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Abstract | I describe the use of techniques based on composite rotations to combat

systematic errors in quantum logic gates. Although developed and described within the

context of Nuclear Magnetic Resonance (NMR) quantum computing these sequences should

be applicable to other implementations of quantum computation.

Introduction
Quantum computers [1,2] are explicitly quantum
mechanical systems that use quantum phenomena
to perform computational tasks more efficiently
than any classical computer. Unsurprisingly
quantum computation has generated enormous
interest, reflecting not just its potential technological
importance, but also the intellectual importance of
the challenge provided to previous formulations
of computational complexity theory. This interest
is tempered by the apparent difficulty in building
large scale devices capable of implementing useful
computations, but it has proved fairly simple to
build small demonstration devices, and nuclear
magnetic resonance (NMR) has played a leading
role in this.

The first ideas on how to build quantum
computers with NMR [3–7] were swiftly followed
by the first implementations of quantum algorithms
[8–11]. It must be remembered that the great
difficulty in preparing NMR systems in pure spin
states has given rise to grave concerns about the
direct relevance of NMR techniques to attempts to
build large scale devices [12–14], and has even led
to questioning of whether many NMR quantum
computations can be considered true quantum
computations at all [15]. Despite this, NMR remains
an interesting technology for exploring simple
quantum phenomena and developing techniques
which may find applications in other technologies.
A number of reviews, e.g. [16–20], have described

developments in particular areas of NMR quantum
computing. In this paper I will describe the use
of composite pulses, a technique developed in
conventional NMR [21], to the design of quantum
logic gates which are resistant to systematic errors
in their implementation [22–25].

Spin-half nuclei in liquid samples
There are many possible physical implementations
of a qubit, but a particularly natural implementation
is provided by a spin-half atomic nucleus, such as
1H. A two-qubit quantum computer can be built
from two atomic nuclei, and so on. It is necessary
that the two nuclei are distinct, so that the the
two qubits can be separately addressed, and there
must be some sort of spin–spin interaction, so that
two-qubit logic gates can be constructed. This is
easily achieved by using two inequivalent nuclei in a
molecule.

The spin Hamiltonian [26–29] is in principle
quite complicated, but in liquid state (or
solution state) samples is greatly simplified by
rapid molecular tumbling. This largely removes
intermolecular interactions such as dipolar
coupling, and cancels out the anisotropic parts
of intramolecular interactions, such as the chemical
shift and scalar coupling, reducing them to their
isotropic forms. The cancellation of intermolecular
interactions results in an ensemble of identical
independent molecules, which can for most
practical purposes be treated as a single molecule
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in a (usually [30]) highly mixed spin state.
(This cancellation is not, of course, perfect, and
intermolecular and anisotropic interactions remain
an important source of spin relaxation.)

An important practical distinction can be made
between systems where all the spins are of different
nuclear species (a fully heteronuclear spin system)
and those with two or more nuclei of the same type
(a homonuclear spin system). As there are a limited
number of different spin-half nuclei, among which
only six (1H, 13C, 15N, 19F, 29Si and 31P) have been
used in quantum computing experiments so far, it
is clear than only very small quantum computers
can be fully heteronuclear, but the relative ease of
working with such systems makes them popular for
implementing simple tasks.

Systems involving quadrupolar nuclei, with spins
greater that one half, or nuclei in solid or liquid-
crystal samples, have also been studied, but for
simplicity in this paper I will only consider systems
of spin-half nuclei in the liquid state. The NMR
Hamiltonian for such a system is in general given by

H/h̄=
∑

j

ωj

2
σ

j
z+

∑
j<k

ωjk

2
σ j
·σk (1)

although in real systems the coupling strengths ωjk

between distant nuclei can frequently be taken as
zero. Spin–spin couplings are fairly weak, and so
in many cases (including all fully heteronuclear
systems) it is possible to use the weak coupling
approximation

|ωjk|� |ωj−ωk| (2)

leading to the simplified Hamiltonian
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∑

j

ωj

2
σ

j
z+

∑
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zσ

k
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where the sum is now taken over spin pairs with
non-negligible couplings.

NMR texts and papers typically describe spin
systems using product operator notation [28,29],
which is closely related to but not quite identical
to conventional physics notation [16]. Within this
language a two-spin system would be described by
the Hamiltonian

H= 2πνI Iz+2πνS Sz+πJ 2Iz Sz (4)

where

Iz =
1
2σ

1
z , Sz =

1
2σ

2
z , (5)

and the factor of h̄ has simply been dropped by
choosing to work in angular frequency units.

Quantum logic gates
It is well known that in order to perform general
quantum computations, it is only necessary to
implement single-qubit gates, which change the
state of a single qubit, and one non-trivial two-qubit
gate, for which the final state of at least one of the
two qubits involved depends on the initial states
of both qubits, so that the two-qubit gate encodes
some sort of conditional logic [31].

Single-qubit gates correspond to rotating a single
spin in its own one-spin Hilbert space. For a one
qubit computer, implemented using a single nuclear
spin, this can be achieved by applying RF fields. For
simplicity if often best to consider only resonant RF
fields, so that the rotation has the form

U (θ,φ)= exp[−iθ(Ix cosφ+ Iy sinφ)] (6)

where θ and φ are the pulse nutation (flip) and
phase angles. Rotations about axes not in the xy
plane can be implemented as sequences of pulses.
For example, rotations around the z axis are easily
constructed with composite Z-rotations [32], using
identities such as

θz = 90y θx 90−y (7)

where the pulse sequence is written with time
running from left to right, so that the leftmost
pulse is the first pulse applied. In larger spin
systems it is necessary to do this in a qubit-selective
manner; in a fully heteronuclear spin system qubit
selection is simple, as every spin will be a long
way from resonance with every other spin, and
simple pulses applied on resonance can be used, but
in homonuclear spin systems more sophisticated
approaches are necessary [16].

Next I turn to non-trivial two-qubit gates in
two-spin (two-qubit) systems. In NMR experiments
the key two-qubit gate is the controlled-Z gate

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (8)

which is easily converted to a controlled-
by a pair of Hadamard gates. Controlled-Z is
symmetric between the two spins and it can be
easily decomposed with product operators [33] as

controlled-Z= exp[−i π/2 ( 1
2 E− Iz−Sz+2Iz Sz )]

(9)
where E indicates the identity matrix. All four terms
commute, and so can be considered individually.
The 1

2 E term is just a global phase, and can be
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ignored as usual. Terms in Iz and Sz are single qubit
rotations, and so can be implemented with single-
qubit gates, or simply absorbed into the reference
frame [34,35]. This leaves the only important term,
which corresponds to evolution under the spin–spin
coupling term, πJ 2Iz Sz for a time 1/2J . The spin
Hamiltonian will include both Zeeman and coupling
terms, but conventional spin-echo sequences [36]
can be used to remove the undesirable terms [37].

Composite pulses
Composite pulses [21] have found widespread use in
conventional NMR experiments to reduce the effects
of a wide range of experimental imperfections,
most notably off-resonance effects, which arise
when the RF field is not quite resonant with
the transition so that nutation occurs around
a tilted axis, and pulse length errors arising
from variations in the strength of the RF field.
(These errors could be better described as pulse
strength errors, but the unhelpful name is almost
universal.) As similar imperfections are likely
to affect most experimental implementations of
quantum information processing there has been
interest in applying these ideas.

Composite pulses are only one of a whole range
of techniques for improving the quality of RF
excitation in NMR experiments. Traditionally these
can be divided into composite pulses, made up
of a small number of pulses, each with the same
frequency and strength but differing in length and
phase, and shaped pulses [38], which contain a
very large number of elements, each with the same
frequency and length but differing in strength
and phase. A further pragmatic distinction is that
composite pulses can often be derived and explained
using analytical approaches, while shaped pulses
are frequently derived numerically using analytic
ideas only as an outline guide. These distinctions
have increasingly broken down with the advent of
strongly modulated composite pulses [39]: these
contain a small number of pulse elements, but
these pulses are permitted to vary in frequency and
amplitude as well as phase, and the pulse sequence is
obtained by numerical optimisation. More recently
still these have largely been superseded by arbitrary
shaped pulses developed using optimal control
theory, usually based on the GRAPE algorithm
[40,41]. In this review I will confine myself to
“conventional” composite pulses, with analytical
derivations.

Most conventional composite pulses are not
suitable for use in quantum computers, as they are

optimised for particular classes of initial state: for
example, most composite 180◦ pulses are optimised
either for inverting the population of a spin or for
producing a spin echo. By contrast, pulses used
on quantum computers must be general rotors,
which perform well for any initial state. Composite
pulses of this kind are rarely used in conventional
NMR, but a small number of so-called Class A
composite pulses [21] are known, and these have
been developed for use in quantum computation.
A method for constructing general rotors from
conventional point-to-point pulses has also been
described [42].

Fidelity measures
The quality of a composite pulse for quantum
computing can be assessed in various ways, but
in practice there are two important families of
approaches. The most direct approach is to expand
the propagator for the composite pulse as a power
series in the size of the error, and determine the
size and order of the lowest order error term. As
an example consider implementing a 180◦x rotation
using a naive pulse with a fractional pulse length
error of ε, so that the flip angle of the pulse is in fact
180× (1+ ε). The ideal propagator is then

U = exp[−i π σx/2] =

(
0 −i
−i 0

)
(10)

while the actual propagator is

V = exp[−i π(1+ ε) σx/2] (11)

=

(
0 −i
−i 0

)
− ε

(
π/2 0

0 π/2

)
+O(ε2) (12)

and so the naive pulse has an error of order
ε. Alternatively the quality can be assessed by
calculating the propagator fidelity between U and
V , given by

F= |Tr(V U−1)|/Tr(U U−1), (13)

and then expanding the fidelity as a power series in
the error. For the naive pulse considered above the
fidelity is

F= 1− ε2π2/8+O(ε4) (14)

and the naive pulse has infidelity of order ε2. The
difference between these two methods of assessing
a pulse must be borne in mind when comparing
pulses in different papers; in general an error of
order n will correspond to an infidelity of order 2n
[43,44].
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Off-resonance errors
An early composite 90◦ pulse tackling off-resonance
errors was described by Tycko [45], replacing a 90◦x
pulse with the three pulse sequence 385◦x320◦−x25◦x .
This has subsequently been generalised to give the
 family of composite pulses [23,24], in
which a θx pulse is replaced by three pulses, applied
along the+x,−x and+x axes as before, with flip
angles given by

θ1 = 2n1π+
θ

2
−arcsin

(
sin(θ/2)

2

)
(15)

θ2 = 2n2π−2arcsin

(
sin(θ/2)

2

)
(16)

θ3 = 2n3π+
θ

2
−arcsin

(
sin(θ/2)

2

)
(17)

where n1, n2 and n3 are integers, with the
best results [24] occurring for n1 = n2 = 1 and
n3= 0. These sequences have been demonstrated
by NMR [23],  [46] and neutral atom
[47] experiments. Pulse sequences have also been
designed which are tailored for particular off-
resonance effects [48].

Pulse length errors
While off-resonance errors are important in
conventional NMR, they can largely be avoided
in quantum information processing experiments.
Pulse length errors, however, remain a universal
problem, arising from inhomogeneities in the RF
field, either in space (over a macroscopic sample)
or in time (due to slow fluctuations in amplifier
power). There has, therefore, been considerable
interest in composite pulses to tackle pulse length
errors, which can largely be traced back to a three
pulse composite 180◦ pulse due to Tycko [45] or to
the BB1 family of sequences discovered by Wimperis
[49]. Tycko’s pulse sequence has been generalised to
give the  family of composite pulses
[24], but using the BB1 family is preferable in most
cases.

BB1 differs from many other composite pulses
in that it seeks to design an error-correcting pulse,
which can be combined with the naive error-
prone pulse to give a more accurate compound
pulse, much as a contact lens can be used to
correct eyesight. Originally [49] this error correcting
sequence (sometimes called a W1 sequence) was
placed before the naive pulse, but it can instead be
placed after the naive pulse, or indeed in the middle
of it [24,25]. It comprises three pulses, in the form
180◦φ1

360◦φ2
180◦φ1

, with φ2= 3 φ1 and

φ1=±arccos

(
−
θ

4π

)
(18)

where the choice of sign is unimportant as long as it
is made consistently.

In addition to NMR experiments [50,25] BB1
pulses have been demonstrated in electron spin
resonance [51,52] and neutral atoms [47], and have
inspired applications in other fields [53–55].

Higher precision sequences
BB1 has proved a remarkably successful composite
pulse, and is surprisingly difficult to improve upon.
BB1 pulses can be derived by designing composite
pulses which suppress first order pulse length errors,
but it turns out that BB1 also suppresses second
order errors automatically, leaving only third order
errors (sixth order infidelity). It is not clear why this
fortuitous double cancellation occurs, and it is not a
general feature of composite pulses. Other pulses
with similar properties are known [56], but these
have no advantages over BB1. Beyond this, BB1
pulses are also relatively robust to off resonance-
errors [24], and generally insensitive to small errors
in their implementation, so that BB1 pulses work in
practice very much as expected from theory [25].

Although BB1 has proved highly successful, it
is obviously interesting to seek still better pulse
sequences, and Brown et al. have tackled this in
two ways [43,44]. Firstly they have shown how the
BB1 approach can, in effect, be nested, creating
ever higher orders of simultaneous correction. A
robust 90◦ pulse from the B4 family of pulses
(which remove the third order error term) has
been implemented in NMR experiments [25], but
this composite pulse is very long (the correction
sequence contains 27 pulses with a total length
equivalent to a 7200◦ rotation) and does not
perform much better than BB1. Secondly they
have described a general method, using insights
from the Solovay–Kitaev theorem [57], to show
how arbitrarily accurate composite pulses can be
constructed in general, by building a series of
correction sequences which correct errors one
order at a time. An expanded version of part of
their method written in more conventional NMR
notation is also available [58]. Once again high
order corrections sequences developed using these
ideas can become extremely long, and it is not clear
how well such complex pulses will work in practice.
In comparison BB1 pulses are extremely robust [25],
and so may prove the ideal compromise between
theoretical precision and practical implementation.

Two qubit gates
The method can be extended to build two-qubit
gates which are robust to variations in the size of
the underlying scalar coupling [59,60] using an
analogy between rotations on the Bloch sphere
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and the rotations in a multi-qubit Hilbert space
which correspond to evolution under the spin–spin
coupling. In combination with the single qubit gates
described previously these provide a universal set
of robust quantum logic gates. They have been
demonstrated using NMR techniques [25], but it
is not yet clear how important they will prove in
practice.

Conclusions
Composite pulse techniques adapted from
conventional NMR experiments have already
proved to be extremely useful in NMR quantum
computation, and have begun to find wider
applications in related fields. Pulse length errors,
which ultimately relate to uncertainties in the
strength of the external control fields, are likely
to have analogies in many implementations of
quantum information processing, and the BB1
pulse sequence provides an apparently ideal method
for tackling these, combining good suppression
of errors, relative simplicity, and an apparent
robustness to imperfections in its implementation.

Acknowledgments
I thank the UK EPSRC for financial support.

Received 20 March 2009.

References
1. D. Deutsch, Proc. Roy. Soc. Lond. A 400(1818), 97 (1985).

2. C. H. Bennett and D. P. DiVincenzo, Nature 404(6775), 247
(2000).

3. D. G. Cory, A. F. Fahmy, and T. F. Havel, in PhysComp96:
Proceedings of the fourth workshop on physics and computation,
edited by M. Toffoli, T. Biafore and J. Leão (New England
Complex Systems Institute, 1996), pp. 87–91.

4. D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci.
USA 94, 1634 (1997).

5. D. G. Cory, M. D. Price, and T. F. Havel, Physica D 120(1-2),
82 (1998).

6. N. A. Gershenfeld and I. L. Chuang, Science 275(5298), 350
(1997).

7. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung,
Proc. Roy. Soc. Lond. A 454(1969), 447 (1998).

8. J. A. Jones and M. Mosca, J. Chem. Phys. 109(5), 1648 (1998).

9. I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung,
and S. Lloyd, Nature 393(6681), 143 (1998).

10. I. L. Chuang, N. Gershenfeld, and M. Kubinec, Phys. Rev. Lett.
80(15), 3408 (1998).

11. J. A. Jones, M. Mosca, and R. H. Hansen, Nature 393(6683),
344 (1998).

12. W. S. Warren, Science 277, 1688 (1997).

13. N. A. Gershenfeld and I. L. Chuang, Science 277, 1689 (1997).

14. J. A. Jones, Fort. der Physik 48(9-11), 909 (2000).

15. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu,
and R. Schack, Phys. Rev. Lett. 83(5), 1054 (1999).

16. J. A. Jones, Prog. NMR Spectrosc. 38(4), 325 (2001).

17. L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76(4),
1037 (2004).

18. A. Heidebrecht, J. Mende, and M. Mehring, Fort. der Physik
54(8-10), 788 (2006).

19. C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and
R. Laflamme, Phys. Rev. A 78, 012328 (2008).

20. D. Suter and T. Mahesh, J. Chem. Phys. 128, 052206 (2008).

21. M. H. Levitt, Prog. NMR Spectrosc. 18, 61 (1986).

22. J. A. Jones, Phil. Trans. Roy. Soc. A 361(1808), 1429 (2003).

23. H. K. Cummins and J. A. Jones, New J. Phys. 2, 1 (2000).

24. H. K. Cummins, G. Llewellyn, and J. A. Jones, Phys. Rev. A
67(4) (2003).

25. L. Xiao and J. Jones, Phys. Rev. A 73(3) (2006).

26. A. Abragam, Principles of Nuclear Magnetism (Clarendon
Press, Oxford, UK, 1961).

27. C. P. Slichter, Principles of magnetic resonance (Springer, 1990),
3rd ed.

28. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of
Nuclear Magnetic Resonance in One and Two Dimensions
(Oxford University Press, 1987).

29. O. W. Sørensen, G. W. Eich, M. H. Levitt, G. Bodenhausen,
and R. R. Ernst, Prog. NMR Spectrosc 16, 163 (1983).

30. M. S. Anwar, D. Blazina, H. A. Carteret, S. B. Duckett, T. K.
Halstead, J. A. Jones, C. M. Kozak, and R. J. K. Taylor, Phys.
Rev. Lett. 93(4), 040501 (2004).

31. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and
H. Weinfurter, Phys. Rev. A 52(5), 3457 (1995).

32. R. Freeman, T. A. Frenkiel, and M. H. Levitt, J. Magn. Reson
44(409), 86 (1981).

33. J. A. Jones, R. H. Hansen, and M. Mosca, J. Magn. Reson.
135(2), 353 (1998).

34. E. Knill, R. Laflamme, R. Martinez, and C. Tseng, Nature
404(6776), 368 (2000).

35. M. D. Bowdrey, J. A. Jones, E. Knill, and R. Laflamme, Phys.
Rev. A 72(3), 032315 (2005).

36. E. L. Hahn, Phys. Rev. 80, 580 (1950).

37. N. Linden, B. Herve, R. J. Carbajo, and R. Freeman, Chem.
Phys. Lett. 305(1-2), 28 (1999).

38. R. Freeman, Prog. NMR Spectrosc. 32(1), 59 (1998).

39. E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam,
T. F. Havel, and D. G. Cory, J. Chem. Phys. 116(17), 7599
(2002).
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