\right)\right] \\
& =1 / \mu_{e}\left[B_{2} b_{2} \alpha+B_{1}\left(b_{1} \alpha+b_{i} i h\right)\right] \tag{14}
\end{align*}
$$

Equation (2) leads to

$$
\begin{align*}
& p_{0}\left[-\beta T^{*} k \omega-\beta T^{*}+i \omega^{2} k\right]+r_{0}\left[\beta T^{*} \pi \omega^{2} 0-\beta T^{*} \alpha i \omega\right] \\
& =T_{0}\left[k\left(\alpha^{2}-k^{2}\right)-\rho C_{1}\left(i \omega-+\omega^{2}\right)\right] \tag{15}
\end{align*}
$$

Equations (10) to (15) constitute a system of six equations withsixunknown $p, q_{0}, r_{0}, b_{1}, b_{2}$, Fin and h_{3} being related to b_{1} by (7). We assume $\Omega_{1}=\Omega_{2}=0$ and $\Omega_{3}=\Omega$, set the applied and perturbed magnetic fields to be ($0, B, 0$) and $(0, b, 0)$.

We yondimensionalize the equations by introducing

$$
\begin{aligned}
& x=\omega_{0}^{4}, \xi=\frac{k C_{1}}{\omega_{2}^{*}}, \in_{T} \frac{T^{*} \beta^{2}}{\rho^{7} C_{0} C_{1}^{2}}, \epsilon_{v}=\frac{\rho C_{V}}{\beta} \\
& =\frac{u^{*} w^{\prime}}{k_{i}^{2}}, M_{n}=\frac{f}{m}
\end{aligned}
$$

where

$$
\begin{aligned}
C_{1}^{2} & =\frac{\lambda+2 \mu}{\rho}, \quad \Delta u^{*}=\frac{\rho C_{1} C_{1}^{2}}{\kappa} \\
C_{2}^{2} & =\mu / \rho
\end{aligned}
$$

Equations (10) to (15) now take the form

$$
\begin{align*}
& p_{0}^{*}\left(x_{5}-s^{2} \eta^{2}\right)+q_{0}^{*}\left(-2 i \chi \Omega_{0}\right)+r_{0}^{*} i x_{6} \eta+T_{0}^{*} i \xi^{2} \epsilon_{T} \epsilon_{v}+b_{2}^{*} i R_{H} \xi^{2}=0 \\
& p_{0}^{*}\left(2 i \chi \Omega_{0}\right)-q_{0}^{*}\left(s^{2} \eta^{2}+x_{4}\right)=0 \\
& p_{0}^{*} x_{6} \eta+r_{0}^{*}\left(-\left(x_{1}-\eta^{2}\right)\right)+T_{0}^{*}\left(-\eta \epsilon_{v} \epsilon_{\Gamma} \xi\right)+b_{2}^{*}\left(-\eta R_{H} \xi\right)=0 \\
& p_{0}^{*} i \chi \xi+q_{0}^{*}\left(-\Omega_{0} \xi\right)+r_{0}^{*}(-\chi \eta)+b_{2}^{*}\left(x_{2}+i \epsilon_{H} \xi \eta^{2}\right)=0 \\
& \underline{p}_{0}^{*}\left(-x_{3} \xi\right)-r_{0}^{*} i \eta x_{3}+T_{0}^{*} \epsilon_{T} \epsilon_{\nu} \xi\left(x_{7}-\eta^{2}\right)=0 \tag{17}
\end{align*}
$$

where the quantities with asterisks are nondimensional,

$$
\begin{align*}
& \eta=\frac{C_{1}^{2} \alpha^{2}}{\omega^{2}} \text { and } \\
& x_{1}=\chi^{2}+s^{2} \xi^{2} \\
& x_{2}=\chi \xi-i \xi^{3} \epsilon_{H} \\
& x_{3}=\chi \epsilon \tau\left(1+i \tau^{\prime} \chi\right) \\
& x_{4}=\chi^{2}+\Omega_{0}^{2}-s^{2} \xi^{2} \\
& x_{5}=\xi^{2}-\left(\chi^{2}+\Omega_{0}^{2}\right) \\
& x_{6}=\xi\left(1-s^{2}\right) \\
& x_{7}=i \chi-\chi^{2} \tau^{\prime}+\xi^{2} \tag{18}
\end{align*}
$$

We proceed to solve (17) in the next section.

3. General solution and the boundary condtions

The equations (17) admit non-trivial solutions if and only if the determinant of the coefficients of $p_{0,}^{*} q_{0}^{*}, r_{0}^{*}, T_{0}^{*}$ and b_{2}^{*} is identically zero, resulting in

$$
\begin{align*}
& \xi s^{4} \epsilon_{H} \eta^{10}+\left(\xi s^{2} \epsilon_{H} x_{4}+i \xi \epsilon_{H} s^{4} x_{3}-\xi s^{4} \epsilon_{H} x_{7}-i s^{2} y_{6}\right) \eta^{8}+\left(-i \xi s^{2} x_{3} y_{0}\right. \\
& -4 \chi^{2} \xi \Omega_{0}^{2} \epsilon_{H}-s^{2} x_{3} y_{4}+i \xi_{H} s^{2} x_{3} x_{4}+i s^{2} x_{7} y_{6}-i s^{2} y_{7}-\xi s^{2} \epsilon_{H} x_{4} x_{7} \\
& \left.-i x_{4} y_{6}\right) \eta^{6}+\left(-4 i \xi \chi^{2} \Omega_{0}^{2} \epsilon_{H} x_{3}+4 \chi^{2} \xi \Omega_{6}^{2} \epsilon_{H} x_{7}+2 \chi \Omega_{0} y_{2}-i \xi s^{2} x_{3} y_{1}\right. \\
& \left.-i \xi x_{3} x_{4} y_{0}-s^{2} x_{3} y_{5}-x_{3} x_{4} y_{4}+i s^{2} x_{7} y_{7}-i s^{2} y_{8}+i x_{4} x_{7} y_{6}-i x_{4} y_{7}\right) \eta^{4} \\
& +\left(2 \chi \Omega_{0} y_{3}-4 \chi^{2} \Omega_{0}^{2} x_{2} x_{3}-2 \chi \Omega_{0} x_{7} y_{2}-\xi^{2} s^{2} x_{1} x_{2} x_{3}\right. \\
& \left.-i \xi x_{3} x_{4} y_{1}-x_{3} x_{4} y_{5}+i s^{2} x_{7} y_{8}+i x_{4} x_{7} y_{7}-i x_{4} y_{8}\right) \eta^{2} \\
& -\left(2 \chi \Omega_{0} x_{7} y_{3}+\xi^{2} x_{1} x_{2} x_{3} x_{4}-i x_{4} x_{7} y_{8}\right)=0 \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
y_{0}= & \xi \epsilon_{H} x_{6}-\epsilon_{H} \xi^{2} \\
y_{1}= & \xi^{2} \epsilon_{H} x_{1}+i \xi x_{2}-i x_{2} x_{6} \\
y_{2}= & 2 i \chi \Omega_{0} x_{2}+i \xi^{2} \Omega_{0} R_{H} x_{6}-2 i \xi \chi^{2} \Omega_{0} R_{H}-i \xi^{3} \Omega_{0} R_{H}+2 \xi \chi \Omega_{0} \epsilon_{H} x_{1} \\
y_{3}= & i \xi^{3} \Omega_{0} R_{H} x_{1}-2 i \chi \Omega_{0} x_{1} x_{2} \\
y_{4}= & i \xi \epsilon_{H} x_{5}+i \xi^{2} \epsilon_{H} x_{6}-s^{2} x_{2} \\
y_{5}= & \xi x_{2} x_{6}-\xi^{3} \chi R_{H}+x_{2} x_{5}+\chi \xi^{3} R_{H} \\
y_{6}= & -i \xi \epsilon_{H} x_{6}^{2}-\chi \xi R_{H} s^{2}-i \epsilon_{H} \xi s^{2} x_{1}-i \epsilon_{H} \xi x_{5}+x_{2} s^{2} \\
y_{7}= & \xi^{2} \chi R_{H} x_{6}+\chi \xi R_{H} x_{5}+\chi \xi^{2} R_{H} x_{6}-x_{2} x_{6}^{2}+i \xi \epsilon_{H} x_{1} x_{5} \\
& -x_{1} x_{2} s^{2}-x_{2} x_{5}-\chi \xi^{3} R_{H} \\
y_{8}= & x_{1} x_{2} x_{5}+\chi \xi^{3} R_{H} x_{1} \tag{20}
\end{align*}
$$

We note that $\eta_{k}^{2}, k=1,2,3,4,5$ are the roots of the equation (19) and we recall that η_{k} must all have positive real part.

Referring to equations (17), we conclude that to each $\eta_{k}, k=1,2,3,4,5$ there corresponds a set of constants $p_{o k}^{*}, q_{o k}^{*}, r_{o k}^{*}, T_{o k}^{*}, b_{2 k}^{*}$ and for a fixed value of η, say, η_{k}, equations (17) are employed to express four of the constants in terms of the other, say $q_{o k}^{*}$. Thus, we obtain

$$
\begin{align*}
p_{0 k}^{*} & =A_{1 k} q_{0 k}^{*} \\
r_{0 k}^{*} & =A_{2 k} q_{0 k}^{*} \\
T_{0 k}^{*} & =A_{3 k} q_{0 k}^{*} \\
b_{2 k}^{*} & =A_{4 k} q_{0 k}^{*} \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
& A_{t k}=\frac{s^{2} \eta_{k}^{2}+x_{4}}{2 i \chi \Omega_{0}} \\
& A_{3 k}=\frac{x_{3}\left[A_{i k}\left(x_{2}+i \epsilon_{H} \xi \eta_{k}^{2}\right)\left[i \xi\left(x_{1}-\eta_{k}^{2}\right)+i x_{6} \eta_{k}^{2}\right]+\eta_{k}^{2} R_{H} \xi^{2} \Omega_{0}\right]}{\epsilon_{T} \epsilon_{v} \xi\left[\left(x_{2}+i \xi \epsilon_{H} \eta_{k}^{2}\right)\left[t\left(x_{7}-\eta_{k}^{2}\right)-\eta_{k}^{2} x_{3}\right]+i \chi \xi R_{A} \eta_{k}^{2}\left(x_{7}-\eta_{k}^{2}\right)\right]} \\
& A_{3 k}=\frac{i \xi x_{3} A_{i k}-i \epsilon_{T} \epsilon_{v} \xi\left(x_{7}-\eta_{k}^{2}\right) A_{3 k}}{\eta_{k} x_{3}} \\
& A_{4 k}=\frac{\xi\left[\Omega_{0} x_{3}-i \epsilon_{T} \epsilon_{v} \chi\left(x_{7}-\eta_{k}^{2}\right) A_{3 k}\right]}{x_{3}\left(x_{2}+i \epsilon_{H} \xi \eta_{k}^{2}\right)} \tag{22}
\end{align*}
$$

By superposition, the general solution may now be written as

$$
\begin{align*}
& \left(p^{*}, q^{*}, r^{*}, T_{0,}^{*}, b_{2}^{*}\right)=\sum_{k=1}^{5}\left(p_{o k,}^{*} q_{o k,}^{*} r_{o k}^{*}, T_{o k}^{*}, b_{2 k}^{*}\right) \times \\
& \exp \left[-\eta_{k} z^{*}+i \not i^{*}+i \xi x^{*}\right] \tag{23}
\end{align*}
$$

where x^{*} and z^{*} are nondimensional space coordinates and t^{*} is nondimensional time coordinate.
The boundary conditions at $z^{*}=0$ are

$$
\begin{equation*}
\sigma_{x z}=\sigma_{y z}=\sigma_{z z}=0, \quad b_{z}=0 \text { and } \frac{\partial \tau}{\partial z}=0 \tag{24}
\end{equation*}
$$

Using (23) in (24), we get five homogeneous equations in $q_{0}^{*}, k=1,2,3,4,5$, and for non-trivial solutions, we set the determinant of the coefficients of $q_{0 k}^{*}$ equal to zero, that is,

$$
\left|\begin{array}{ccccc}
A_{41} & A_{42} & A_{43} & A_{44} & A_{45} \tag{25}\\
\eta_{1} & \eta_{2} & \eta_{3} & \eta_{4} & \eta_{5} \\
\eta_{1} A_{31} & \eta_{2} \boldsymbol{A}_{32} & \eta_{3} A_{33} & \eta_{4} A_{34} & \eta_{5} \boldsymbol{A}_{35} \\
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & \alpha_{15} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} & \alpha_{25}
\end{array}\right|=0
$$

where

$$
\begin{aligned}
& \alpha_{1 j}=\eta_{\mu} A_{1 j}-i \xi A_{2 j} \\
& \alpha_{2 j}=i \xi\left(\beta_{1}^{2}-2\right) A_{1,}+\beta_{1}^{2} \eta_{j}^{2} A_{2 j}-\xi b A_{3 j} j=1 \text { to } 5 \\
& \beta_{1}^{2}=1 / s^{2}, b=\alpha_{t} T_{0}^{*}(3 \lambda+2 \mu) / \mu
\end{aligned}
$$

Equation (25) is the Rayleigh equation modified by tne angular velocity of the medium apart from the magnetic and temperature fields.

4. Special case

In the absence of the spin velocity, we see that $A_{i k}$ becomes unbounded and that the second of equations (17) leads to

$$
x^{2}-s^{2}\left(\xi^{2}+\eta^{2}\right)=0 \text { for } q_{0}^{*} \neq 0
$$

which represents transverse wave motion. Following the argument given for obtaining (21), we get, for the present case

$$
\begin{align*}
& r_{0 k}^{*}=A_{1 k} T_{0 k}^{*} \\
& b_{2 k}^{*}=A_{2 k} T_{0 k}^{*} \tag{26}\\
& p_{0 k}^{*}=A_{3 k} T_{0 k}^{*}, k=1,2,3,4 .
\end{align*}
$$

where

$$
\begin{aligned}
& A_{1 k}=-\frac{i \epsilon_{T} \epsilon_{V} \xi\left(x_{7}-\eta_{k}^{2}\right)}{\eta_{k} x_{3}} \\
& A_{2 k}=-\frac{i \chi \epsilon_{T} \epsilon_{V} \xi\left(x_{7}-\eta_{k}^{2}\right)}{x_{3}\left(x_{2}+i \epsilon_{H} \xi \eta_{k}^{2}\right)} \\
& A_{3 k}=-\frac{A_{1 k} x_{6} \eta_{k}+i \xi^{2} \epsilon_{T} \epsilon_{V}+i R_{H} \xi^{2} A_{2 k}}{x_{3}-s^{2} \eta_{k}^{2}}
\end{aligned}
$$

The frequency equation now takes the form

$$
\left|\begin{array}{cccc}
A_{21} & A_{22} & A_{23} & A_{24} \tag{27}\\
\eta_{1} & \eta_{2} & \eta_{3} & \eta_{4} \\
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24}
\end{array}\right|=0
$$

where

$$
\begin{aligned}
& \alpha_{i j}=i \xi A_{1 j}-A_{3 j} \eta_{J} \\
& \alpha_{2 j}=i \xi\left(\beta_{1}^{2}-2\right) A_{3 j}+\beta_{1}^{2} \eta_{j} A_{i j}-b \xi, j=1,2,3,4
\end{aligned}
$$

Fic. 1. Thase velocity of surface waves modified by the anguiar velocity.

5. Numerical results

In this section, we present some of the rasults obtained through analysing the probjem numerically. The aim is to find out the naturs of depmaence of surfact wave vinory en he angular velocity. Birge-Vieta methed was cmpleyed whind out the cotaples ruote of the polynomial (19). The roots were ased in (25) to fum but the value of the determinant. The process is iterated till the determinam whes show a decteotsing trend and inctease aherwars. The analysis is carried out for carbon seel wheve naterial and elastic constants are givea ia Maruszewskis. The interdependence of R_{H} on the Hayleigh speed is grapacally show in Tomita and Shindo ${ }^{2}$.

The present analysis shows that there is a perceptible inerease in the surface wave quen with the increase in spin velocity. The range of spin speed was restricted to the order isf 10^{7} and 10^{6} beyond which the roots do not converge due to the limitations on the avairable resources.

It is obseres that the shift in the wave speed is more for the range 10^{3} to 10^{\prime} of feymenty and that the effect of spin velosity is not appreciable beyond this range of frequency for the assumed spit velocities (Tig. I).

References

 Nzmat-Naseen, S.
2. TOMITA, S. AMD 12, 53-69.

Rayleigh waves in magneto-thermoelastic solids with thermal relaxation, Ins. J. Sundo, Y.

Eingng. Sci. 1979, 17, 227-232.
3. Roy Choumpurd, S.K. Magneto-ihermastastio plane waves in rotating media, In. J. Engng. Sci, 1933, 21, and Debnath, L.
4. Rov Choudhuri, S.K. and Degnath, I.. 155-163.
. Maroszewsin, B.
Magnetoelastic plane waves in infinite rotating media, Trans, ASME, J. Appl. Mech. 1983, 50, 283-287.
Dynamical magnctothermoelastic problem in circular cylinders-II, int. J. Einghg, Sci. 1981, 19, 1241-1253.

