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Abstract 

We call H (x,r, A )  which generates the resolution of the fidenttty of the self-adjomt operator Tarismg from the 
formally self-adjoint differential operator 

and the prevcribcd boundary conditions, the spectral matrix (or the resoll!tion matrix) H' (.j is the msolution 

matnx corresponding t o  the Fourier case Le.. the case when Q =  ' 
= O  In the present paper we obtain(i)a 

[ r  q )  , , 
connection between H(x. >,. A j and H'(X.Y.  A j, as A tends to i n f i n q :  (ii) an cquiconvcrgence theorem and ( 4  an 
expansion theorem in generalired Fourier integrals. 

Key words: Spectral resolution, resolution matrix, generalized orthogonal relation, majorizing a matrix, summa- 
ble, closed, generalized Fourier integral, generalized Parscval relation, spectral representation theorem. 

1. Introduction 

Consider the differential system 

M U = A U  

where 
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A -complex and p ( x ) ,  g ( r ) ,  r ( x )  are real, Ci-r (a, b ) ,  ( k = O , I )  -class functions, integrable 
in (u ,  h) ,  finite or infinite. By Cx (n ,  0) -class functions we mean theset oPfunctions(real~r 
complex-valued) which are k times continuously differentiable with respect t o  the variablex, 
defined I" an open finite or infinite interval (a,f l ) .  

Let Ube the solution of ( I .  I) and 41,  @ I .  I =  1,2,j=3,4 be the boundary condition vectors 
at x = a, x = h ( i .a solutions of (1.1) which together with their first derivatives take 
prescribed constant values a t  a and h). We choose the boundary conditions at  a and b as 

Iu .+f l=[u.+r l=o.  C4,,4>]=r+?,4,]=0. (1.2) 

&ere I.] is the hilinear concomitant of the vectors. The bilinear concomitant of the two 

Then (1.1) together with (1.2) gives rise to a self-adjoint eigenvalue problem considered by 
Chakravarty (vide Chakravarty and Roy Paladhi'). 

The differential operation M defines on C* (-m,m) an operator To symmetrical in L2 
(-m, -), -the minimalunclosed differential operator, theclosure T , ,  of which is the minimal 
differential operator defined by M Let 1: determined by the prescribed set of linearly 
independent boundary conditions assumed in the problem, be the self-adjoint extension of 
TI. Then T is 'generated' by M. 

If E( A) be the spectral resolution (or the resolution of the identity of the operator T), then 
T is connected with E ( A )  by means of the relation 

It is well-known that every resolution of the identity E(A) determines a self-adjoint 
operator Tby(l .3)and the spectral theorem shows that every self-adjoint operator Tadmits 
anexpressiw (1.3) by means of a resolution of the identity E ( A )  uniquely determined by 
In the Appendix, an  alternative method of showing that T is self-adjoint is given. 

BY using a method entirely different from the ones usually adopted for solving eigenvalue 
problems. Levitan and Sargsyan2 and Levitan3 obtained the asymptotic formula for the 
spectral function, the equiconvergence theorem, the expansion theorem for  the scalar 
Sturm-Liouville equation 
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~ h ~ i ~  technique is to consider in conjunction with this, the Cauchy problem 

and use the Fourier cosine transform in the sequel 

can be easily seen one cannot replace the Fourier cosine transform by the Fourier sine 
transform in the investigation so presented by them. Our object is to obtain corresponding 
results for the matrix system (1.1). The corresponding Caucby type problem is 

with boundary conditions 

We make use of the Fourier sine transform, it being not possible to apply the Fourier cosine 
transform in the investigation that follows. 

be the solutions of (1.1) satisfying a t  x = 0, the conditions 

and 0, (x, A )  two other solutions of (1.1). connected with @, by the relations 

[ @ . , 8 k ] = 6 , k , [ 0 1 , e ~ ] = O , r . k = 1 , 2 .  (1.10) 

Then 6, 8, constitute a linearly independent set of solutions. 
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Let 

H(x,y, A )  be the matrix 

0  ; A = O .  
where 

7 (q,, ( A )  ), < 51 ,  ( A )  x 1i1, the(2 x2) unit matrix). t,,, ?it, 511 are non-decreasing 
functions of A. m e n  H(.)generates the spectral resolution E(A) of the operator Tgenerated 
by M. We call Hfor brevity the 'resolution matrix'the corresponding spectral representation 
formula is given by (5.4) in Chakravarty and Roy Paladhi' (p. 158). 

Let A ,  A' be the intervals (a. 6 )  and ( c ,  d )  respectively so that H ( x ,  y, A )  = H ( x ,  v,b) 
-Hix,y,n), with a similar meaning for H ( x , y , A ' ) .  Then 

1- H f x , * . A )  H T ( f , y . A ' )  d l =  rr H ( x . y . A f l h r )  

'the generalized orthogonal relation' holds. 

H(x,r,A) is symmetric in the sense that 

b particular, 

Then the first element in (1.13) is given by 

where & ( x )  = & ( x ,  r, A). 
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Apply first the Cauchy inequality, then the Schwarz inequality and finally the obvious 
inequality 2 1 ob ( 5 a2  + b2,  for real 0.6. Then, it follows that 

where 

h (x,x, A )  = ) and 1. represents 

that the matrix on the right hand side 'majorizes'the matrix o n  the left ( ~ i r s k ~ ~ ,  p. 328). 

Since 

lr HII(x ,x ,A)  =L [ H:I ( 1 )  + &2 ( I ) ]  dt 

with a similar result for H22(x), therefore Hn(x. x, A)  are positive. 

Hence the symmetric matrix H(x,x,  A)  is positive in the sense that the corresponding 
quadratic form is positive. 

2. Some auxiliary formulae 

In conjunction with the system (1.1) we consider the Cauchy type equation (1.6) with 
boundary conditions (1.7). (1.8). Then following Lev~tan and Sargsyanz, we can use the 
Riemann method of integration of (1.6) to show that thesolution U(x, 1;f.g) of (1.6) -(1.8)is 
given by5 

1 
U(x,1;l;g) = i [ f (x+t )  +f(x-t)  +k7(x+t)-L?(x-t) I + 

where g ( x )  =.( h ( y )  d y  and W ( x t , s ) ,  T(x, h s )  are two known 2x2 matrices called the 
Riemann matrices for the system. 

Let +,, 0, be thosegivenby (1.9)and(l.l0). ~ e ~ l a c i n ~ ~ ( x ) b ~ ~ a n d g ( x )  by/ 4,(s, A)ds 
so that U (x. I )  = I /  \jh sin f i t  4, (x,A) now satisfies(l.l), it follows from (2.1) by the 
uniqueness of the solution of !he Cauchy type problem, that 
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where n (x.1, s) = f T(x,  t , y )  d y  and I is the 2 x 2  unit matrix. 

Let g< ( r ) ,  a scalar function, he defined as follows 

(iii) g ' ( t )  has a piece-wisecontinuous, piece-wise monotone derivative i.e. g e  ( I )  t c:, 

L,et<~ = pandle t  '&'c ( p )  be the Fourier sine transform of g e  ( f )  i.e. 

Multiplying both sides of (2.2) by g * ( t )  integrate over(0.r) with respect to I. Then using(2.3) 
and changing the order of integration in the resulting integrals on the right hand side we 
obtain, after some manipulation, 

1 v.(~*)a,rx.*,= f + ~ ~ x , s , t , , + i ~ ~ , * ~ ~ ~  
2 ,, (2.4) 

= J rI+n(rt,s)-An(x.sx+t)- s n ( ~ , t , ~ - t ) ] g , ( t ) d t  
1z-11 

(2.5) 
A, B being defined as follows : 

= 0, otherwise = 0, otherwise. 

SimilarIy, 

Thus for a fixed x, each component of 

is the '+'-Fourier transform of a vector equal to  
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Then from (2.4), (2.6), the relations obtained from these by changing x to y and the 
generalized Parseval relation' (p. 151), we obtain, in view of (1.1 l), 

A, = (x-c, x+e)  n (y-t, y+c)  

In  particular, 

3. Preliminary estimates 

In the following we obtaincertain lemmas which involve the matrix Hand which will be used 
subsequently to obtain deeper results. The method of procedure is similar to that used by 
Levitan and Sargsyan2 (pp. 23-26) and we shall indicate only thosesteps where we considera- 
bly differ. 

Lemma 3.1: Letp, q, r be integrable over any finite interval. ro anarbitrary positivenumber 
and(xo, x ,  )an  arbitrary finite interval on the real line. There thereexists aconstant matrix C 
= C ( 6 0 ,  XO, x , )  depending on the arguments shown, such that for x.y lying in (xo,  X I ) ,  

e e f i  d L  H (x,y,k) , C 

holds. 

In particular, L .eJ.d* H(X,y,A) 

is finite for a rb i t ra~y finite e, x.y. Also H,, (x,y,-m) < m. 

Put ge ( 1 )  = l / r Z  for 0 < t < e 

= - l / e 2 f o r - r < t < O  

= 0 otherwise. 
Then 

1 

Then the lemma follows In the ~evi tan-~argsyan '  (pp. 25-26) manner hy ut~lizing theresults 
(1-14) and (2.8). 

Put g e  ( C a )  = g , ( r )  cos at, where a is an  arbitrary real number and 
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We note that g e  ([ ,a)  considered as a function of I ,  satisfies all the conditions imposed on 
g , ( t )  and therefore by choosing g* ( t )  as  before in the proof of lemma 3.1, ii follows that 

where I A I > 6 > 0, 6 being a positive number however small it may be. 

Hence. by lemma 3.1. 

r (x,v.a, t )  < C (3.2) 

where C 5 C ( 6 ,  x o , x l )  are various constants depending on the arguments shown and & Y  
e(xo, x,) as in lemma 3.1. 

Let US change p,(Jh) to 9, (4. a ) .  g r  ( 1 )  t o g .  ( ' ,a)  and let the matrix P((*s.d 
change t o  P (x,s, a, t). Then the formula (2.7) can be written a s  

For, X > 0, let A = gZ,  H(x.y ,  A) = HI  (x.y.g)  and for fixed x.y.  HI is continued t c  the 
negative half-line as a matrix having each element an  odd function of s. Then From (3.3) at 
x=y. 

1 
~ : ( p , a ) d , H l ( x , x , r ) = l i  2 P ( x . s . a . t ) ~ ' ( x , s . o . r ) d s  

z-c 

- r  (x.x,o.c). (3.4) 
Since 

it follows on substitution of the particular value of \Irs (JA) as obtained in the course of 
proofoflemma3.1, t h a t f o r 0 < 8 C : g - a s p s  1, 

Hence for fixed v 
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putting e = 1 and then proceeding in the Levitan-sargsYan2 manner(pp. 25-26) we obtain by 
.using (3.4). (3.2) and (2.7) the foilowing 

Lemma 3.2: Let p, q, r be integrable in every finite interval and let (xo,x, ) be an  arbitriry 
interval on the real line. Then for x,y, e (xo,xl) MI ( s y ,  p+v)-N~(x,y, p )  < C, where u is 
fixed and C E  C (xo,xr) is a constant matrix depending on the arguments shown. 

In our further discussions we require more stringent conditions on g <  ( I )  defined in 
section 2. These are in addition to  the conditions (i), ( i i)  and are as follows: 

a) g, (I) and its indefinite integral h ,  ( 1 ) .  I t I  < e ,  are infinitely differentiable; all such 
derivatives being equal to zero for 11 1 2 c. 

b) g, (t), h ,  ( I )  are uniformly bounded with respect to t. 1 and h ,  ( I )  = 0 for / t l  = t. 

Then 

Hence. 

and as in Levitan-Sargsyanz (p. 28), we have by lemma 3.1, the following 

Lemma 3.3: If p, q,r are integrable over any finite interval and (xo ,XI )  an  arbitrary finite 
interval, then for all x,y,c (xo,xt) 

where C = C ( x o , x ~ )  is a constant matrix depending on the arguments shown 

4. Asymptotic relations 

In the present section we establish asymptotic relations involving the matrix 0 (x, r . s )  which 
occur in section 2. We represent the sum of the moduli of the elements ofa  matrix A by I A I. 

Let Q(x) defined in (1.8), satisfy 

I Q (0)  I t l ,  ,, 
a > 0 is a constant. 
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When p( .y) ,  q(x),  r (x)  are integrable over (-m,cn), the condition (4.1) is satisfied 

In fact, in this case 

I , I Q(" I d o  = o ( J )  

as t tends to  infinity (for fixed x). Then the following inequality holds5. 

where Tis the 2x2 matrix which occurs in (2.1). 

Then fn,m (4.1). (4.2) and the definition of fl ( x .  r.s) insterms of T, it follows that 

O<x- t<s<x+t ,  A,  Bare thosedefined in theformula(2.5)and C 5  C(xo,xl),apositive 
consrant depending on the arguments shown, where r S r , , , a  fixed number and x t (xi,, x ~ ) . i  
may take sufficiently small values and a a ( x o , x , )  is a constant > 0. 

For convenience of presentation, we introduce the following definition: 

A matrix A is O w )  or o Cf), where f is a scalar, if each element of A is P(  f )  OT o( f) in the 
usual sense. In particular A = o ( 1 )  means that each element of A tends to  zero. 

We establish the follow~ng lemma: 

k m m a  4.1: Let Q(x) satisfy (4. I )  and let 

a ( x, s, u )  = v [ f l ( ~ , t , ~ ) - A ~ ( ~ . t . ~ + f ) - ~ 1 1 2 ( ~ , 1 , x - ~ ) ] s i n v r d t  

A. B being defined as in (2.5). 

as tends to infinity, uniformly in every finite domain of definition of x and s. 

Proof: Let 
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obtained by integration by parts, there is no loss of generality in assuming that q (x, 3, u )  is 
always positive. It follows therefore that 

j J a j x u  u 2 f r'' a, tx ,s ,u)  ctu 
p o  0 

(4.4) 

Since 

IfsinIft 2 J d w  [ m i n u t  du = - I, . + 7 ( 1  - cospt), 

it [allows on substitution for a,(x,s.v) in terms of Cl,  as  defined in the lemma and then 
changing the order of integration, that the left hand side of (4.4) is equal to  

where 7 is an arbitrary positive number which does not exceed unity. Then by (4.3) 

where we choose 7 so small that for all ,u, Cna 5 1/25, where is an arbitrary positive 
number which may be as small as  we like. Then 

Having chosen 7 a> such it follows from the Riemann-Lehesguelemma that thereexistsam 
such that for p > ~f~ 

I 
1 1 1 2 1 <  - 5 .  (4.7) 

2 
Thus h = o( l )  uniformly as p tends to  infinity. 

1 
~ n w l I , [ 5 4 / , )  K , ( x , r . s ) / z / s i n 2  - p ~ / t ' d t .  

2 
Since I K, (x,r,s)/ t  I < C t " ,  a > 0, it follows that Kj(x,I.s) as f tends to zero 
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Hence 

4 
l l d5  - (!+I) 1 K,( . r , t , s ) / t  1 sin2 1 p t / t 2 d f .  

w a n  2 
We now argueBs in  itchm marsh^ (P.414) by utilizing the familiar integral 

{ F d u  = 
s o  as  to obtain 1, = o (I ) ,  uniiormly, as p tends to infinity. 

The lemma therefore follows from (4.4). the uniformity following from the uniform 
b&ndedness of 0, ( x . t , s )  - A a, ( x , ~ ,  x i -  t )  -B a, ( x ,  r ,  x-1) K, (.x, t , s ) .  

Lemma 4.2: Let h  (xu ,  I ) ,  P(x.s,  v )  be the matrices 
s i n d h t  

h ( x , s . r ) =  (hdx,s ,v )  = 1: 7 c l ~  h ( x . $ , A )  

j = 1,2.3,4 and Q ( x )  satisfy (4. I). Then 

a s p  tends to infinity, uniformly in every finite region containing x  and s. 

Proof: The existence of the matrix h(x.s.1) is a consequence of the lemma 3.3. Let 

H ( x , s , A ) =  ( H , x ( r s , A ) ) . r , k =  1,2. 

It follows by integration by parts that 

(on substitution forthe &(x,s. u), andchangein the order of integration on evaluation of the 
inner integral involving sin ur). 

In view of (4.8a), there is no loss of generality in assuming that 0, ( x , s , u )  is always 
positive. 

Now 
6 1 

h,(x s t )  sinpt 6 = ( 1 3 - [ ) - + - . -  dt = 111 +&2. say 
0 
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lere f I 2  = o ( I ) ,  a s  p tends to  infinity, by the Riemann-Yxbesgue lemma. 

ince limb, (x,.Y, l ) /  I = - nrk I x . . ' . - ~ )  
I - 0  

(4.9) 

1 1  
nd (cosec - t - - ) h/ is integrable in (0.6). the well-known technique adopted 

2 2 t 

31. the treatment of convergence of Fourier series gives (Titchmarsh4, pp. 403-406) 

& = S P I  + O(I), a s  p tcnds to  infinity. 
IJ 

here, 

Sri = - .- dl 

nd 
1 

S p l  + - H r ~ ( . v . . v . - . m ) = o ( l ) ,  
2 

; p tends to infinity 

, p tends to infinity 

= I21 + 1 2 2 ,  say. 

.om the continuity and consequent integrability of hj ( x , s ,  r ) / r  over (6, I ) ,  it follows by the 
iemann Lebesgue lemma that 

I22 = 0(1), as p tends to infinity 

i the usual technique adopted for the consideration.of the summabllity of Fourier series 
'itchmarsh6. pp. 412-413) 

121  = 2 l r  a, ( p )  + o( l ) ,  a s  p tends to  infinity, 

here 

1 
~d a,(&) = - - H,* ( x , ~ ,  -m) + o( l ) ,  a s  tends to infinity. 

2 

; r tends to infinity 



140 N K CHAKRAVARTY AND SWAPNA ROY PALADHl 

From (4.Q (4.10) and (4.1 I ) ,  \*e have 1 ,,- , , , ( x . , , v ) d v = -  Hrk( . r .3 , - ->  + o ( l )  
2 

as f i  tends to intinity. 

{ p, , x , s , v )  dv is thus summabk (C.1). 

Also since 

! 0, (x,.,, Y )  d u is convergent in the usual sense 

Therefore. 

2% v~ , ,x , s .v )d .=O 

(Hobson: p. 386). 

The result ( A )  then follows from (4.12). 

When t is complex. h(x.s.t) is an  entire function of I and hence in particular infinitely 
d~fferentiable in the neighbourhood o f t  = 0. The uniformity in ( A )  then follows from the 
boundedness of h ( x ,  s, 1 )  and ahtat. 

5. The Faurier system: The asymptotic Iormula for H(x ,y ,  A )  

The Fourier system corresponding to the given system (l . t ) is thesystem(l . l )  withp(x)= 
q(x) = r i x )  = 0 i.e. Q(x) = 0. If @[ erare the g, 8 of the Fourier system satisfying (I.!% 
(1-lo), it is easy to verify that the matrix H:(x,y. p)for  the Fouriersystem correspondingto 
the matrix Hi (x,y,p)  for the general has the simple representation 

where I is the unit 2x2 matrix 

Also H~ (.) behaves in the same way with respect to the Fourier system as the H(.) with 
respect t o  the given system (1 .  I) .  That 1s Hf (.) generates the resolution of the identity of the 
operator f which corresponds to the Fourier differential operator. 

v, (x.s) = P ( x , s . t )  for J r (x-t, x i r )  

= 0 otherwise. 



SPECTRAL RESOLUTION OF A DIFFERENTIAL OPERATOR I1 141 

where P ( x ,  s, t )  is given by (2 .5) .  Then using (2.4). (2.6) and the generalized Parscval relation 
stated in section 2, we obtain after some easy calculations that 

I 1 , 9. (A) d . r  -- W ( x . . ~ , A ) , f ( s )  dr = J. 2 r' x-t P ~ x , . s . c ) ~ ( s ) d s  

(5.2) 
Now [e'""), -- < n < m, is closed over (-rr, rr) and hence form a complete orthogonal 

(< rmx 

system on (-ar, 4. Therefore the vector crnX , -- < n < -, isclosed ov&(-rr, ar);inather 

words these vectors form a complete orthogonal system in the subspace of those 

LZ ( - v . ~ )  @ L? ( - ~ , v )  satisfying g ( - x )  = f ( x >  . 

Since the vector f in (5.2) is arbitrary, we choose 

= 0 otherwise; 

then it follows from (5 .2)  that 

i- 1, J* 'PC (4) dl R ( x , s A )  = n/l P ( x . r e ) ,  for x - s  5 e 

= 0, for I x - s  I > c (5.3) 

The convergence of the integral on the left of (5.3) is ensured from lemma 3.3 and the 
fact that I / p  Y, ( p )  = 0 ( 1 / p ' ) ,  as p tends lo infinity. 

As in section 3 ,  put g, ( t ,  a )  = g, ( t )  cosal. 

where a is an arbitrary positive number. Then form (5.3) it follows as before 

(5.4) 
where 

and I i s  the 2 x 2  unit matrix, A, B being those as defined in (2 .5) .  

Then noting as before that when A > 0, A = fl ' ,  H ( x , y ,  A)  = Hi ( x ,  v. p)and for fixed x,y. 
HI is continued to negative f i  as a matrix whose elements are all odd functions, it follows 
from (5.4) that 
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For the Fourier case we have Q(x) = 0. Also from (4.2). T ( x ,  I ,  s )  = 0 and consequently 
n ( x , r . s )  = 0, Thus for the Fourier case uje have from (5.5) 

where we u t i l i~e  the fact for the Four~er  case the negative part of  the spectrum is absent 
(compare Chakravarty and ~ e n ~ u p t a ? ) .  

By the Parsrval theorzm for  Fouricr sme transforms applled to each element of 
i !*a (x.s.p) defined in lemma 4.1 an'd 

Y ,  (p.a~ = J g. ( t . 0 )  s i n \ r h t  (5.8) 

defmed in section 3, and noting that V, (.) is odd, we obtain 
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Again, by changing the order of integration which is easily verifiablefrom ]emma 3.3,and 
the conditions imposed on g. therein we have 

where h (x ,s ,  t )  is defined as in lemma 4.2. 

Again by the Parseval theorem for the Fourier sine transform applied to (5.8) and'each 
element of I / P  p (x ,s .  P )  defined in lemma 4.2 and from consideration that V e  (.) is odd, we 
obtain for 0 < e 5 1,  

Hence, irom (5.7), (5.9), (5.10) and (5.1 1) it follows that 

where 

Since a is arbitrary and P, is continuous, (5 .12)  can be written in the form 

where xJcr)= '4, ( F )  which is the Fourier cosine transform of [ -he(  t )  ) introduced in 

connection wiih lemma 3.3. As in lemma 3.2 it follows easily that for fixed v,  

Q.* (x,s./.c+v) - Q.* ( x , s , p )  Q C 15.15) 

where C is a conatant matrix C E C (xO,  X ,  ), (XO,  X I  ) being any fixed interval which x and s 
vary. 

We now use the following modified version of the Marchenko Taubetian theorem 
(Marcenko9; also Levitan and sargsyanz; pp. 90-92, special p. 92):  

Theorem A: Let f be the set of ~nfinitely differentiable functions in (--,*) and let 

are "ondecreasing and continuous on the left such that one of the functions o ( A ) ,  say, 
satisfies 

lim { a  (a+An) - o ( a )  ) = a* ( A o )  < m, for some An > 0 
101-=- 
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(or p ( X ) ,  a ( h )  are odd functions and o(A) has a hounded derivative). Then 

Applying this theorem, we obtain from (5.14). 

Iim a*  ( x , s , p )  = 0 (5.16) 
1-- 

uniformly in every finite interval containing x,s. 

Therefore, from (5.13). we obtain by using (5.16) and the lemma 4.1 and 4.2, the following 
theorem. 

7'heorem: If Q ( x )  satisfy (4. I), then 

for each fixed x,.s,rhe result holding uniformly in every finite domain in which x , s  vary, H: 
being given by (5.1). 

P u t x = s  =O.  Then fromlheinitialconditionsitfollows that the matriceseand din(l .11)  
are the zero and the unit matrices respectively. Hence H I  (x, s, p )  reduces in this case to the 
matrix P (P)  whose elements in terms of m,,, M,, are given explicitly by 

and 

P P ~  (PI = prr (A), nz f s = 1.2. 

Then from the theorem we have the representation 

lim [ p ( p )  - + - 1 1  = p (--I 
Y-- 

where I is the unit 2 x 2  matrix 

(For discussion involving m,,, M,,, etc., and introduction of the matrix H ( x , s , p )  in the 
explicit form (1.1 I), (see'). 

Incidentally. we remark that the Titchmar~h'~(p.43)  spectral function k (A)  is ohtained by? 
putting -r =? =O in O(&?.A), the spectral function which occurs in Levitan and Sargsyan 
(p.22 formula (2.1.13) ).To verify this theformula(2.1.13) of Levitan and Sargsyan has tobe  
obtained in the same way as in authors' paper',  by deriving the explicit form of the Green's 
function for the Sturm-Liouville equation in the singular case [O,-), H ( x ,  y, X)  similarly 
yields ( k ,  (A) ) , the generahzation of k (A) in the matrix case for the interval [o,m). 
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I,, what follows we obtain an equiconvergence theorem for the eigenfunction expansion 
associated with thcsystern ( I .  1) and therefrom deduce a general expansion theorem involv- 
ing an arbitrary veclorf (x) t L2 l--w,"O). 

6. Some preliminary investigations 

Let 

S ( x , h )  = 9 . c' H ( x . s , X ) . f ( s )  d s  

For fixed s,g, as  before let H I  (A-,,r,p) be continned to the negative half-line as an odd 
function. 

Similarly for H ;  ( x ,  .r, p). 

Also for p < 0, let S ,  ( x ,  p )  = - S t  ( I , -p)  with a similar meaning for S: ( x , p ) .  

As in section 3, let 

&', (1.a) = g, ( r )  cosai, a  a n  arbitrary positive ncmber;  it follows from (5.2) that 

I 1 
I/&[ W e  i J * + a )  + 9!+ ( A - a )  1 d l  S ( r A ) =  5 [: P ( r . r a . ~ ) f l r ) d s  

> m  

(6.1) 

where f (x )  e L2 (-mm), P(x.s ,a,  t) has the same meanlng as  in (5.4) and 
I 

W. ( f i , a )  = - [ 9!* ( p + a )  + Q, ( p - a )  ] = 4 g, ( ( . a )  sin P I  d l  (6.2) 2 

the Fourier sine transform of g c  ( t ,  a) .  

Therefore, (5.2) can be written as 
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The corresponding formula for the Fourier case (Q (.x) = 0 )  is 
i + t  t P e  (p-a) d,  = a J I [ j K (t.0) d l  I ~ ( . T )  ds. (6.4) 
x-* Ir-sl 

Put 

where R (x,s.a,e) is the same as in section 5 

By a change in the order of integration 

where 
JI (x, 1) r+t 

.v (x , t )  =( ) IO(-"-.LS)-A f l ( x . t , x + z ) - B n ( x , ~ , x - t ) ] , f ( s ) d s  
J2 (x,t)  x-, 

(6.7) 

0 (x, LS) and the constants A, B being those of section 2. 

Then applying the Parseval theorem for the Fourier sine transform to each element of (6.8) 
and (6.2). it follows that 

Hence since TE ( a )  is an odd function of p,  we have from (6.6) and (6.9) 

Again by a change in the order of integration 



Since 
sin fi - ' -3f;- - / eos ( J ~ u ) d u  

0 

therefore 

sin 61 5/51. ( o r 0 5 1 5 1 .  

Hence (sin f i t  )/<A is uniformly continuous in cach hounded point set. Theieforc, by 
Radon's definition of Stieltjes integrals (see Bochner ",p. 307). % ( x . i )  exists uniformly in I. 

'('.@) = Z ( X ,  I )  sin p r  dl'. i (6.13) Put 

Ler us apply the Parseval equality for the Fourier sine transforms to each term of the vector 
B ( x . p )  defined in (6.13) and the relation (6 .2) .  use the equality (6.1 I) and argu.: as before 
with 'V' (,I). We then ultimately obtain 

1 I 7- 7 ', ("-a) B ( L & )  d p  

it follows from (6.5). (6.10) and (6.14) that 

' Y I c ( p - a ) d , , R * ( x , p ) = O .  O - ( C ~  1 .  (6.15) - m 

In view of the continuity of V e  and arbitrariness of a. (6.15) is equivalent to 

7. Some lemmas 

We now establish some lemmas which are utilized in the proof of the equiconvergence 
theorem and the generalized Fourier integral theorem. 

~ m m a  7.1: Let Q (1) satisfy the relation (4.1) and A ( , n )  he given by (6.8). Then 
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as p tends to infinity. and for fixed v. 

7' A ( x , u ) d u  = o ( l )  

as p tends to infinity; both the results hold uniformly in every finite interval containing x, 

Proof: Integrating by pans, 

so that without loss of generality we can assume A, (x ,u)  positive and hence the following 
inequality 

12 !j j Y A j ( r . v )  du. j =  1-2. (7.2) 

On changing the order of integration, we have, by using the definition of A (x. u). 

[ E!? + -fjos'l) ] dl=-I,  t i 2 ,  say (7.3) 
I *  

Now, 

d t  
t 

By the relation (4.3), it follows by the Minkowsky inequality 

where we choose as small as we please w ~ t h  6, independently of x. Having so chosen 6 , 1 1 2  

tends to zero as p tends to infinity uniformly in x over any finite interval (xa, yo), say, by tne 
Riemann-Lebesgue lemma. 

Thus altogether h = o(l) ,  a s  p tends to  infinity uniformly in x over any finite interval. 

For the estimate of 11 we argue in the same manner as we did in lemma 4.1 by following 
Titchmarsh6 @. 414). Thus 12 = 0(1), uniformly as p tends to  infinity. 

The fink part of the lemma then follows from (7.2) and (7.3). The second part is evident 
from the first part and the lemma therefore completely follows. 

Lemma 7.2: Let f (s) he any vector which belongs to  L 2  ( -m,w) and S (x, A) ,  
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( X, t)  and B ( x ,  v p be defined respectively by (6AL (6.12) and (6.13). 

Then for every fixed x ,  

as tends to infinity: both the results hold uniformly in every fin~te interval containingx. 

Proof: lntegrating by parts, utilization of the expression for BI (-r,v) and a subsequent 
integration by parts we obtain 

= - 1, + 12, say (7.6) 

where 1 = 1,2. 

The function Zi ( x , r ) /  t exists at t = 0 and Zi (x.1) t is an analytic function o f t  and 
therefore integrable over (0,6), where 6 > 0 is arbitrary and we write 

Then by the Riemann-Lebesgue lemma A 2  = o(l) ,  as p tends to infinity uniformly in xlying 
inany fixed finite interval. Also, a Fourier series type of analysis ascontained in Titchrnarsh6 
(pp. 404-406) leads to 

1 + =-  5 S , ( x , - - ) + " ( I )  

as I* tends to Infinity alld x fixed. 

We proceed with the estimate for h in the same way as in lemma 4 . 2 ~ 0  asto finally obtain 

as f i  tends to infinity for fixed x. 

The first part ofthe lemma follows by exploiting. as before, a criterion giving a necessary 

and sufficient condition for the (C, 1) snmmability of J f ( t )  d t  (Hobson7, p. 386).The 
uniformity of the limit for every x in any given finite intehal containing x follows from the 
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continuity of Z ( . ~ , r ) / t  as well a s  that of its partial derivative with respect to r .  

The second part is a n  immediate consequence of the First. 

Lemma 7.3: Let f ( x )  e Li (--. m). Then 

st ( x , p t v ) -  Sl (x, !J)  = o ( l L  

as p tends to infinity, uniformly in any fixed interval containing x,  where v is fixed and 
SI (x ,p) i s  a s  defined a t  the beginning of section 6. 

Proof: It follows from the generalired Parseval relation (see authors' paper'. p.151) 

as p tends to infinity and v fixed. Here E,,. I,, ?g and i l l  are those which occur In the 
theorem 

By substituting for the explicit form of the matrix H I  (x,.v, p )  as given In ( 1 .  I I) .  it follows 
from lemma 3.2 that 

where u is fixed; x.y lie in the fixed interval (xo, X I )  and C =  C(x0,  x i  ) is  a constant matrix 
depending on xo, x,  only. 

Then putting x = y. 

with a similar result with u replaced by v and x replaced by y .  (u,, v, are elements of the 
matrix +and x,,y,thoseof 0 and f v ,  ni,. C I I  are those of f ,  7,Cthat occurin theexplicitform 
of the resolution matrix H I  ( x . y ,  p). 

with similar expression for S12 (x ,p+u)  - St2 (x,  c ) .  (7.9) 
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We now make use of the inequality (Hardy el a/" section 29, p. 33). 

where up, = a,, and X a,,x, xv is a positive quadratic form (with real but not necessarily 
psit ive coefficients) and the Schwarr inequalitv in (7.9). 

Then from (7.7) and (7.8) it follows that for a f ~ x e d  v ,  

as p tends to infinity uniformly, x lying in a fixed interval (XO, X I )  say 

The lemma therefore follows 

8. The equiconvergence theorem and the expansion theorem 

It follows from lemma 7.3 and the same lemma applied to S: (x.p), that for fixed v,  

R (x,pf v ) -  R ( x . p ) =  o(l) ,  

as p tends to infin~ty uniformly in any fixed interval. 

Therefore, by lemma 7.1 and lemma 7.2, it follows from (6.16). that for fixed v 

as p tends to infinity uniformly in every finite interval of variation of x. 

Now X ,  ( p )  = l i p  Y, ( p )  is the Four~er  cosine transform of ( - h, ( t )  1 ,  introduced in the 
proof of lemma 3.3. 

The condition of the Marchenko-Taubenan theorem (Theorem A. section 5) being 
satisfied, it follows from (6.15) that 

uniformly in each finite interval over which x varies. We thus obtain the equiconvergence 
theorem 

Theorem I: Q(x) satisfips (4.1) and  f (x)= (:: z) e L2 (--,-), 

then 

the result holding uniformly in every finite interval containing x 
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Replacing H: ( x , s , p )  by its value glven explicitly in (5.1), we obtain that ifj'(x) satisfies 
certain local conditions as to the validity of the Fourier single integral formula (see 
Titchmarch". p. 434), then 

uniformly for x in any finite interval. 

We thus deduce the expansion formula (valid under Fourier conditions) 

7heorem II: If Q ( x )  a n d J ( x )  satisfy the conditions of Theorem I, and further f ( x )  
satisfies certain local conditions for the validity ofthe Fourier single integral formula, then 

For the expansion formula under a different set of conditions, see authors' (p. 158, 
formula 5.4). 
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Appendix 

We outline below an  alternative method, suggested by a referee, to show that the operator 
T of section I is self-adjoint having recourse to deriving the spectral resolution of the 
operator T. 

where A. B, C are real-valued integrable functions and ( A  ( Q )  f) ( x )  = A ( x ) ,  etc., the 
Hilben space being H = L2 ( R )  Q L2 f R). Then the following lemmas hold. 

k m m o  I: If V t  L ,  ( R ) .  (/ '+;)-I V ( Q ) (  P+ i).' is a traceclass o p e r a t o r ( ~ a t o U ,  p. 521) 
and hence is a compact (completely continuous) operator on L1 ( R). 

This follows from the fact that ( P i -  ;)-I Vl ( Q) and Vz ( Q )  ( ~ + i ) - '  are both Hilben- 
Schmidt operators, where V = V I  V2, with VI, Vz r L2 (R).  

In particular, ( ?+ 1 )-Ii2 W ( i f  I)-"' is a trace class operator 

Lemma 2: For each t > 0, there exists a b > 0, such that 

I <  W j ; f > I I e < ? ~ f > + b < f ; f > f o r a l l f e d o m  ?. 
The lemma is a consequence of the following 

i) the operator families (?+I)"" ?+n)-",? ( T f  n)-"' (?+ 1)'" are bounded for 
n z l ;  

ii) ~ - $ - n ( ? ' + n ) - " ~  (?'+I)'" = 0; 

iii) ( ? + I ) - " ~  W ( ?'+ 1 )Ii2 is compact (by lemma I). 

The self-adjointness 
Vol. 2). 

of T follows utilising lemma 2 with KLMN theorem (Th. 

The following points may be noted: 

a) Negative eigenvalues of T, if any, can accumulate only a t  0, (Seex4, cor 4, p. 116, 
Th. XIII. 14, Vol. 4). 

b) The absolutely continuous p a n  of Tis unitarily equivalent to T. 

This is a consequence of the Birman theoremI4 (Th. XI, 10. Vol. 3), since ( T+ I)-'" W[T 
+ 1)-112 is trace class and dom ( I  TI + I)"' = dom f ?+ l)Il2. 




