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Abstrlc.t 

Foi1owing a hUe!.l.I th.eufY of magneto~thcnl\Oe!a!;tjcity with thermal relaxation, the prorai.::ll, i~; 1) l:-i Rayle-igh waves 
10 a semi-infinite, homogeneous, isotropic, eleC'tticaHy and therma.lly \~(jll.duding b·)dy p~~IJ:l'''\.I.,d by a magnetic 
field parallel to the boundary surface is investi,gated.lt IS assum.ed that the-coti,\'" t'.ti.tL: m';1J;~.lli i., rot2.ting with a 
uniform angulal velocity. Frequency equation is obtained :.nd is analysed for %1;.11 'U.{~ l<lrge values of tile 
frequency and large values of spin velOCity and the magnetic ficllt The dependencl~ hl."t\.!ee-n rb' '-Ingularfrequency 
and the suriace wave speed is gmphlcally shown. 

Key wOlds; Spin velocity. thermal relaxation time, perturbHtjon. 

1. Introduction 

The study of coupled bulk magnetothermoelastic surface waves has been the subjljc! of many 
works by applied physicists and theoretical mechanicians alike. Nayfeh and Nemat-Nas~er' 
have analysed propagation pattern of Rayleigh surface waves in a thermoelastic half-space. 
Explicit expressions have been ohtained for various parameters that characterize these 
waves. Tomita and Shindo 2 have shown that the variation of Rayleigh wave speed against 
the magnetic pre~!-'ure number is perceptible taking the thermal relaxation time parameters 
7ero. Roy Cltoud h uri and Debnath )-4 have considered the plane wave problem in a rotating 
medium. Thev have shown that the rotation causes the medium to be dispersive and 
anl,'wl! opk Tile ohjective of the present paper is to consider a problem of surface waves in a 
thermoela~tic- medium permeated by a primary uniform magnetic field. rotating with a 
lmif(lrm Hngu!a r velocity. A detailed numercial work is undertaken to find out the nature of 
dcp(:ndenct.' of surface wave speed on angular velocity. It is observed that even ten-fold 
mer('"s" in the spin velocity has only little effect on the Rayleigh wave speed. However, the 
cha\lt~e is apprc('iable in a particular range of frequency. The computations are carried out 
for the large angular trequencies. 

2. Formulation and basic equations 

We consider a semi-infinite homogeneol/s, isotropic, thermally and electrically-<:onducting 
elastic solid permeated hya primary magnetic field. lJ" ( B" D" B,). The entire elastic medium 
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is rotating uniformly with an angular velocity Q=!l!'E. where Q!is the unit vector representing 
the direction of the axis of rotation. The displacement equation is given by 

(I) 

where the terms. 0 X (0 X ~) a.nd 20 X i!. are centripetal and coriolis accelerations 
respectively . .! X II is electromagentirc force .. Jis the current density, li = lio +!J. is the total 
magnetic field, b (.b"hy;b,) i. the pertUrbed magnetic field assumed to be small, T is the 
increase in .em~ratuT~ above the reference temperature T * 

The generalized heat conduction equation with thermal relaxation time is 

K V' T = pC, ( T '+ T n + {3 T * (.:i. + T Li. ) (2) 

Here, T is the thermal relaxation time, A is the dilatation, K is the coefficient of thermal 
conductivity and Cv is the specific heat of solid at constant volume. 

The electromagnetic field is governed by the Maxwell equations with the displacement 
current and charge density neglected 

C!\rllJ= f., curlll=: - oJ!/ at, div J!= 0 (3) 

where J!= p..!J}A, is the magnetic permeability. 

The generalized Ohm's law is 

(4) 

For the Rayleigh surface waves, we shall deal with the half-space defined by z2:0, where we 
assume that both the surface tractions and the temperature gradient vanish on the plane 
z = O. The solution of the problem can be expressed as 

li = .(po,qo,ro) exp [- OiZ + ;wt + ;kx] 

T = To exp [- az + ;wt + ikx] 

f.'= (J"hJ,) exp [- az + ;Illt + ikxJ 

§ = (b •• b,.b,) exp [- az + iwt + ikx] 

o = [0 •. 0,.03 ] exp [- az + iwt -+ ikx} 

!l [E •• E2.E3] exp [- az + iwl + ikx] (5) 
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and for the Rayleigh waves we require a to have positive real part. The solutious (5) represent 
plane harmonic waves which propagate in the positive x-direction and the.e waves decay 
exponentially with the depth in the positive z-direction. 

Substitution from (5) into (3) and (4) yields 

asdiv 0= 0 leads to b, ik = rxb, for t 2:: 0 

- B, (roO, - qoO,)] 

w 
Hereg=[E,,-b, k . W b,- E, !!!.. ] 

k b, 

(6) 

(7) 

(8) 

(9) 

Eliminating l. from (8) by using (6). and the first equation of which defines E,. we get. 

b, f' (10) 

ia 
po[- k (B,O,+B,O,)+iwB,-B,O,] 

ia 
+qo[- k (iwB,-B,O,)-lwB,-B,O,] 

(\1) 



:quation 1'1}, using (5) gives, 

{'" [-I' (w·I + n; + nil + (A + 2,,) /,' .. 'tl,'] +1;0 l !'(H, 0, - 21("n.,) 1 
8, 

+ r 0 [p ( il. ,fh + ;> i (,) n. . ) i' (,\ +- I') i k H 1 = " . (I,. ". •. i k b Jl 

/I.. ikh,-{3T"ik (12) 
,I.i., 

Equation (2) leads to 

fBI h.: k 

" .. 
if, b, ~v 

" 

po [- {3 T' kw - f3 T* ~ iw'k 1 + ro [{3 T* TO;''''' (3 T* "iw 1 
= To[k(a2 -k')-p C (iw-TW')] 

(13) 

(14) 

(I 5) 

Equations (10) to (15) constitute a system of six equatioDs with :-;ix unknownsp". qQ, ro, bl ,b2, 

,,' ;wd h3 being related to h, by (7). We assume D I ~~ n, = 0 and il, ~~ n, se!the applied and 
pe,j",oed magnetic fields to be (O,B,.O) and (0.['·,0). 

"l:V'~~ ')(wdimensionalize the equations by introdtlCing 

n 

B~ 
l?J-1::-:- ----,-,vu 

p C~J }.I'<' 

pC. 

i' 

jJ." a 

(
,2 

• 2 

cY (16) 
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where C1 = w' 

c~ = p.jp 

Equations (10) to (15) now take the form 

p~(~, -S' 'I') + q~ (-2; X 00) + rt ix,'1 + Tci if Ere, + biiRHe= 0 

p~ (2;xOo) - q6 (s''1' + x.) = 0 

pci X6'1 + r6(-(xl-'1'}) + T6(-7(f, ErO + l>~ (-'1RH[) = 0 

P~ixf + Q6(-Oo() + r~(-x'1) + b~(X2 + i<H('1') = 0 

where the quantities with asterisks are nondimensional, 

X, X' + s'e 
x, xf - if'<H 

x, = X'T(I +iT'x) 

X4 = X' + O~-s'e 
x, {'-(x'+oi) 

X6 (I -8') 

We proceed to solve (17) in the next section. 

3. General solution .net tbe boundary eond16ons 

(17) 

(I8) 

The equations (17) admit non-trivial solutions if and only if the determinant of the coeffi
dents of pci, q~, rci~ Tri and b~ is identically zero, resulting in 
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ts4f.HrJ
10 + «(s2eIfX4 + i{EHS

4
X3 - tS4f;HX7 - iS

2
Y6)17 8 + (-itS 2X1YO 

- 4x\f!l5f;H - S2X~J'4 + irt:.HS'1 X3X4 + iS
2

X7))6 - iS
2
Y7 - [Slf;[{X4X7 

- iX4Ydrr
6 + (-4it;X

2
!l5f;HX) + 4X

2
( fl5€HX7 + 2 Xf!O}'2 - it.·/ X3Y\ 

- igX3X4YO - S2 X3 ),S - X~X4Y4 + iS
2

X?)'7 - is1yg + iX4x7)'6 - iX4}'7)1J 4 

+ (2XOoYJ -4X1n.{;X2X3 - 2Xo.OX7)'2 - (2S2XIX2 X 3 

- i{-X3X4YI - X3X4YS + lSlX7.VS + iX4X7Y7 - iX4Y8)1]2 

- (2XOOX7}'3 + t'XIX2X,X, - iX4X7J") = 0 (19) 

yo = t€HX6 - tIlt2 

Yl = ~lflfXJ + it;Xl - iX2X6 

y, = 2ixOOX2 + i(O"RHx, - 2i~X' lio R/! - it'OoRH+ 2txflo'J/XI 

Y3 i{-3noRHXl - 2ixo.oX/X2 

Y4 i{-fHX5 + ig2f;1I.A6 - :;2 X2 

y, = tX,X6 - t'XRH + x,x, + Xt'RH 

Y6 =-itff{.d - x[R H s
2 

- iEH(S2 X1 - itu(X<; + X2S 

Y7 = §' X RHXO + xi; RHX, + xi;' RHX6 - x,x; + ii;'HXI Xl 

- X1X2S
1 

- X2XS - xe RH 

Y8 = X1X2X5 + xe RHx, (20) 

We note that 'It k = 1,2,3,4,5 are tberoots oftbeequation (19) and we recall tbat '7kmustall 
have positive real part. 

Referring to equations (17), we conclude that to eacb 'I k, k = 1,2,3,4,5 tbere correspondsa 
set of constants P:k. q:k, ':k. r:k, b ~k and for a fixed value of T], say, T]k, equations (17) are 
employed to express four of the constants in terms of the other, say q:k. Thus, we obtain 

(21) 
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A'k 
:;;2 T]~ + x../ 

2i XOO 
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X3 [A 'k (x, + iff{ (1)l) [if (x, -1)1) + iXr,1)l] + 1)1 RH e flo] 

f ~ f,. f [(x, + ifE f{1)}) [I (X7 - 1)") - 1)'1 Xl] + i X f R 111)" (X7 - 1)") 1 

if x, A 1k - iET".(X7-1)1) Alk 

T]k X3 

By superposition, the general solution may now be written as 

5 

(p*, q*, r*. ri;. hi) = L (P:k, q:k. r:k, r:k, bid >< 
k=i 

(22) 

(23) 

where x* and z* are nondimensional space coordinates and t* is nondimensional lime 
coordinate. 

The boundary conditions atz* = 0 are 

'2': = 0 ox:=ayz=a~z=O, b2 =O and az (24) 

Using (23) in (24), we get five homogeneous equations in q:" k = 1,2,3,4,5, and for non-trivial 
solutions, we set the determinant of the coefficients of q 6k equal to zero, that is, 

A 4 , A42 A43 A" A45 -

1), 1)2 1)3 1)4 1)5 

T}iA 31 112A:'I2 173A33 174A34 1JsA35 0 (25) 

"It "12 "ll "'4 "15 

"" "22 a~~ "" 0:'~.5 

where 

(Ill) == rz, A1j-i ~ A2h 

"'j = if «(3',- 2) AI; + (3', 1); A2l - f bA,l,j I to 5 

(3; = I/s', b = a, Tt (3)- + 21")/1" 
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Equation (25) is the Rayleigh equation modified by tne angular velocity of the medium apart 
from the magnetic and temperature fields. 

4. Special CIl"" 

In the absence of Ihe spin velocity, we see that A lk becomes unbounded and that the second 
of equations (17) ieads to . 

)('-.'(['+17') == Oforq~;6 0 

which represents transverse wave motion. Following the argument given for obtaining (21), 
we get, for the present case 

where 

rcik = Au; Trik 
bik = A2k Trik 

p~ == A3k Tt., k = 1,2,3,4. 

i)( 'T'v~(X7-'11.) 
A,. = - x,(x2+i'H~'11.) 

The frequency equation now takes the form 

where 

all 

An 

1), 

"''' 

av = i!Alj-AV1)) 

o 
"23 

a~ = i f(J3" - 2) A3j + 13" 1)) Ali - b !,j = 1,2,3,4. 

(26) 

(27) 
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FIG. 1. !'hase velocity of surface waves modified by th~ 

angular velocity. 

Frequency 

5. Numerical results 

In this section, we present some of the h'sults ()btaiIlcd through anaiysing ib:~ 
numerically. The aim is to find out the natun' of deprr.uenc:e of surfac-t: wave 
angul&f velocity. Birgcv Vieta method wa&, ("mplo:;I\!ct ti.l find out the c(jmph;~:;: nJo~r; \.'~f !he 
polynomial (19). The roots were Ilsed in P5} H.J fiud t:mt the value of !he determnL.mt. The 
process is iterated till the detcrminanl vn!ue:; show [1 d ... ·t'ft~asing trend and il1cr~ase ,1herw.l1{Qs. 
TIle analysis is carried out for carbon :-j-.'!C"l ,",r,o~'( mar,;:rial and elastk constants ,Ut; ,t.!.j\'e~) ia 
Maruszew~ki s. Tht'.' interdependence 01 R rl nn the H'!yleigh speed is grap~licaJly siIO't; f' in 
Tomita and Shindo". 

The pre:"1cnt anal)'si~ i-ihows that there is a perceptibj,~ increase in the surface wave 'ljH'I:d 

with thr- iacrease in spin velocity. The range of spin speed was restricted to (he ord<f(;f I,) 7 

and 10\\ beyond which the roots do not converge due to the limitations on the avaHahlc 
resources. 

ft is ooscn eo that the shift in the wave speed is mort; for the range 103 to 10' of fJ(~q fWni.·Y 

and that lhe effed of spin ve10(.lty is not appreciable beyond this range of frequency for tile 
assumed sp,r: vel()citi •. s (tig. I). 
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