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Abstract

o Rayleigh waves
:d by a magnetic
Lo s rotating with a

Following 2 neus theory of magneto-thermoelasticity with thermal relaxation, the DBIOPAZR L
w a semu-infinite, homogeneous, isotropic, electtically and thermally condudting body
field parailel to the boundary surface is investigated. It 1s assumed that the entire ¢'astls
uiform angular velocity, Frequency equation is obtained und s analysed for snwll g furge values of the
frequency and large values of spin velocity and the magnetic ficld. The dependence besviesn th sngular frequency
and the surface wave speed is graphieally shown.
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1. Introduction

The study of coupled bulk magnetothermoelastic surface waves has been the subjget of many
works by applied physicists and theoretical mechanicians alike. Nayfeh and Nemat-Naseer'
have analysed propagation pattern of Rayleigh surface waves in a thermoelastic half-space.
Explicit expressions have been obtained for various parameters that characterize these
waves. Tomita and Shindo® have shown that the variation of Rayleigh wave speed against
the magnetic pressure number is perceptible taking the thermal relaxation time parameters
7ero. Roy Choudhuri and Debnath®™ have considered the plane wave problem in a rotating
medium. They have shown that the rotation causes the mediura to be dispersive and
anisotropic The ohjective of the present paper is to consider a problem of surface wavesina
thermoelastic medium permeated by a primary uniform magnetic field, rotating with a
uniform angular velocity. A detailed numercial work is undertaken to find out the nature of
dependence of surface wave speed on angular velocity. It is observed that even ten-fold
merease in the spin velocity has only little effect on the Rayleigh wave speed. However, the
change is appreciable in a particular range of {requency. The computations are carried out

for the large angular {requencies.

L. Formulation and basic equations

We consider a semi-infinite homogeneous, isotropic, thermally and electrically-conducting

elastic solid permeated by a primary magnetic field. & ( 81, B:, By). Theentire elastic medium
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is rotating uniformly with an angular velocity {}= () w, where wis the unit vector representing
the direction of the axis of rotation. The displacement equation is given by

plut Ox(Qxu) x 2Qxu4]l= (A+p) V(V- )+ p V' u+
IXB-BVT )

where the terms, 3 X (Q X u) and 2€ X g are centripetal and coriolis accelerations
respectively. J X B is electromagentirc force. J is the current density, B= Bo -+ b is the total
magnetic field, b (bx,by;b;) is the perturbed magnetic field assumed to be small, T'is the
increase in femperature above the reference temperature 77 *

The generalized heat conduction equation with thermal relaxation time is

kVET=p C(TH s+ AT*(A+71A) @

Here, 7 is the thermal relaxation time, A is the dilatation, « is the coefficient of thermal
conductivity and C, is the specific heat of solid at constant volume.

The electromagnetic field is governed by the Maxwell equations with the displacement
current and charge density neglected

cirl H= J, curl £E= — 8 B/ 81, div B= 0 3

where B= u, H u, is the magnetic permeability.

The generalized Ohm’s law is
J=o[E+ (du/ds+ QX u) X 8] “

For the Rayleigh surface waves, we shall deal with the half-space defined by z=>0, where we
assume that both the surface tractions and the temperature gradient vanish on the planc
z = 0. The solution of the problem can be expressed as

U = (po,qo,ro)exp[—az+timet+ ikx]
T = Toexp [~ az + iwt + ikx]
L= (BT ) exp [~ az + iwt + ikx]

B = (b,,by,bs) exp [~ az + ien + ikx)
Q = [0,0:,05] exp [~ az + dwt + ikx]
_1_;' =

{E.Es, Ey] exp [~ az + iwt + ikx] ®

»
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and for the Rayleigh waves we require « to have positive real part. The solutions (5) represent
plane harmonic waves which propagate in the positive x-direction and these waves decay
exponentially with the depth in the positive z-direction.

Substitution from (5) into (3) and (4) yields

= (hhh) = %ﬁ b%[:‘«ik . b;fk ®
as div B= 0 leads to b, ik=ab3fort2_0 U]
Ji = o [Ei + iw (Bigo ~ Bare) + Bs (ol = rofly) = Bx (gofly — pofla) ]
Lo=o[—bs kﬂ + iw (Biro = Bipo) + By (gofhs — pos)
~ B3 (roQ22 ~ o) ] ®)
h=cl( fi)bz—EI 1% +iw (B2 po= By qo) + Bx (ro 0~ 40 03)
=B (pofs—ro21)]
Here E=[ B\, — by — , £ ba-E by )
k k bs

Eliminating J from (8) by using (6), and the first equation of which defines Ei, we get,
Po[~iwB; — By N2]+ go [Bi1 + Bs Q3]+ ro [iwBi — B (2,]

bia + biik 10)
O e

= b, f_ 1
po [~ 51? (B; 03+ B: 0,) + iwB: ~ B 03]
+ o~ Lkﬁ (iwBs — B: 1)) ~ iwB1 ~ B: 01;]
+trl-~ % (iwBz2— Bs D1)+ B 0 + B2 Q2]

ik e i an

ope k kop.
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Tquation (1), using (5) gives,
pof=piw®+ 03+ 00+ A+ 20 k0~ pall Fge [0000 01 = 2wty ]
: . B’
Fro PO 0+ 2iwli ) A (N T ) The]l = o b b ikbsy

- B ikby— BT, ik (12
“,

pubaifl Qa4 Zie Q) T e - p (@’ + Q0+ O3 - il - k7)Y

By bk Boby o
e [p 8 B = iefdy) ] = e e e )

polp &b s =% p Qo (A + p)ika T+ g [p (8 3+ 2 )]
R R S L R PN T e A Bl

= e [Babrw + By (hia 7+ ik} ] (14)
Equation (2) leads to

o[~ BT*ko —BT* 7i’k 1+ r [BT* rorer ~ BT* atiw]
= To[k (=K = p O (iw—7T0%) ] (15)
Fquations (10) to (15) constitute a system of six equations with six unknowns p.,. go, ro, b1, b2,

7 und by being related to by by (7). We assume £ == (0, = (and (1, ={), set the applied and
periurbed magnetic fields to be (0, 8:.0) and (0.5 ,0).

We sondimensionalize the equations by introducing

w kO, T* g pCo
T i e MY T el
’ awr w * ’ sl CLCh ¢ B3

; B3 2 €5
= BT o e vy = ands” = —;— 16)
0 CTope .o (@1
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A2 ¢ 3
where ci= T s w* = »Lk—l—
Ct = ulp

Fquations (10) to (15) now take the form
prxs =8 0') + @b (~ 2 x Qo) + rEixen+ T if ere, + BT iRy E2 =0
Py (2x0a) ~ g0 (0 +x) =0
Pixsn + ro(~(x1=n%) ) + To(~nes erd) + b (~nRuf) = 0
PYix€ + a5 (~Qof) + 1o (—xn) + Y (x2 + iexfn?) = 0

P3(=x3€) = reinxs + Teer e (x1=n%) = 0 an

where the quantities with asterisks are nondimensional,

x1 = x* + s2£2
x2 = xé - i8n

X3 = xer(l+ir'y)

x4 = x7 + 0f - 527

xs = £~ (x* + af)

(1 -5 )
x7 = ix— x>+ ¢

X
po
]

{18}

We proceed to solve (17) in the next section.
3. General solution and the boundary condftions

The equations (17) admit non-trivial solutions if and only if the determinant of the coeffi-
cients of po, qo, ra, T4 and b3 is identically zero, resulting in
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Estenqn'® + (Esteyxa + ifensixs — Estenxs — isTynt + (~iés 23y,
~ 4x O ey — szx%)u 4 itens xixa+ istxoye — isty, — Estexaxs
—~ ixaye)n® + (—4iEx NFenxs + 4xE Qdenxs + 2 x Qo yo— iEs? x3v,
— (EX3Xapo ~ S X3¥s — XiXaYs + iszxv)w - istys + ixaxoys = ixays)n
+ 2xOQoys ~ 4y 0dxaxs = 2xQoxryar — €757 x1x2x3

—iExsxayi— X3xaps T isPxrvs toixaxoyr = ixays)q’

- (2xQox7ps + Exix2X3x4 — ixax7ye) = 0 (19)

where

Yo = Eenxs — ené’

y1 = Fleyxy + ifx, — ixaxe

y2 = 2ix0oxz + &2 Qo Ruxe — 2iéx* Qo Ru~ (€' QoRu+ 28xNoenx:
ig* Qo Raxi — 2ixQoxix:

i

¥
ya = ifeqxs + iErenxs — s x2
ys = Exaxs — E*x Ry + x2x5 + xRy
Ve m=—ifegxi— XERus® — ientsix— fenbxs + xas”
= " xRuxs + xERuxs + xE*Ruxe — x2x8 + ifenxixs
- x1X152 - X2Xs xf R

Y8 T X1Xz2Xs +Xf"RHX1 (20)

We note that n%, k = 1,2,3,4,5 are the roots of the equation (19) and we recall that 7, mustall
have positive real part.

Referring to equatlons n, we conclude that to each nx, k = 1,2,3,4,5 there correspondsa

*
set of ConStants p i, g o Fok, Tor, b3 and for a fixed value of 7, say, s equations (17)are
employed to express four of the constants in terms of the other, say g u. Thus, we obtain

* *
Pl = Aw qin
* *
rok = A qok

Toe = A qgk

b = Auw qo 21
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where
__‘ & T]i + x4
A T,
x5 [Aw (x1+ ieg ént) [iE(x1—n%)+ ixenil+ 73 Ru & €]
Ask B R 2 B . 3 s
ere, £[(xa+ ibennt) [1(xs-n%) =i xs] +ixé Rani (x7~n%) ]
iéxs Au—iere E{x1—n%) An
Axn =
Nk X3
e = f[Qoxs—ierenx(x1-n%) A ] )
* xs3 (x2 +ien £ k)
By superposition, the general solution may now be written as

5
(p* g* r*, T(T, b;): p3 (P:I« q‘:c, 7oi Tot b:k) X
k=1

exp [—nez* + ixi* + iEx*]

23)
where x* and z* are nondimensional space coordinates and ¢* is nondimensional time
coordinate.

The boundary conditions atz*

0 are

o7
=0T 0 =0, b=0and - =0

Using (23) in (24), we get five homogeneous equations in g2, k = 1,2,3.4,5, and for non-trivial

(24)
solutions, we set the determinant of the coefficients of t[gk equal to zero, that is,
Aaq A Aus Aas Aags 7|
m 72 UE N4 s
niAds naAxn n3A433 naAss nsAas| = 0 25
o1 (1333 anl a4 as
oz o2 eded) o4
where

Xy = Ay -1 £ Ay,
oy =

PE(BY—D Ay +Bim Ay —EbAy,j = 1105

B = 1)s%, b=oa, TE (3N +2u)/u
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Fquation (25) is the Rayleigh equation modified by tne angular velocity of the medium apart
from the magnetic and temperature fields.

4. Special case

In the absence of the spin velocity, we see that A 1» becomes unbounded and that the second
of equations (17) leads to

x* s (£ +n?) = 0 for g5 # O

which represents transverse wave motion. Following the argument given for obtaining (21),
we get, for the present case

ree = Aw T
bY% = An T (26)
pox = Au Tow, k = 1,234,

where
. 2
X1™ Tk
PP 117 £ €2hnk )
Nk X3 . - -
ix ere, £(x1~1%)
Ay = = et
X3 {x2-+ien k)
Auxemtitiere, +iRut’ An
An = -

2,2
X5~ 8" Nk

The frequency equation now takes the form

An An Az Az
1 n2 73 N4
o 3%} 3%} aw| =0 @n
as an a o2

where

ey =ifAy— Ay
PEBI-2DAy+Bindy-bEj= 1234

oy
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Fio. 1, Dhase velocity of surface waves modified by the

i | i [ { angular velocity.

Frequency
5 Numerical results

ln this section, we present some of the results obtained through analysing the problem
numerically. The aim is to find out the naturs of deperaence of surface wave veinely on the
angular velocity. Birge- Vieta method was employed tu find out the curapiox reats of the
polynoraial (19). The roots were used in ¥ o fod oot the value of the determinant. The
process is iterated till the determinant values show a decreasing trend and increase aftery
The analysis is carried out {or carbon steel wheve marerial and elastic constants are give:
Maruszewski®. The interdependence of Ry on the Rayicigh speed is grapiically shany in
Tomita and Shindo.

The present analysis shows that there is a perceptible tncrease in the surface wave spend
with the increase in spin velocity. The range of spin speed was restricted to the order sf 147
and {0° beyond which the roots do not converge due to the limitations on the available
resources,

Itis observed that the shift in the wave speed is more for the range 10° to 10" of fieyuency
and that the effect of spin velicity is not appreciable beyond this range of frequency for tile

assumed spin velocities (fig. 1).
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