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Abstract

Let (x, %) be a uniform space and u be an cuter measure on the power set of the set y satisfying certain axioms. We
introduced the definitions of u-separated sets and density of sets with respect to the measure . We have shown that
aimost all the results on p-separated sets and density of sets in R” or metric space or topological group can be

extended in uniform space.
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1. Introduction

In this paper, we have extended the notions of u-separated sets and density of a set with
respect to an outer measure u defined on the power set of the set X in the uniform space ( X, %).
Lahiri ' extended these notions to topological groups for an invariant measure. These notions
have been extended to metric space”, to measure space’ and to Romanovskispace®’. In these
cases, extensive use has been made of Vitali type Theorem® and of regularity condition in
some cases. In our case, we have assumed that p is o-finite and it satisfies outer regularity
axiom (see 2.7) and Vitali axiom (see 2.6). Insection 5, we have constructed an outer measure
on a metric space satisfying the axioms (iii), (iv) and (v) of 2.8.

"

2. Preliminary definiti and P
Let (x,% ) be a uniform space and let ¢ be an outer measure on the power set of the set X. We
denote by v a fixed collection of symmetric members of 4 which are open in the product

space X X X such that » forms a base for the uniformity %.

2.1 Definition: Let A be asubset of X. If AX AC Vforsome Vinwv, wesay that diameter
of A is less than P and write 8 (4) < V.

2.2, Definition: Let{A.:neD,=} bea net of subsets of X. If for every Vin v, there is an
clement nq in D such that 8(An) < Vforall nin D with n>no, we say that diameters of 4,
tend to zero and 6 (A,4) — 0.
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2.3. Definition: Anet{ E.:ne D,2} of subsets of Xissaid to convergetothepomtfeXxfg
¢eN{ E:neD}and 6§ (E)—0
2.4. Definition: For ¥V e vand x € X, let .
S(x V) = {yrye Xand (x.y) € ¥V}
I(x¥V) ={py:ye Xand(x,y) € V}

S (x, V)and S(x V)are called open and closed balls respectively with x as centre and radius
V We also write [ x]}and V{x]for S(x ¥V)yand § (x, V) respectively. It may be noted that
V[x] need not be the closure of V [x].
2.5. Definition: Let E be a subset of X and & be a family of closed ballsin X. We say that
the family & covers the set E'in the sense of Vitaliif for every point xe Ethere is a net of closed

balls in # converging to x.

2.6. Vitali axiom: If a family.# of closed balls in Xis a Vitali converging of aset EC X with g £
< + o0, then for every positive number ¢, there exists a countable family of pairwise disjoint

closed balls { F;} in # such that
SiuF,<pE+ eand p(E|UF) = 0.

2.7. Outer regularity axiom: For every set £C X and for every ¢>>0, there existsan open
set ¢ O Esuchthat u G=pu E-+ e

2.8. Conventions and assumptions:
(i) Sets under consideration are subsets of X unless otherwise stated.
(ii) A means the complement of the set 4 in X.
(iii) Quter measure u is o-finite and satisfies Vitali axiom and outer regularity axiom.
(iv) Every open set in X is y-measurable.
(v) For every x in X there is a member V in v such that u ¥V [x] < + o=,
From Vitali axiom the following result may be deduced which we call Vitali Theorem.

2.9. Vitali Theorem: Let E be a subset of X with u £E<C+ o0 and let Fbe a family of clos.ed
balls in X which covers the set Ein the sense of Vitali. Then for every >0 there exists a finite
family of pairwise disjoint closed balls { Fi, F, ..... ., F, } C.# such that

i u(ENFi)>pE-cand 3% p Fi<puE+ e

3. p-separated sets

3.1. Definition: Two sets E 1 and E; are said to be u-separated if for every € > 0, lhm
exist open sets Gi, Gasuchthat E; C G2, E: C Gaand u ( Gi N Gp)<e

From the above definition we see thatif £; and E; are u-separated, then any subset of E1 is
p-separated from any subset of E,.
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3.2, Lemma: For any set E, there exists a y-measurable set 4 D Esuchthat u 4 =y E. The
set A is called a u-measurable cover of E.

3.3. Lemma: Let E be any p-measurable set and let e be any positive number. Then there
exists an open set G O E such that u (G| E) < e.

3.4. Theorem: A set E is y-measurable if and only if £ and Eare p-separated.

3.5. Corollary: Let § be a u-measurable set and 4 C S, B= 5/A. If A and B are
p-separated, then 4 and B are y-measurable.
3.6. Theorem: If the sets E; and E; are p-separated, then u(E1 U E2) = pEi+ unE;.

3.7. Theorem: Let Ey and E; be any two sets with p E; and p E> finite. If u(E, U E») = ~

uE1 + pE,, then E, and E; are pu-separated. —
The above results can be proved in the usual way. For the proofs of the results of this
section, Vitali axiom is not necessary.

4, Density of sets
4.1. Definition: Let EC X, fe Xand Vev
Write A (£, V) = {W[£]: Wevand WC V},
AEY={ WIE)L: Wev).

u(EN F)

Let D* (E, & V)= Sup{ :FeA(£,7)}),

D, (5 & vy =inf { 2EOD . penie, 1y}
pF
[If uF =0, we take BEQH = 0]

uF

D*(E &)=inf{ D*(E& V) Vev},
D (E&)=Sup {D(EEV): Vev).

D* (E. £) and D, (E §) are called upper and lower densities of E at {. If D* (E.£) = D,
'E,£), the common value is denoted by R(E,£) and is called the density of Eat {. If D(E £)=
I, we call £ a density point of E and if D(E, £) =0,  is called a dispersion point of E.

For 7 and ¥ in v, let us define U= Vis U C V. It is easy to see that v, =) becomes a

lirected set. For a member Vo in v we prite

v (Vo) ={V:Vevand ¥ C ¥o}.
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4.2. Lemma: Let Ebe asetand £ ¢ Eand X be a positive number. If D ( E, £) <A, then
there exists a Vo e vand a net {F.: ¥ e v{ V) } of closed balls with £as centre and converging

to £ such that
BENF)

for all ¥ € v (Vo).
pFy

4.3. Lemima: Let Ebeasetand fe Eandlet O<A<L. If D*( E, £)>>\, thereexists a Voev
and a net { Fy: ¥ € v(Vo) } of closed balls with £ as centre and converging to £ such that

p(ENF,)

W F. >xforall Vew(Vo).

The proofs of the Lemmas are easy and omitted.
4.4. Theorem: Almost all points of a set E are density points of E.
Proof: First suppose that p £ <+ o,

Let {\+} be a strictly increasing sequence of positive numbers converging on 1. For each
positive integer v, let 4. denote the set of points of E where the lower density of Eis less than
- Av. Take any positive integer 7 and consider the set A .. If x € 4, then by Lemma 4.2, there

exists a net { F: Veu( Vo) } of closed balls with centre at x and converging on x such that for
all Vev (W)

w(ENF,) i m
wF,

Let .# denote the family of all closed balls { F,} thus associated with the points of the set A,
Then the family & covers the set A, in the sense of Vitali. Choose any ¢>0. By Vitali

Theorem there exists a finite family of pairwise disjoint closed balls{ Fi, Fi........, Ex} C F such
that

SEp (ANF) > pAn~eand Shy pFi< pAy +e @
Using the relations (1) and (2), we get

pAn— €< I weanF) < IV wENF)

<an S WF < ha(uda+ 6
or (I —An) pd, <(1+ A,) €

1+ Ay

or #An<(l x €.
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Since € > 0 is arbitrary, it follows that 4, = 0. Now, let A denote the set of all points of E
where the lower density of E is less than unity. The 4 = U.; A,. So pA = 0.
The general case can be proved using the o-finiteness of the measure u.

4.5. Theorem: If thesets E; and E»are u-separated, then at almost all points of one set the
density of the other is zero.

4.6. Theorem: Let £1 and E; be any two sets. If at almost all points of £, the density of £,
is zero, then E and E» are u-separated.

Proceeding as above and using the Lemmas 4.2 and 4.3, the results can be proved.
Let 4 and B be any two sets. We denote by As[ B4] the part of 4 [ B] where the upper
density of B[ A] is positive.

4.7. Theorem: Suppose that the sets A and B are not u-separated. Then the sets 4zand
B4 have positive outer measures; also no part of 4p with positive outer measure is u-
separated from Ba and no part of B4 with positive outer measure is p-separated from As.

The result can be proved in the usual way.
4.8. Theorem: Let F be any closed ball.

Then p (As N FY=p (B4 N F)=p[(AsU B4) N F] 3)
Proof: If A and B are u-separated, then by Theorem 4.5, u A3 =0and g B4 =0and (3)

follows.

Suppose that 4 and B are not u-separated.

Write do = As(V F, Bo = B4 Fand Co = (A4 B) N F.

We have ot Ao < p Co and p Bo = p Co.

Assume that g Ao < p Co. Let A be any open ball containing F. By outer regularity of iz we
can choose an open set G C A such that 4o C G and u G < p Co.

Let E= A/ G. Then Eand G are u-separated. So, same is true for the sets EN Coand GN
Ap. Again, EN Co C Fand EN AsC A/ F; so the sets ENCy and EN Ap are p-separated,
Hence, EN Co is u-separated from the set (GN Az} U (ENAp)=ANAs. Th.c sets Aand A
are u-separated ; hence, so are the sets £1 Co and AN A5. Therefore EN G is p-separated
from (AN Aj) U(ZﬂA,) = A4z Clearly ENCoCAs U By and g (EN G) > 0.

Write E, = EN CoN Agand E;=EN CoN B4. Then E\U E; = ENCo. Soeither u E1 >
Oor u E; > 0 or both.

Let g E; > 0. Since Ey C Ajg, by Theorem 4.4, at almost all points for £, the density o.anis
unity. This contradicts Theorem 4.5. If 4 F; >0, then it contradicts Theorem 4.7. Thusinany
case we arrive at a contradiction. So u Ao = g Go.

Similarly, we can show that u Bo = u Co.

4.9. Corollary: Suppose that the sets 4 and B are not p-separated. Then at almost all
points of the set Aj [ B4] the density of B4 [ Aa] is unity.
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4.10. Theorem: Let E be any set. Then E has density either zero or unity almost
everywhere.

4.11. Theorem: Let A be any set. If A contains almost all its points of density, then A is
up-measurable.

The above results can be proved in the usual way using the previous resilts.

4.12. Theorem: Let Aand B be two sets. Suppose that at each point of Bthe density of 4is
unity. Then at any point acx,

D* (A, )= D* (B,a)and D, (A, a) = D, (B, ).
Proof: We prove the result by the following steps.

(l) Let E denote a measurable cover of 4. Write By = B Eand B = BN E. Since Eand

E are p-separated, it follows that A is u-separated from E. So A has density zero at aimostall

points of E. This gives that u Bo=0andso u B= y B,. Since By C E,wehave u B=uB <k

= puA.

(11). Let G be any open set. Ao = GNA and By = GNB. We show that
u B = p Ao

If B, is void, then clearly (4) holds. Let xeBo.
'i'hen we can choose a member V in v such that
@ P[x]<+ o and ¥[x]C G
Let F be any closed ball with x as centre and FC V{x].
Then AvNF = ANGNF = ANF. So,

u (AN F) - H(ANF)
pF uF

This gives that 4o has unit density at each point of Bo. So by step (I) we have

pBe = uAsg
(III) Leta e Xand let ¥ be any member of v with g ¥ [x] < + ec. Take any closed balt]
with @ as centre and FC V [a]
For each positive integer n, we can choose an open set G, D Fsuch that pG. < pF +1/n
We can choose the sets Gi, Gz, G, ... suchthat G1 D G2 D Gs D ... Let E= Nzt G
Then FCEC Gy SOuFS pES uGy < uF+1/n.

Letting n — o, we get
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lim, wGn = pE = pfF.

This gives that
u(ANF)=lim u (G, A)
and £ (BN F) =Li3.1,u(Gm B)

By step (A1), u(G. M B) < p( G, M A) for each n.
So, u( BN F) << u(ANF)

w(BNF) _ u(ANF)
uF - uF

or

This gives that

D* (A, @)= D* (B,a) and D, (4,a) = D, (B, a).

5. Construction of an outer measure on a metric space which is ¢-finite, outer regular and
satisfies Vitali’s axiom

Let (X, d) be a metric space such that every closed ballin X is connected. For any positive
number r, let W, = {(x,y): x,yve X and d(x,y)<r}and letv = { W,:r>>0}. Denote by% the
collection of all subsets of X X X such that if Ue%, then W, C U for some r>>0. It is easy to
verify that % is a uniformity on X and v is a base for%.

Since for each x ¢ X and r >0, W, [x]={y:y e Xand d (x, y}<r } = B(x,r)an openball
in X with x as centre and radius r, it follows that the topology induced by the uniformity?/ on
X is identical with the topology induced by the metric d. Clearly each member of v is
symmetric and open in the product space X X X. Thus the open and closed balls in the
uniform space (X, %) are same as those in the metric space (X, d).

Denote by & the collection of all countable families of pairwise disjoint closed balls in X.

-t the function ¢:[0,%) — [0, %) satisfy the following axiom.
A1):¢ is strictly increasing, continuous and ¢ (0) = 0.

For any closed ball F with radius r we define A ( F) = ¢ (r). For any family # €% we write
(FY=S{M(F): FeZF}
low, for any non-void open set G we define
AMG)=sup{A(F): FeCand U{F: FeF}C G
learly A (G) > 0. We also define A(¢) = 0.
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We assume that the function A satisfies the following axioms.

(A2); I Foisaclosed ball, #€¥ is finite and U{ F: F e #}Cint (Fo), then A (FIK A (Fy).

(A43): If Fis aclosed ball and { G. } is a countable family of open sets with FCU,, G,, then
MF) = 3. MGn)

A
(A4): There i§ a positive number M such that A(F) =< MA(F) for all closed balls Fin X,
where F denotes the closed balls concentric with F and with radius five times that of

F.

We now define the mapping p: & (X) — [0,0] as follows:

Let E be any subset of X. We define
uw(E)=inf{ A (G): Gisopenand EC G }.

We can verify the following:

(i) The mapping u is an outer measure and x G = A G for any open set Gand u F= X Ffor

any ‘closed ball F.

(ii) u is a metric outer measure and so every open set is p-measurable. Further u is o-finit

and outer regular.

(iii) The outer measure u satisfies Vitali’s axiom.
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