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Abstract

A complex inversion formula for the generalized Stieltjes transform of a function (1) ¢ L (0,%0) defined by

a m S
- i p=1 PG
F(s) =T (p)sm* f Grr at(m, p>0)

converges for complex s-plane cut from the origin along the negative real axis is extended to a eertain class of
generalized functions interpreting convergence in the weak distributional sense.
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1. Introduction
The conventional Stieitjes transform of a function f(r) € L(0,°0) defined by the integral

2§ fly
F(s) —{ rormkl (1.1

converges for complex s-plane cut from the origin along the negative real axis. The general-
ized form of the transform (1.1) is given by the convergent integral

s £ f() 2
F(s) ~{ T (1.2

in which p € R is fixed, — = < args <, the principle value of (s-+1)?is takenand (J-4¢)f(¢)
€ L(0,%) is assumed. The generalizations of the transform (1.1) have been made by various
mathematicians from time to time. Some generalizations of the transform (1.1) have been
studied in the distributional sense by Ghosh ' Tiwari? and others. The transform (1.1) and
(1.2) have also been studied in the distributional serise by Pandey® and Pathak” respectively.
The transform (1.2) has also been extended to generalized functions both by direct approach
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and the method of adjoints and the resulting extension are correlated and inversion formulae
are also developed, as the application of fractional integration to these transforms by
Erdelyi®. The simple generalization of (I.1) given by the integral

o

Fis) 2 T (p)smo { AN

Gy S0 (3

converges for complex s in the cut plane bas not so far been extended to generalized
functions.

The inversion formula for (1.3) is given by the following:

Theorem 1.1: Lett™ ™ f(t}Y€ L(0,°0) and let f(x) be of bounded variation in the neighbous-
hood of the point x==1. Let f(s) be defined by (1.3) and $™ ™ F(sYy €L (0,90) where [=g+iT
Then

o+iT
12 [f (£4+0) +7 (10} ) = 27i)™" lim J oMy a1
o=iT
where
-
oy = T(1-D)T(p—1+0)
and
M) = ™ P(s)ds
[}]
provided
1-p< Re(l)< 1
and

M (1) is absolutely convergent.
Proof: This can be casily proved by using Mellin’s inversion theorem.

Pandey’ and Pathak* extended the real and complex inversion formulae for the Stieltjes
transforms (1.1) and (1.2) respectively to the same space of gencralized functions. But the
object of the present paper is to extend the inversion formuta (1.4) for the more generalized
Stieltjes transform (1.3) to a different space of genefalized functions interpreting the conver-
gence in the weak distributional sense. Also we adopt a different technique to those of
Pandey® and Pathak®. The notation and terminology follow that of Zemanian®.

Let.7 be the open interval (0,20) and D(/) the space of smooth functions on I having
compact supports. The symbol D’(/) stands for the space of distributions defined over the:
testing function space D (/). The topology of D(I)is that which makes its dual the space of
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D'(I) of Schwartz distributions. €(I) denotes the space of smooth functions on 7. Its dual €
(1) is the space of distributions with compact supports on 7.

1. The testing function space J_ , (I)

Let B8 be a suitably restricted real number and let #4(2) be the function

ity = ¢# 0<r<1,

=1 (1.

An infinitely differentiably complex valued function ¢ (¢) defined over /= (0, %) belongs
to the testing function spaces J, , (/) if

%(d) 2 v, (d) 2 sup (LH™)r | ug (0™ (A @ () | <o
f<s o0

forallk = 0,1,2, ... and « is a fixed real number less than or equal to p. We assign to J, (/)
the topology generated by the collection of seminorms {yi}i-o. J,, () is sequentially
complete Hausdorff locally convex topological linear space. The dual J,, , (/) of J, z(1}is
also sequentially complete. The members of J), 4 (1) are called generalized functions. The
topology of D (/) is stronger than that induced on it by J, ([). Therestrictionofany fe J, ,
(yto D(I)is in D’ (1).

3. The distributional generalized Stieltjes transformation

For a complex s not negative or zero.

L(p)sme!

mry 0 a0

K(s, 1) =
belongs to Jap (/) where o < pand ma + 8= mp.
Therefore, the distributional Stieltjes transformation F(s) of an arbitrary element f'€ Jas
(D) for o < p and ma + B = mp is defined by

a8
F(s) = <f(1), K(s,2) > 3.2
wvhere s belongs to the complex plane cut along the negative real axis including the origin.
Theorem 3.1 : For an arbitrary f € Jas (I), e = pand ma + B= mplet F(s) be defined by
3.2). Then for r = 0,1,2, ...
a

d _ 9
( s Y F(s) = <f(1), Py K(s,1)>
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where K(s,1) is as defined by the equation (3.1),
Proof: Using the fact that for a < pand ma + B=mp

e
Vi [a~57 K(s,1) ] <eo(k,r=0,1,2..)

where s belongs to the complex plane cut from the origin along the negative real axis and by
using Cauchy’s integral formula one can prove the result.

4. Complex inversion formula
Before going to prove the main theorem, we shall first prove some lemmas.

Lemma 4.1: The function ™™ as a function of u is a member of Jap (Difm-ma-g=
mRe (D<m-ma.

Proof: It is clear that »™ ™ is differentiable function of w.

Consider

d -m
sup (l1+u™) | tig () u™ (u"'"——)ku'"l |
0o

i

sup  (1+u™e | py () u™ m* (-1) (1-2) ... (0=k) u™ " |
D00

[l

sup_ (1+u")e | m* o, ) (-1) (1=2) .. (=K) u™ " | < oo
under the condition stated in Lemma 4.1,

Hence ™™™ € 7, (D).

Lemma 4.2: For f € J, 4 (]),
T]fs'"”'" < f(u), K(su) > ds

=<fn [ Ksuyds > @D

Proof: By using the technique of Riemann sums one can easily show that

R R
£s""" <) K (sw) > ds = <f(u), [ s"7" K (s.u) ds > “
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Again, since
Eﬂ"'" K(s,u)yds = 0inJ, 4 (1) as R~ o,
one can easily justify taking limits as R — o0 in (4.2) to obtain (4.1).
Lemma 4.3: Let ¢ € D(I), and set
v,y = f¢ )y dy

where / = o-+iTand f € J,, ,(J) then for any fixed r with 0 <r < coand m—-ma~B<ma<<

m-mda,

[ sy, wmm >4, 0T = <), ['umry, 0)yar> @3

Lemma 4.4: If ¢ € D(1), then

@ mo=-m+1 u X
@ [ () Lulog ()" [sin (rlog ( )" ]1dy 4.4 .
0

converges in J, , (1) to ¢ as r — 0.

The proofs of lemmas 4.3 and 4.4 can be proved on the similar lines by changing suitable
variables from lemmas 3.5.1 and 3.5.2 of Zemanian® (pp. 64-66).

Fheorem 4.1 (Complex inversion formula): Let f(y) € J, ,(I) where a = p, me +B.>_n_1 o
and F (s) be the generalized Stieltjes transform of £ () as defined by (3.2). Then for each
&(y) € D(I), we have

atir

lm <[ Q) M)y AL $() >
= <f) o) > “5)

Proo/_: Let ¢ € D(I) and choose real numbers « and Bsuchthatm—-mo—B<mo<m-ma
and &< p. Our object is to show that equation (4.5) is true. Since the integral on /is a conti-
nuous function of y, the left hand side of (4.5) without the limit notation can be written as

am™ [ o) [ @) M)y dTdy, 1= o+iT, r>0.

As ¢ (y)is of bounded support and the integrand is a continuous function of (», T), the order
of integration may be changed.
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This yelds,
em [ ow { fs”"” F(s) ds }f«ﬁ(y)y""“"’“ dydT
which by Lemma 4.2 is equal to
em’™ f_‘,'<f(u). .! Q) ™™ K(s.u) ds > _Zy"""”"‘ ¢(p)dydT

=@m* [ <s@n > [ oy and T

provided
I-p< Re() <1

on using a result

F m ml-m = g
{ I’(I—I)]‘(;;-—H—I)s K(s,u)yds=u .
- By Lemma 4.3,

@0 ['<fa) um > 6 () y T dy dT

=< s @0 [u [ )y gy ars.

The order of integration for the repeated integral herein may be changed because again ¢(y

is of bounded support and the integrand is a continuous function of (y, 7). Upon doing thi
we obtain,

<f(u), (2m)°" [’umhm! SOYy T dy d T >

<fw), @m) [ 60 [ umm y et aray >

o -r

<, () [ S) (ufyymemisin[ 7 log (u/ )™ ]

[ulog (u/y)" 1" dy >.
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The last expression tends to < f(y), ¢(y) >asr—oo bccausefeJ;‘ﬂand according to lemma
4.4, the testing function in the last expression converges to ¢(y) in Ja.s( 7).

This completes the proof.

5. Tiustration of the inversion formula by megns of numerical example

Consider the delta functional 8 (z—k), concentrated at a point &, 0<k<oe. Since 5(1—k) €
¢ (1), = (0,0) and e’ (]) is a subspace of J'«.s(I), the generalized Stieltjes transform of §

(¢~k) is given by

_ _ = T'(p). smpt
Fl9)=<80k), —oomn

= T (p). sm ' (5" + k")
Now by inversion theorem, for any ¢(y) € D(I),

i

< @miy* [ o) Myl dlL e() >

a-ir

otir '3

=<@riy' [ o). ([ 5™ Fsyds } y™ L ¢() >
a—~ir a
o+ir s I‘ (p) smp"l dJ

=< @miy [ o { [ — o= T L s>

=

otir
=< @m? [ kYT AL 6 () >

o=ir

On using a result

i _...—m_.__. ml-m — mi-m
lr(l—z)p(p_lﬂ)s K(s,u)ds = u

on further manipulation it can be shown that

o+ir
(2"'.)-1 f Pl y—mhm—x al— & (y-k)

e—ir

Therefore
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atir

< @uyt [ g g e ) >

ohirl

= <G (y—~k), ¢(y) >.

This illustrates the inversion formula.
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