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Abstract 

we rnodify Pillow and Grippo's work in which a minimimtmn problem with equality constrants is treated via an 
unconstrained minimization lechnque I" which a new class of augmented Lagranglans is introduced and make a 
suitable use of a method analogous to  the penalty functmn used by Mangasarian ?in the Wolfcdual ofthe original 
mimmization problem. For simplicity wc trcat the case with equality constraints. We beliwe that this method can 
be generalized for inequality constrained problems as well. The advantage of the new method is that the penalty 
parameter remains finite as observed by Mungasarinn. 
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1. Introduction 

In Pillow and Grippo's work', a particular class of Lagrangian is augmented for reducinga 
minimization problem of nonlinear programming as described below to the case of an 
unconstrained mmimization problem 

minf ( x )  subject to g (x) = 0 (1.1) 

The Wolfe dual2 corresponding to problem (1.1) is given as follows: 

max L (x, A) subject to  V, L (x, A) = 0, A 2 0. (1.2) 
ir h l  

where 

G. A) =f(x) + [ k g  1. 
We modify a penalty function given by Mangasarian2 in our case to give the following 

unconstrained maximization problem. 
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We claim that for a constrained problem with inequality constraints the penalty functions 
introduced as in (1.3) via the Wolfe dual problem (1.2) is more appropriate than the one 
taken in Pillow and Grippo's work'. We obtain results on the lines of ~angasar ian ' .  One 
can extend these results using K-K-T conditions of nonlinear programming for minimiza- 
tion with inequality constraints as well. In the next paragraph we explain certain notations 
used in relations (1.3) and (I. 1). 

2. Problem formulation 

In formulation ( 1  .I), f: R" - R' and g: R" - Rm, w ~ t h  m 5 n. We assume unless otherwise 
stated that j a n d  g are three times continuously differentiable functions on Rn. M ( x )  is a 
p x n  matrix with twice continuously differentiable elements and  m 5 p  5 n. y  is a positive 
real parameter. 

To simplify the notation we shall denote by V, L(x, A )  the Gradient and by V$ L ( x ,  A )  the 
Hessian of L (x. A). 

3. Preliminary results 

To establish the relationship between stationary points of L ( x ,  A)  and stationary points of 
S(x ,  A, y )  we obtain some preliminary results as follows. Underlying assumptions are that f 
and g are twice continuously differentiable and that M  ( r )  is a continuously differentiable 
matrix. 

Proposition I: Let ( 7 , X )  be a stationary point for L ( x ,  A ) ,  then (.F,a is a stationary point 
for S(x, A, 7 ) .  

Proof: Employing dyadic expansion for M  ( x ) ,  that is 
P 

M ( x )  = X e , m j ( x ) ,  
,'I 

where ejis thejth columnof the(p Xp)  identity matrix and m , ( x )  is thejth row of M ( x ) ,  we 
obtain the components of gradient of S (1, A, y) on Rnx Rm: 

i 
hoposit&on 2: k t  (Lx) be a stationary point for S(x ,  A, y ) and assume that &) = Oand 
that M ( x )  [ J g ( x  ) / a x ]  'is an (mXm)nonsingularmatrix. n e n  (Gh) is astationary point 
for L(x .  A). 
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proof: Since (x,X) is a stationary point for S(x,  A, y ) ,  we have 

v, S ( F , X  y) = o 
(3.3) 

and 

Also, we have 

Therefore substituting (3.4) and (3.5) in (3.2). we have, because of the nonsingularity of 
M ( > ) [  a g  ( x ) / a . ~  IT, 

Again using (3.3) and (3.6) in relation (3.1). we have 

Further, we already have 

The relations (3.7) and (3.8) together imply that (-?,XI is a stationary point for L (x.A). 

'The proof.of the next proposition follows an analogous course as that of proposition 3 in 
Pillow and G r ~ p p o  '. 
Proposirion 3: Let X X L be a compact subset of R" X R" and assume that M ( x )  
[ a g ( x ) /  a x I T i s  a n  (m X m] nonsingular matrix for any x e X..Then, there i s a y > O  such 
that forall y ~ . ?  if(,,X)jeXX Lisastationarypoint o f ~ ( x , A ,  y),(~,X)isalsoastationarY 
point of L (x.  A). 

4. Local optimalily results 

The results derived next differ from that of Pillow and ~ r i ~ ~ o '  are in tune with similar 
results in Mangasarian2. 

Theorem I: Let ( x , )  be a stationary point of L(x. A). ~ e t _ ~ :  ~ ( ; , h )  be positive definite 
with minimumeigenvalue? > 0. Then for y suchthat y D ( x ) ?  11 Fi, where D ( x ) =  ~ ' ( x )  
M(x), ( x , h )  i s a  stationary point of S(x,A, y )  and the Aessian v 2 S ( r ,  A, ykwitb respectto 
(x,A) is negative semi-definite. If in addition y D [ x )  Z 1 /  5 and %(x) has linearly 
independent rows, then V 2 s  (;,xy) is negative definite and hence (x,A) is a strict local 
maximum of S(x. A, 7) .  
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where thc metrix is a ZX I matrix. 

Recalling that V, L (x.X) = 0 we have that, 

where the above matrix is a 2 X 2 matrix. 

Define 
ax cx) 

C = v : L ( x . h ) a n d  A = -- a~ 
Then, 
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Case [ I :  Cx + A 'A = O  and ( z )  8 0 .  For this case we have that .Y# 0, else A'A = 0 ,  A # O ,  

which contradicts the assumption that the rows of A are linearly independent 

Hence, 

( X ~ A ~ ) V ~ S ( X , X , ~ )  ( I )  A = - x ~ c ~ < ~  
where the last inequality follows from the assumption that C i s  positive semi-definite 

5. Global optimality results 

With no convexity assumption all the results derived so far are local results One can 
globalile some of these results by assuming uniform strict convexity off  and convexity of 8 
on R". In fact one can ahow that for each local soluiiou (I(?). A(?)) oT(I.4) .r(y) is the 
unique global solution of (1.1). 

Theorem 2: Let ,fand 8 he convex and twice continuously differentiable functions on R" 
with f being uniformly strictly convex, (;,X) be a stationary point pf (1.4). &) = 0 and 

M ( ; )  [ a f  (.T) j ( 8 8 )  ] is an m X m nonsingular matrix. Thcn (s,?) is a stationary point 
of L (r ,  A) and x is the unique global solution of ( l .  I). 

Proof of the above result is on similar lines as that of proposition 2 of section 3. 

Remark I: For a possible potential application of our result one can choose a quadratic 
programming problem of the following type: 

min f ( x )  = [x, Ax ] + [a ,x]  

subject to  Bx = h, 

where (ij [ x , A x ]  0 V x : x  =O, Bx = 0 
(ii) B has full rank. 

We can take for M ( x )  any constant matrix Msuch that MB' has rank m. This example is 
taken from Pillow and Grippo '. 
Remark 2: The suitable choices of M ( x ) ,  as discussed in reference I ,  will be valid here too. 

Remark 3: For a comprehensive treatment of penalty method and barrier method in 
nonlinear programming reader 1s referred to zangwil13. 
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