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Abstract

We meodify Pillow and Grippo’s work in which a minimization problem with equality constraints is treated vig an
unconstrained minimization technique in which a new class of augmented Lagrangians is introduced and make a
suitable use of a method analogous to the penalty function used by Mangasarian via the Wolfe dual of the original
minimization problem. For simplicity we treat the case with equality constraints, We believe that this method can
be generalized for inequality constrained problems as well. The advantage of the new method is that the penalty
parameter remains finite as observed by Mangasarian,
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1. Introduction

In Pillow and Grippo’s work ', a particular class of Lagrangian is augmented for reducing a
minimization problem of nonlinear programming as described below to the case of an
unconstrained minimization problem

min f (x) subject to g (x) =0 (1.1)

x
The Wolfe dual® corresponding to problem (1.1) is given as follows:

max L (x,\) subject to V. L (x,A) =0, A =0, (1.2)

(x A}
where
Lix\)y=f(x)+[heg(x)}

We modify a penalty function given by Mangasarian® in our case to give the following
unconstrained maximization problem.

S (A y) =) T[N T || M) (Vef (0) + 5= g(") ST

max S (x, A,7y)
{x )
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We claim that for a constrained problem with inequality constraints the penalty functions.
introduced as in (1.3) vig the Wolfe dual problem (1.2} is more appropriate than the one
taken in Pillow and Grippo’s work '. We obtain results on the lines of Mangasarian % One
can extend these results using K-K-T conditions of nonlinear programming for minimiza-
tion with inequality constraints as well. In the next paragraph we explain certain nctations
used in relations (1.3) and (1.1).

2. Problem formulation

In formulation (1.1}, f: R"~ R' and g: R" — R", with m < n. We assume unless otherwise
stated that f and g are three times continuously differentiable functions on R". M(x)isa
pxn matrix with twice continuously differentiable elements and m < p <n. vy is a positive
real parameter.

To simplify the notation we shall denote by Vs L(x, A) the Gradient and by V2 L(x. A) the
Hessian of L (x, \).
3. Preliminary resuits

To establish the relationship between stationary points of L (x, A) and stationary points of
8§{x, A, vy) we obtain some preliminary results as follows. Underlying assumptions are thatf
and g are twice continuously differentiable and that M (x) is a continuously differentiable
matrix.

Proposition 1: Let (x,X) be a stationary point for L (x, A), then (i, N} is a stationary point
for S(x, \,y).

Proof: Employing dyadic expansion for M (x), that is
I
M(x) = 2 em;(x),
=
where ¢;is the jth column of the (p X p) identity matrix and m; (x ) is the jth row of M(x), we
obtain the components of gradient of S (x, A,v) on R"x R™:

Ve S(6 A Y) =V L(xA)— 7y V2L (% A) M7 (x) M(x) V. L (x M)

am] (x)

) Ve L(x\) e]] M(x) Ve L(xA). (3.0

'v[l_f«l(

dg (x)
Ix

Yy SCo Ay) = g(x) =7 M7 (x) M(x) Vx L (x. A). G2
Therefore,
Vi L (x,X) =0 and g(x) = 0 imply that
Vi S(X,Xy) =0and V, S(X,X,v) =0.
Proposition 2: Let (;,X) be a stationary point for S(x,

X = . A,y) and assume that g(x ) = 0and
that M(x)[dg(x)/ax]" - Y ssur at g(x)=0al
for Lix, )\).[ &{(x)/8x]"is an (m X m)nonsingular matrix. Then (x,X)is a stationary point
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Proof: Since (¥,X) is a stationary point for S(x, \,y), we have

) Ve S(x,Xv)=0 (3.3)
and
Vi S(x.Xv) =0 349
Also, we have
g(xX) =10 3.5)

Therefore subStltutlll5 (3.4) and (3.5} in (3.2), we have, because of the nonsingularity of
[ag(xax],

M(X) Ve L(X, R =0, (3.6)
Again using (3.3) and (3.6) in relation (3.1), we have
Vi L(X. N =0. 3.7

Further, we already have
Vi L(X.X) = g(x)=0. (3.8)
The relations (3.7) and (3.8) together imply that (¥,X) is a stationary point for L {x.X).

The proof of the next proposition follows an analogous course as that of proposition 3 in
Pillow and Grippo .

Proposition 3: Let X X L'be a compact subset of R” X R™ and assume that M(x)
[ag(x)/ Bx] is an (m X m] nonsingular matrix for any x e X..Then, there isa 5> 0 such
that forall y > 7 Y if (x, X)‘e X X Lisastationary point of S{x,A,v), (%, X)isalsoa stationary
point of L (x,\).

4. Local optimality results

The results derived next differ from that of Pillow and Grippo' are in tune with similar
results in Mangasarian®.

Theorem | : Let(x )\)be a stationary point of L(x, ). LetV L(x )\)be positive deflmte
with minimum eigenvalue 7 > 0. Then for y suchthaty D(x )= ]/ 7, where D(x)= M7 (x)
M(x), (x,N)isa stationary point of S(x, A, ) and the Hessian V2 S(x, A, ) with respect to
(x,A) is negative semi- definite. If in addition y D [x) 2 1/7 and Vg (x) has linearly
independent rows, then V2§ (x, X, y) is negative definite and hence (x,A) is a strict local
maximum of S(x, X, y).
Proof: By proposition 1, (x,X) is a stationary point of S(x, A, ). Then we have
VS(aAy) = : VU L(xA\)—yVAL(x, \) MT(x) M(x)VxL(x )
I4
v [ ZM YTx L(x, Ny e]] M(x) V< L(x, \)
ax

g0y =5 = g(x) M7 (x) M(x) Vs L(x. )
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where the matrixis a 2X | matrix.
Recalling that Ve L (x,X) = 0 we have that,

VS(ERNY) =] VIL(EN{ 1-yMT(3¥) M(X) Vi L(X,X)}

_ _ o dg(x)”
{1~y ViL(x,X) D(x)} By
g (x _ -
£ x) {1-yViL(¥xX D(x)}
(5
-y 7 Pix)
where the above matrix is a 2 X 2 matrix.
Define -
. El
C=92L(FX)and A = i(f)
Then,
C(1—y D(X)C) (I=yD(X)CYAT
V' S(XXy) =
A(1-y D(X)C) ~yD{(x)A AT
C AT ]
B - c
= -y D(x) [C AT ]
A 0 A
Now

ANV S(x A ) ()

xTCx+ 2xTAN =y D (x) | Cx+ ATA |2

= bl + 21| || Cx+ A TN =y DX Cx+ AN
=-—nUx-1/F | Cx+ A\

—(yD{x)= R Cx+ AN %

IA

Hence because of the hypothesis, V* $(X,X,¥)is negative semi-definite for v D(¥) = 1] 7.
Case I: Cx+ A™ 5 0. For this case it follows from

Yy D(xX) Z 1/ qthat (x" A7) V2§ [x,A.y) (’;)<0.
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Case IT: Cx+ A Tx=0and (i) 5 (0. For this case we have that x5 0, else A7 4 =0,A#0,

which contradicts the assumption that the rows of 4 are linearly independent.

Hence,

(xTANV? S (x,Ay) () =-xT Cx <0,
where the last inequality follows from the assumption that C is positive semi-definite.
5. Global optimality results

With no convexity assumption all the results derived so far are local results. One can
globalize some of these results by assuming uniform strict convexity of fand convexity of g

" on R™ In fact one can show that for each local solution (x(y), A (¥)) of (1.4) x(y)is the
unique global solution of (1.1).

Theorem 2: Let fand g be convex and twice continuously differentiable functions on R"
with 7 being uniformiy strictly convex, (x,A) be a stationary point of (1.4), g‘(';) =0and
M(X)[8g(X))/(92)]" is an m X m nonsingular matrix. Then (x, y) is a stationary point
of L {x,A)and x is the unique global solution of (i.1).

Proof of the above result is on similar lines as that of proposition 2 of section 3.

Remark 1: For a possible potential application of our result one can choose a quadratic
programming problem of the following type:

min f (x) =[x, Ax ]+ [a, x]
subject to Bx = b,

where (i) [x, 4 x] >0 x:x=0 8x= 0
(if) B has full rank.
We can take for M(x) any constant matrix M such that M B” has rank m. This example is
taken from Pillow and Grippo'.
Remark 2: The suitablé choices of M (x), as discussed in reference 1, will be valid here too.

Remark 3: For a comprehensive treatment of penalty method and barrier method in
nonlinear programming reader is referred to Zangwill®.
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