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Abstract | The Ulam’s problem is a two person game in which one of the player tries to

search, in minimum queries, a number thought by the other player. Classically the problem

scales polynomially with the size of the number. The quantum version of the Ulam’s

problem has a query complexity that is independent of the dimension of the search space.

The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic

Resonance Information Processor with 3 quantum bits is reported here.

aRaja Ramanna Fellow

1. Introduction
Application of quantum laws to classical problems
have yielded quite a few interesting results. Quantum
Ulam’s problem is one such case in which the
query complexity of the problem reduces from
�(n) (n is the number of qubits) to �(1). “Ulam’s
Problem”was raised by S.Ulam in the year 19761. He
proposed a game between Alice and Bob in which
Bob thinks of a number between 0 and 106 (slightly
less than 220). Alice’s job is to find the number in a
minimum number of queries. It had been pointed
out by Mancini and Maccone (M&M) that classically
the complexity of this problem is �(n) while the
quantum algorithm requires just one query to arrive
at the desired result and is therefore independent of
the size of the search space2.

Nuclear Magnetic Resonance (NMR) has been
established as a suitable experimental tool for testing
quantum algorithms3–5 and has been successfully
applied for the implementation of Deutsch-Jozsa
algorithm6–10, Grover’s search algorithm11,12, Shor’s
factorization algorithm13, Quantum games14,15,

Quantum adiabatic algorithms16–18 and geometric
phase algorithms19,20. In this article, we report the
implementation of the quantum-Ulam’s game2, in
a NMR quantum information processor. To the
best of our knowledge this is the first experimental
implementation of the above game. This article
is arranged in the following manner—Section II
contains the theoretical description of the quantum
version of Ulam problem, section III contains the
experimental implementation and section IV deals
with results and conclusions.

2. The M&M quantum algorithm for the
Ulam Problem

The Ulam’s problem describes a game played
between two players Alice and Bob. Bob thinks
of a number between 0 to 2n (where n is an integer)
that Alice tries to find out by asking yes/no type
of queries1. The problem is, what would be the
minimum number of queries that Alice would
need to find the number that Bob has thought.
The number of queries that Alice requires in the
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Figure 1: A quantum circuit for Ulam’s game. The quantum wire with ‘\’ through it represents a set
of n qubits. |91〉, |92〉, |93〉 and |94〉 are the states obtained at the various ages of the computation
as given in the outline of the algorithm in section II (see text). The boxed ‘H’s represents Hadamard
gates and the symbol ‘⊕’ represents addition modulo 2. The measurement process is collection of the
final signal either directly, while observing SQ coherences, or after the application of a z-gradient
followed by a flip angle pulse as in the case of observing the populations. The part of the
computation performed by Alice and Bob are marked in the lower part of the diagram.

classical case, is �(n), given that there are no error
during the transmission. If there are ‘`’ number of
errors then the number of queries needed are �(n
+ ` log(n))2. Classically, Alice can ask questions
like “Is the ith qubit equal to 1”. Only ‘n’ such
question will lead Alice to the right answer. However
if quantum mechanical resources are used, then, by
using superposition Alice can solve the problem in
one query.

In the quantum version of the game, one
uses two registers. The first register consists of
n query qubits and the other register consists
of one qubit where Bob store the result of his
unitary operation containing information about
the number that he had thought. The algorithm
starts with Alice creating an equal superposition
of all the qubits of both the registers by applying
a Hadamard transform on the qubits. Bob then
calculates the value of the function fa by performing
a controlled unitary operation. The function fa
is defined as fa:Rn

→ R such that fa(x) = a · x
where “·”stands for the usual scalar product defined
as a·x ≡ mod2(

∑
j ajxj). Alice again interferes

the qubits by applying Hadamard gate and then
measures the first register to get the result2. The
outline of the algorithm proposed by M&M is given
below. The qubits belonging to the first register is
denoted by the subscript A and the qubit belonging
to the second register is denoted by the subscript B.

Algorithm
1. Alice first prepares both the registers in a pure

state (pseudo-pure state in NMR3,4),

|9〉1= |0〉
⊗n
A |1〉B,

and then performs Hadamard transform on
both the registers A and B yielding

|9〉2=
1
√

N

∑
x∈{0,1}n

|x〉A
1
√

2
(|0〉B−|1〉B).

2. Bob evaluates the function fa, where ‘a’ be
the number that Bob has thought and codes
it in the register B according to the following
equation,

|9〉3 =
1
√

N

∑
x∈{0,1}n

(−1)a.x

×|x〉A
1
√

2
(|0〉B−|1〉B).

3. Alice now applies a second Hadamard
transform on the both the qubits, yielding

|9〉4 =
∑

y∈{0,1}n

[ ∑
x∈{0,1}n

(−1)a·x⊕y·x

]
×|y〉A|1〉B,

where⊕ is addition modulo 2.

4. Finally Alice measures the qubits of register
A in the computational basis.

On measurement, the state of the register A denotes
the number that Bob had initially thought. The
above algorithm can also be illustrated by a quantum
circuit given in Fig. 1.

3. Experimental implementation by NMR
The experimental implementation of the M&M
quantum algorithm for solving the Ulam’s problem
has been carried out in a 3-qubit NMR system.
The first two qubits are used as register A and the
third qubit is used as register B. This implies that
Bob would store the result of his unitary operation
in the third qubit and Alice would be required to
determine the status of the first two qubits, at the
end of the computation.
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Figure 2: Pulse programme for preparation of pseudo-pure state (PPS). F1, F2, F3 represent the three
fluorine spins which form the three qubits. The broad and unshaded pulses are π pulses. The flip angle
and the phase of the other pulses are mentioned on the top of each of them. The pulse programme
consists of three J-evolution. During the first J-evolution period 1/2Jij, the π pulses on F2 refocusses J23

and J12 evolutions, while the the π pulses on F1 and F3 retain J13. The additional π pulses on F1 and F3

just before the
[
π

4

]
ȳ

pulse, regain the sign of the spin operator terms inverted by the π-pulses on F1

and F3 in the middle of 1/2J13 evolution. Similar argument yield the sequence for the J12 and J23

evolutions.

The system chosen for the experimental
implementation is Iodotrifluoroethylene (C2F3I)
dissolved in acetone-d6. The experiments have been
carried out at room temperature in 11.7 Tesla field in
AV500 Bruker spectrometer using a triple resonance
QXI probe. The Fluorine resonance frequency at
this field is 470.5 MHz. The three ‘Fluorines’ form
the three qubits. The NMR Hamiltonian of a weakly
coupled 3-qubit system is:

H=−
3∑

i=1

ωiI
i
z+2π

3∑
i<j=1

Jij I
i
z I

j
z . (1)

The first step in the implementation of the
algorithm is initialization of the system to the
state |001〉. In liquid state room temperature
NMR, since the preparation of a pure state
requires extreme conditions, a pseudo-pure state
(PPS) is prepared that mimics a pure state3,4.
The equilibrium deviation density matrix for
homonuclear spins under high temperature and
high field approximation is proportional to I1

z+I2
z+

I3
z , where the superscript denotes the qubit number

and the subscript denotes the magnetization mode21.
The pulse sequence that creates the |001〉 PPS
starting from this equilibrium density matrix is
given in Fig. 2. The pulse sequence use the method
of spatial averaging as proposed by Cory et al5. The
75.52◦ pulse on qubit 1 and 60◦ pulse on qubit 2,
followed by a crusher gradient creates 1

4 I1
z+

1
2 I2

z+I3
z .

The rest of the pulse sequence consists of the basic
sequence of

U[i, j] =
[π

4

]j

φ
→

1

2Jij
→

[π
4

]j

φ−90
→Gz , (2)

with additional π-pulses during the free evolution
period which refocuss the chemical shift evolutions
and other J-evolutions, thus making the system
evolve only under the desired J coupling. Here
the superscript ‘j’ denotes the qubit number and
the subscript ‘φ’ denotes the phase of the

[
π
4

]
r.f.

pulse. Gz is the crusher gradient which removes
all the transverse terms and retains only the
longitudinal terms. The operator U[i, j] when

applied on equilibrium density matrix I i
z + I

j
z

creates I i
z+

1
2

(
I

j
z+2I i

z I
j
z

)
. Therefore application of

U[1,2],U[1,3] andU[2,3] in the order shown in
Fig 2, on the density matrix 1

4 I1
z +

1
2 I2

z + I3
z , creates

1

4

(
I1

z + I2
z + I3

z +2I1
z I2

z +2I1
z I3

z

+2I2
z I3

z +4I1
z I2

z I3
z

)
, (3)

which is the spin operator representation for the
|000〉 PPS. A 180◦ pulse on the third qubit (the
first π pulse in Fig. 3) converts it into |001〉 PPS.
This method of creating PPS can be generalized
to any number of qubits, however the number of
J-evolutions increases to match the number of J-
couplings, which increases as n(n-1)/2.

The next step involves the creation of equal
superposition by Alice. Equal superposition of the

states can be created by
[
π
2

]
ȳ

(
=
[
π
2

]
−y

)
pulse on

all the qubits. This pulse acts as a pseudo Hadamard
gate22. After the equal superposition among all
the states has been created, Bob evaluates the
function fa. As mentioned in the previous section,
the size of the first register (denoted by the subscript
A) is determined by the size of the number that
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Figure 3: Pulse sequence for the NMR implementation of the quantum Ulam’s game. The narrow filled
pulses are 90 degree pulses and the broad unfilled pulses are 180 degree pulses. The phase of each of
the pulses are written at their top. Those pulses that do not have any phases mentioned above them
can be applied at any phase. The first 180 degree pulse creates |001〉 PPS from |000〉 PPS. The Ȳ pulse
on each qubit implements the pseudo Hadamard gate. The three pulses Y X̄Ȳ implement the z̄ rotation.
The 90 degree Y pulse on qubit 3 along with the evolution under the NMR Hamiltonian with 180
degree pulses in between and the 90 degree X pulse on qubit 3 at the end, implement the CNOT-2,3
gate. Each τ is 1/8J23, which implies that the total evolution time is 1/2J23. The composite pulse XY X̄ is
applied for the z̄ rotation. At the last step 90 degree Y pulses are applied on all the qubits which
implements the Hermitian conjugate of the pseudo Hadamard gate.

Figure 4: The simplified pulse sequence obtained after the removal of the two redundant 90 degree
pulses, one in the beginning and other at the end of the sequence, as well as after the cancelation of
pulses that were adjacent to each other and opposite in phase.

‘Bob’ thinks. Since we are using two qubits for
the first register, it implies that Bob can think of
any number among 0, 1, 2, 3. Let us assume that
Bob has thought of the number 1 that is 01 in the
binary representation. This implies that Bob has to
evaluate the function f01. The effect of this unitary
transformation is that it takes the third qubit from
y to (−1)x.01y⊕ f01, while leaving the second qubit
unchanged. The above unitary transformation is a
CNOT-2,3 gate where the second qubit is the control
and the third qubit is the target.

The CNOT-2,3 gate can be implemented
by a evolution under the J23 coupling (Fig. 3).
However, to retain the phases of the coherences
after the CNOT gate, a

[
π
2

]
z̄ (−ẑ rotation rotation

achieved by a composite pulse of sequence

[
π
2

]
φ

[
π
2

]
φ+ π2

[
π
2

]
φ̄

) is applied on qubit 2 before

the J-evolution and on qubit 3 after the J-evolution.
The pulse sequence for the implementation of the
game is shown in Fig. 3. The phases of the composite
pulses that implement the z-rotation are selected in
such a way so that the pulses with opposite phases lie
adjacent to each other. Two such adjacent π2 pulses
with opposite phases cancel each other simplifying
the pulse programme (Fig 4).

Fig 4 shows the simplified pulse programme that
is used for the implementation of the game. All the
pulses in this pulse programme are qubit selective
soft pulses. For homonuclear spins, the spin or
qubit selective soft pulses are long, during which
the coherences of the other spins evolve under the
chemical shift. This introduces phase factors which
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Figure 5: (a) Schematic energy level diagram of a 3-qubit system. The solid and the dashed transition
lines represent the single quantum transitions that appear in the spectrum of the three qubits for |001〉
PPS and |011〉 output state respectively. The numbers besides these line marks the qubits in whose
spectrum the transition would appear. The unprimed and the primed numbers represent the transition
for the |001〉 PPS and the output state |011〉 respectively. (b) The equilibrium spectra of the three qubits
of C2F3I. The relative chemical shift of the qubit 1 with respect to the qubit 2 is 11807Hz and that of
qubit 3 with respect to qubit 2 is −17114 Hz. The scalar couplings of the sample are J12= 68.1 Hz, J13=
48.9 Hz and J23= -128.8 Hz. (c) The single quantum spectrum obtained for the pseudo pure state |001〉.
Since only |001〉 is populated in this case, we observe one line of positive amplitude corresponding to
|001〉→ |101〉 transition of qubit 1, one line of positive amplitude corresponding to |001〉→ |011〉
transition in qubit 2 and one line of negative amplitude corresponding to |001〉→ |000〉 transition of
qubit 3. These transition correspond to the solid lines in Fig 5. (d) The spectrum for population and SQ
coherences for the output state |011〉. In this state also only one level, namely (011), is populated.
Hence we observe only one line corresponding to |011〉→ |111〉 transition of qubit 1, one line
corresponding to |011〉→ |001〉 transition of qubit 2 and one line corresponding to |011〉→ |010〉
transition of qubit 3. These transitions correspond to the dashed lines shown in Fig 5. (e) The SQ
coherence spectrum corresponding to the output state |011〉. This shows that there are no single
quantum coherences present in the output state confirming the expected result.

(a)

(b)

(c)

(d)

(e)

distort the final result. Therefore, simultaneous π
pulses are applied on qubit 2 and 3 along with the π
pulse on qubit 1 (Fig. 4). The pulse programme is

designed in a symmetric manner so that any phase
factors due to unwanted evolutions are canceled.
The modulated pulses that simultaneously act on
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Table 1: Table containing the flip angles (2,8) and the phases (α,β,γ) of the pulses used in tomography (Eq. 4). The
rightmost column shows the terms of the density matrix whose magnitude is provided by the corresponding pulse
sequence

2 8 α β γ Terms observed
I 0 0 Ȳ - - I i

x ,2I i
x I

j
z ,2I i

x I k
z ,4I i

x I
j
z I k

z

II 0 0 X - - I i
y ,2I i

y I
j
z ,2I i

y I k
z ,4I i

y I
j
z I k

z

III π/2 0 Ȳ Ȳ - I i
x ,2I i

x I
j
x ,4I i

x I
j
x I k

z

IV π/2 0 Ȳ X - I i
x ,2I i

x I
j
y ,4I i

x I
j
y I k

z

V π/2 0 X Ȳ - I i
y ,2I i

y I
j
x ,4I i

y I
j
x I k

z

VI π/2 0 X X - I i
y ,2I i

y I
j
y ,4I i

y I
j
y I k

z

VII π/2 π/2 Ȳ Ȳ Ȳ I i
x ,4I i

x I
j
x I k

x

VIII π/2 π/2 X X Ȳ I i
y ,4I i

y I
j
y I k

x

IX π/2 π/2 X Ȳ X I i
y ,4I i

y I
j
x I k

y

X π/2 π/2 Ȳ X X I i
x ,4I i

x I
j
y I k

y

XI π/2 π/2 X X X I i
y ,4I i

y I
j
y I k

y

XII π/2 π/2 Ȳ Ȳ X I i
x ,4I i

x I
j
x I k

y

XIII π/2 π/2 Ȳ X Ȳ I i
x ,4I i

x I
j
y I k

x

XIV π/2 π/2 X Ȳ Ȳ I i
y ,4I i

y I
j
x I k

x

all the three qubits with the required phase and
amplitude have been designed by the ‘offs’ option in
shaped tool of Bruker software. After designing the
shape and duration for the pulses, their powers are
calibrated for the desired flip angles. In the present
experiments all pulses are designed to be modulated
“SEDUCE”pulses23 of 500 µs duration.

4. Results
We have implemented the above game in which
the number thought by ‘Bob’ is 1 (01 in binary
representation). The input state is |001〉 PPS which
is created from the highly mixed equilibrium state.
To check whether the input state has been created, a
measurement is performed in a separate experiment.
The deviation density matrix describing the |001〉
PPS contains only one diagonal element |001〉〈001|.
The measurement is performed by the application
of a π/2 pulse on each of the qubits. The resulting
spectrum corresponds to one line each of positive
amplitude in the spectra for qubits 1 and 2 and
one line of negative amplitude in the spectrum of
qubit 3 (Fig. 5(a), the solid transition lines). The
experimental spectra of Fig 5(c) confirm the above
expected result and the creation of |001〉 PPS.

‘Alice’ and ‘Bob’ perform their unitary
transforms on the above state. After the
implementation of the unitary transforms by
both Alice and Bob, the final state obtained would
be |011〉. On measurement, at the end of the
computation, the qubits in the first register should
reflect the number thought by ‘Bob’(that is |01〉 in
our case) and the qubit in the other register should
be restored to its initial state (i.e. |1〉). To check
whether the state has been reached, the population
and the single quantum (SQ) coherences of the
final state are observed. The population spectrum

of the final state is obtained by the application
of a gradient Gz , a π/2 and the measurement
of the signal. For the state |011〉 we expect one
line with positive amplitude representing the
|011〉→ |111〉 transition of qubit 1, one line with
negative amplitude representing the |011〉→ |001〉
transition of qubit 2 and one line of positive
amplitude representing the |011〉→|110〉 transition
of qubit 3 as can be seen in 5(a) (dashed transition
lines) and confirmed by the population spectrum of
Fig. 5(d). To observe the SQ coherences spectrum,
the FID was collected without application of any
gradient and pulses at the end of the computation.
In this case we expect no SQ coherence for any of
the three qubits, as confirmed by the spectra in
Fig. 5(e).

The populations and the SQ coherences form
only a part of the density matrix for the 3-qubit
system. The rest of the terms of the density matrix
consist of the zero (ZQ), double (DQ) and triple
quantum (TQ) coherences which are not directly
observable in NMR. To check the amplitude of
these coherences, tomography of the full density
matrix is performed. The SQ coherences observed
by this protocol is used to achieve a uniform scaling
for all the terms in the density matrix17. The four
experiments that were performed are:

A :
[π

2

]i

α
[2]

j
β [8]k

γ→Gz→

[π
2

]i

y
,

B :
[π

2

]i

α
[2]

j
β [8]k

γ→Gz→ [π]j
[π

2

]i

y
,

C :
[π

2

]i

α
[2]

j
β [8]k

γ→Gz→ [π]k
[π

2

]i

y
,

D :
[π

2

]i

α
[2]

j
β [8]k

γ→Gz→ [π]j,k
[π

2

]i

y
,(4)
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Figure 6: The tomographs of the real and the imaginary parts of the (a) experimentally obtained and
the (b) theoretically predicted deviation density matrices of the output state |011〉. It can be seen that
only one state |001〉 is populated whereas all other populations and coherences are nearly zero.

(a)

(b)

where

i, j,k ∈ {1,2,3} and i 6= j 6= k.

The protocol is to selectively convert a given
coherence to z-magnetization and then kill all the
transverse magnetization by the gradient pulse Gz .
Finally the retained z-magnetization is converted to
observable SQ coherences. The magnitude of the
SQ coherence observed represent the magnitude
of the specific coherences. The table 1 lists the
various pulse angles, the phases and the observed
spin operator terms required for the complete
tomography experiment. Fig. 6(a) contains result
of the tomograph of the above experiment. A
simulation of the expected result is given in Fig. 6.
The experimental result agrees qualitatively with the
expected result. In order to quantitatively evaluate
the experimental result, the “ average absolute
deviation 〈1X〉”and the “ maximum absolute

deviation 1Xmax”of the experimentally obtained
density matrix from the theoretically predicted one
was calculated by the formulae

〈1X〉 =
1

N2

N∑
i,j=1

|xT
i,j−xE

i,j|,

1Xmax = Max|xT
i,j−xE

i,j|, ∀ i, j ∈ {1,N}, (5)

where xT
i,j , xE

i,j are the theoretical and experimental
elements. The average absolute deviation 〈1X〉
was found to be 2.6% and the maximum absolute
deviation 1Xmax was found to be 9.2% on the
searched element. The errors are mainly due to r.f.
inhomogeneity (simulation not shown).

5. Conclusion
We have demonstrated the experimental
implementation of the quantum version of the
Ulam’s problem on a 3-qubit NMR quantum
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information processor. While scaling to higher
number of qubits is straight forward it could
pose difficulties due to decoherence which may
need special effort to control/reduce errors. Since
this game has similarities to some problems in
coding theory, the authors believe that the present
experiment open up the possibilities of experimental
realization of other such quantum version of the
established classical problems in this genre24.
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