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Abstract

We call H (x,y, A ) which generates the resolution of the identity of the self-adjoint operator 7 arising from the
formally self-adjoint differential operator

-D*+p r
» = )
r 'Dz+q

and the prescribed boundary conditions, the spectral matrix (or the resolution matrix). H” (+) is the resolution
matrix corresponding to the Fourier case i.e., the case when Q= ( pr > =0. Inthe present paper we obtain {i}a
rq

connection between H (x,y,A)and H” (x,y,A), as A tends to infinity: (ii) an equiconvergence theorem and (iii) an
expansion theorem in generalized Fourier integrals,

Key words: Spectral resolution, resolution matrix, generalized orthogonal relation, majorizing a matrix, summa-
ble, closed, generalized Fourier integral, generalized Parseval relation, spectral representation theorem.

1. Introduction
Consider the differential system
MU=ANU

where

.

M= -D* + p(x) r(x) ) _d u)
( r(x) -D*+ q(x) . b= > U=
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A -cbmplex and p(x), g (x), r(x)arereal, C1-« (a, b), (k=0,1) - class functions, integrable
in (g, b), finite or infinite. By Ck (&, B) - class functions we mean the set of functions (realor
complex-valued) which are k times continuously differentiable with respect to the variable x,
defined in an open finite or infinite interval {«, 8).

Let Ube the solution of (1.1)and ¢, ¢;,/=1,2,7=3,4 be the boundary conditien vectors
at x = a, x = b {ie solutions of (1.1} which together with their first derjvatives take
prescribed constant values at a and ). We choose the boundary conditions at a and b as

[Ue]=[Ud;]=0.[¢),0:2]=[ds.¢4]=0. (1.2

where [+]is the bilinear concomitant of the vectors. The bilinear concomitant of the two

vectors U= ( M ) and V=( uz ) is defined by

W V2

[o v]l=

Then (1.1) together with (1.2) gives rise to a self-adjoint eigenvalue problem considered by
Chakravarty (vide Chakravarty and Roy Paladhi').

The differential operation M defines on C,(—% o) an operator Ty symmetrical in Ly
(—90, ), -the minimalunclosed differential operator, the closure 77, of which is the minimal
differential operator defined by M. Let 7, determined by the prescribed set of linearly

independent boundary conditions assumed in the problem, be the self-adjoint extension of
Ti. Then Tis ‘generated’ by M.

If E(X) be the spectral resolution (or the resolution of the identity of the operator T), then
Tis connected with E(A) by means of the relation

T=J: Ad E(V) (1.3)

It is well-known that every resolution of the identity E()) determines a self-adjoint
operator Thy (1.3) and the spectral theorem shows that every self-adjoint operator T’ admits
an expression (1.3) by means of a resolution of the identity E(\) uniquely determined by T
In the Appendix, an alternative method of showing that T is self-adjoint is given.

By using a method entirely different from the ones usually adopted for solving eigenvalue
problems, Levitan and Sargsyan® and Levitan® obtained the asymptotic formula for the

spectral function, the equiconvergence theorem, the expansion theorem for the scalar
Sturm-Liouville equation

Y+ h=g(x))y=0. 1.4)
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Their technique is to consider in conjunction with this, the Cauchy problem

2

82 3
5 —alou= 3
3 ,
u(x,1) | o =S(x) LG L) PR (1.5)

at
and use the Fourier cosine transform in the sequel.

As can be easily seen one cannot replace the Fourier cosine transform by the Fourier sine
transform in the investigation so presented by them. Our object is to obtain corresponding
results for the matrix system (1.1). The corresponding Cauchy type problem is

?y _ a'U
=TTy T x)U 1.6
G = e QW) 6)

with boundary conditions
UCx, 1) | =0 = f(x) a.n

B U(x, 1) |‘
ot =0

N h p 7
f(x)z( ) ,h(x):( ) #0, X(x) =( )
Jr ha r o q

We make use of the Fourier sine transform, it being not possible to apply the Fourier cosine
transform in the investigation that follows.

= h(x) (1.8)

where

Let
u
¢ (x,A)= ( ) r=12
Vr
be the solutions of (1.1) satisfying at x = 0, the conditions

(ui, vy, ul, v) | x=0 = (1,0,0,0)

(2, V2, ud, vi) | x=0 = (0,1,0,0) 1.9)
and 6, (x, A) two other solutions of (1.1), connected with ¢: by the relations
[, 6:]=6u,[6,6]1=0rk=12. (1.10)

Then ¢, 8, constitute a linearly independent set of solutions.
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H{x,y, A) be the matrix

A
f[¢(x.>\)df(k) T (3 A) + (N dn(A) 87 (A}
F N AN T (A F 0 A) AL T (v A LA >0

]
H(x3 M= =[[a(62) dER) 7 (2 N) + d(x M) dn(X) 67(1 A)
A
+0(x0) dn(d) 8T AY + 8(x N LAY 87N T A >0

0 ;A=0.

M) ua XXz »
== N § = = i
¢ ( - ) (y‘ yl) and £ = (£; (X))

where

(111

7= (0 (X)), L= L (M) X I (I, the (2 X2) unit matrix), &5, 0y, {11 are non-decreasing
functions of A. Then H(-) generates the spectral resolution E(A) of the operator Tgenerated
by M. Wecall Hfor brevity the ‘resolution matrix’the corresponding spectral representation

formula is given by (5.4) in Chakravarty and Roy Paladhi® (p. 158).

Let A, A" be the intervals (a,b) and (¢, d) respectively so that H(x,y, A)= H{xyb)

~H(x,y,a), with a similar meaning for H(x, », A’). Then
L Hi{x,t, Ay H' (L. A)dt =7 H(x,p.ANA")
‘the generalized orthogonal relation’ holds.
H(x,y,\) is symmetric in the sense that
H(x,y\) = H" (3, x,A).
In particular,

fi H(xt,A) H' (1,3.A)dt = 7 H(x,7,A)

Let By Ho
Hx,yA) = ( )
Hy Hy

Then the first element in (1.13) is given by

™ Hn (xy.4) = 7 EHu(x) Hu(y) + Hu(x) Ha(y) ] dy,

where Hra(x) = Ha(x,t,A).

(1.12)

(1.13)
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Apply first the Cauchy inequality, then the Schwarz inequality and finally the obvious
inequality 2 {ab{ = a® + b?, for real a,b. Then, it follows that

1
Hs(x,p,A)= 3 [ Ho(x,x, A)+ Ho(p,p,A) ) rs =12,

Hence

H(xyA)€ S 1hGx )+ 4 (o) ] (1.14)

where
Hu (x) Hy (x)

h(xxA) = ( ) and ‘€’ represents

Ha(x) Ha (x)

that the matrix on the right hand side ‘majorizes’ the matrix on the left (Mirsky*, p. 328).
Since

w Hulnx &) =] [Hh () + Hh(n]dt

“o

with a similar result for Ha(x), therefore H,(x, x, A) are positive.
Also Hb (%, A) < Hy (x) Hn(x).

Hence the symmetric matrix H(x,x, A) is positive in the sense that the corresponding
quadratic form is positive.

2. Some auxiliary formulae

In conjunction with the system (1.1) we consider the Cauchy type equation (1.6) with
boundary conditions (1.7), (1.8). Then following Levitan and Sargsyan? we can use the
Riemann method of integration of (1.6) to show that the solution U(x, #;£, g) of (1.6) - (1.8) is
given by® . .
Ustif)= 5 [fix+D) + flx—1) + g(x+e) —g(x-1) ] +

+ % ] [ W(x1s)f(s)=T(x1.5)g(s)]ds @n

x—t

x
where g(x) =f h(y)dyand W(x,1,5), T(x,t5) are two known 2x2 matrices called the
Riemann matrices for the system.

Let ¢;, 8; be those given by (1.9) and (1.10). Replacingf(x) by 0and g(x) byf @;(s,\)ds
so that U (x, £) = 1/ /A sin v/Xt ¢; (x, A) now satisfies (1.1), it follows from (2.1) by the
uniqueness of the solution of the Cauchy type problem, that

I b
T sin \/XI ¢y (x,A) = —; I~'[[+ ﬂ(x;lJ)](f’i(S;}\) ds -
Jeaonay @2)
‘0

x+1

)
- 5 () a0 d-0GLs |

s=x+t x-
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where {} (x4, 3) =} T(x,1,y) dy and I is the 2X2 unit matrix.
0
Let g, (7), a scalar function, be defined as follows
() g () isodd: g (1) =—g,(~1);
(i) g, (13#0,0< [t <e
= (), otherwise;

(i) g,(r) has a piece-wise continuous, piece-wise monotone derivative i.e. g, (1) ¢ Cp,

Let+/X = pandlet ¥, () be the Fourier sine transform of g, (¢) i.e.
¥ (u) = Zg,(t) sintdr= [ g(1) sinpr de 23
[

Multiplying both sides of (2.2) by g (¢) integrate over (0, ¢) with respect to 2. Then using (2.3)
and changing the order of integration in the resulting integrals on the right hand side we
obtain, after some manipulation,

: xte

1
Tr LD EGEN= 5] Pasgeehds @4
where
P xs,eg=(Pi(xs5¢€)

+

J 109 - A0 (oixt 1)~ BO (xox-1) ] g, (1) dt

[Ead]

i

2.5)
A, Bbeing defined as follows:
A=1ifse (0,xt+e); B=1,if se(0,x—¢)
=, otherwise = 0, otherwise.
Similarly,
H 1 x+te 2 6
Vruh AV LIS 3 f P (x,5¢€) 8 (s,\) ds @6
e

Thus for afixed x, each component of

2 .
T A6 (b

is the ‘¢’-Fourier transform of a vector equal to

oy . .
Pi(xs.€) M(sz)"’ = 12in (x—e¢, x+§) and zero outside the interval; with a similar result
for the components of
2

ﬁ ‘I’((\/X)OJ (x.A).
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Then from (2.4), (2.6), the relations obtained from these by changing x to y and the
generalized Parseval relation’ (p. 151), we obtain, in view of (1.11),

1 1
—,;-L %wf(\/imﬂ(x.y,xw 2 ";x,P(x,s,e)PT(y,s,e)ds
where @7

Ay = (x—€ x+e) N (y—e, y+e).

In particular,
xte

1
1 j: T TV & H N = % [ Plxse) PT(xs6) ds
e (2.8)

3. Preliminary estimates

In the following we obtain certain lemmas which involve the matrix & and which will be used
subsequently to obtain deeper results. The method of procedure is similar to that used by
Levitan and Sargsyan’ (pp. 23-26) and we shall indicate only those steps where we considera-
bly differ.

Lemma 3.1: Let p, g, r be integrable over any finite interval. eo an arbitrary positive number
and ( xo, x1) an arbitrary finite interval on the real line. There there exists 2 constant matrix C
= C (€0, X0, x1) depending on the arguments shown, such that for x, y lying in (xo, x1),

I~

esVINdy H(x,pA) € C
holds. -
In partict:’lar,
[ eVPla, Hixpn)
is finite for arbitrary finite ¢, x, y. Also Hy (x,y,—) < o,
Putg, (1) = 1/ for0<1<e
= -1 for—e<r<0
=0 otherwise.
ren= 5 (R )

Then the lemma follows in the Levitan-Sargsyan’ (pp. 25-26) manner by utilizing the results
(1-14) and (2.8). .

Put g, (7,a) = g (1) cos at, where g is an arbitrary real number and

T (X, a) =fg§ (t,a)sm y/hr dt.

Then
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We note that g, (1 a) considered as a function of 4, satisfies all the conditions imposed on
g.(¢) and therefore by choosing g, {#) as before in the proof of lemma 3.1, it follows that

coshe v/ [A]

1
[2.0/Ra)| < pol e v , where A < 0.

Put

0,
T(xra0 =] % YR, @) dy H (5 p0). G4

Then
I
'8

where | A | > §>> 0, 8 being a positive number however small it may be.

T(xyae<

Q
fw cosh? (e VTAI) dn H (x,3.))

Hence, by.lemma 3.1,
F(xya¢<C 3.2
where C = C (¢, xo,x1) are various constants depending on the arguments shown and x,y
€(xo, x1) as in lemma 3.1,
Let us change \Iff(\/j\) 0 ¥, (A, a), g8, (1) 1o g (t,a) and let the matrix P({x,s,€)
change to P (x,5,q,¢). Then the formula (2.7) can be written as

1
I ¥2(Vha) da Hxp \)

= /4 j P(x,5,4,€) P?(y,s,a,e) ds - T (x,3,a,¢) . (3.3

axy

For, )t >0, lc't A= yz, H{x.y,A) = H, (x.y,p) and for fixed x, y, H is continued tc the
negative half-line as a matrix having each element an odd function of x. Then from (3.3) at
x=)p.

[ » . .
L a2 ¥ (pa)d, H, (x,x, )= 3 f P(x,5,a,¢) P' (x,5a¢)ds

-P(xx,a¢e). (3.4)
Since

1
Y (wma)= 5 (¥, (uta)+ ¥, (u-a)],

it follows on substitution of the particular vatue of ¥, (v/A ) as obtained in the course of
proof of lemma 3.1, that for 0<< < p—~a<pu<}|,

sin? 1/2 (u~a) e _ sin” 1/2(p—a)e 1 sin’1/2{u—a)e 1

= s - & —— ] .
(p=a)* & b (p-a) & 8 w(p-a) e 28p Vel p,2)

Hence for fixed »
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sinl/2(p—a)e 4 1,
]‘,{[—_“_—1/2(,‘-.1)5 ] doHr(mow) < 5 ] 5 ¥ (ua) & i (s

Putting ¢ = ! and then proceeding in the Levitan- Sargsyan manner (pp. 25-26) we obtain by
ausing (3.4), (3.2) and (2.7} the following

Lemma 3.2: Let p, g, r be integrable in every finite interval and let { xo,x1) be an arbitrary
interval on the real line. Then for x, y, € (xo, x1) Hi (x, 3, u+v)~Hi{x, y, p) € C, where v is
fixed and C = C (x0,x1) is a constant matrix depending on the arguments shown.

In our further discussions we require more stringent conditions on g, (¢) defined in
section 2. These are in addition to the conditions (i), (ii) and are as follows:

a) g.(t) and its indefinite integral h, (1), 1] < e, are infinitely differentiable; all such
derivatives being equal to zero for |7] = e.
b) g, (¢}, k., (¢} are uniformly bounded with respect to ¢, 7 and A, (¢) = 0 for |¢]| =
Then

W, \/X) e sin VAt €
——— = . dr = — § h( VAitd
7 !g (1) \/X t 6] t cos

Hence,
T (VA)
VA

and as in Levitan-Sargsyan® (p. 28), we have by lemma 3.1, the following

| | =0 [e(\/l_AI-H)z]

Lemma 3.3: 1f p, q, r are integrable over any finite interval aﬁd (x0,x1) an arbitrary finite
interval, then for all x, y, e (x0,x1)

[]

[ 1@ V) VAT d Hxp M) << C

Soo

where C= C (xo,x1) is a constant matrix depending on the arguments shown.

4. Asymptotic relations

In the present section we establish asymptotic relations involving the matrix 0 ( x, ¢,s) which
occur in section 2. We represent the sum of the moduli of the elements of 2 matrix A4 by | A|.

Let Q(x) defined in (1.8), satisfy
wr
f 1@ (o) | do= Ct”l say @.n

xX—r
a > 0is a constant.
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When p(x), q(x), r(x) are integrable over (—%0 ), the condifion (4.1) is satisfied.
In fact, in this case

+1
= };t | Qo) | do=0(}

!
as 1 tends to infinity (for fixed x). Then the following inequality holds®.

+1 1 4
| i=], lo@ideenl 2] Lo 1d0] 2
X Xt
where 7'is the 2X2 matrix which occurs in (2.1).
Then from (4.1), (4.2) and the definition of & (x.s,5) in terms of 7, it follows that

[Q(x1,8)~AQ (x1,x+1) - BQ(x.0,x-1) |
+1
s3f | T(x,tp) | dy
0

< Cla-n‘ 4.3)

O0< x~1<<s<xt1, A, Barethose defined in the formula (2.5)and C= C(xu, X)), a positive
constant depending on the arguments shown, where 1 <7y, a fixed number and x € { xo, X1),7
may take sufficiently small values and @ = a(xo,x) is a constant > (.

For convenience of presentation; we introduce the following definition:
A matrix Ais O(f) or o (f), where fis a scalar, if each element of 4 is O(f)or o(f) inthe
usual sense. In particular 4 = o (1) means that each element of 4 tends to zero.

We establish the following lemma:

Lemma 4.1: Let Q(x) satisfy (4.1) and let

a(xsv) =y ey [0 068) = AQ (rtx+1) - BO (x,0,x-0) ] sin vr !

A, B being defined as in (2.5).
Then

M
[ a(xsv) de=o(n),
Q
as g tends to infinity, uniformly in every finite domain of definition of x and s.
Proof: let
a(x59) = (e/(x.50)), Q(x15) = (Q,(x,1,5) ),
J=1234.
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In view of the result
__1 d vu j ¥
M f ,,f g (x,s,u)du — (11— ) @y (x5 0) dv
@ ¢ o °

obtained by integration by parts, there is no loss of generality in assuming that o (x, s, u ) is
always positive. It follows therefore that

x v 1 2y
L f dv f a;(x,su)du = = _’J aj{x s u)du 4.4)
by () P
Since
| H ) usinp ¥
f dv f usinur du=—————7—‘-+—- (1 —-cospe),
0 0

it follows on substitution for a;(x,s,v) in terms of {}; as defined in the lemma and then
changing the order of integration, that the left hand side of (4.4) is equal to

sm,u! 2 a2 } cospt
i=- det— [ ()=5—— | ()—5— d
- ix s(l )T 1 \fxw\ ) IS K '(x"[ 5
=~ I+, @5

where ()= Q; (x,1,5)~ A QG (x. x5+~ BO, (x, 1, x1)= K (x,15), say.

Now,

:j (v B ef sin l"‘ (f + f) & ) dr = hi+ I, say,

xosi
L Il

where 7 is an arbitrary positive number which does not exceed unity. Then by (4.3)

IIHISCj‘ ‘ A< Cn,a>0,
s
where we choose n so small that for all u, C»® < 1/2{, where [ is an arbitrary positive
number which may be as small as we like. Then
| Il < % { @6)

Having chosen 7 as such it follows from the Riemann-Lebesgue lemma that there existsa go
such that for p > uo

Il < L g, @7
Thus I, = o(1) uruformly as u tends to mﬁmty
N0w111[<4/pj I Kj (x,1,8)/1]sin? 5 arftde.
Since | Kj(x,1,8)/t | < Ct”, a > 0, it follows that K;(x,1,8) as ¢ tends to zero

Thus | K;(x,1,5)/1] <gfort <.
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Hence
4} 1
nis L+l Rl sin? L oai e
i % n 2

We now argue as in Titchmarsh® (P.414) by utilizing the familiar integral

2

. )
7““ Ydu = L soas to obtain J» = o (1), uniformly, as p tends to infinity.
0 X 2

The Jemma therefore follows from (4.4), the uniformity following from the uniform
boundedness of O (x.0,8)— A Q;(x,1, x+1) B {x 1, x~1) = K; (x,1,5).

Lemma 4.2 Let h (x.5,1), B(x,s,») be the matrices
j” si’n\/ At

h{x,5.1)= (y(xsp) = . W dr A (X8 0)
t
B(xsv)=(B;(x57v)) fo h{x,s,1) sin vt d1.

Jj=123,4and Q(x) satisfy (4.1). Then

jiﬂ(x.s.v)dv = - -;i H(x,5,-%) + o (1), (&)
as p tends to infinity, uniformly in every finite region containing x and s.
Proof: The existence of the matrix k(x,s, 1) is a consequence of the lemoma 3.3. Let

H{x,s \y= (Hu (x.5M) ) r k=12

It follows by integration by parts that

P v

% 1
{(1——"} Bilxsv)ar = o { d,,)!\ 8 (x,5,u) du (4.8a}
1 psingr 2 (1-cosu?)
=+ jh,(x.s,z)[— e i
]

= - I + L, say “8)

(on substitution for the B;(x, s, ), and change in the order of i integration on evaluation of the
inner integral involving sin ur).

In view of (4.8a), there is no loss of generality in assuming that 8; (x,s.u) is always
positive.
Now . .
- (x,s.t) sm;.n
= ([ ]y pizz0, o

A 7 dt = I, + I, say
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lere f12 = o (1), as p tends to infinity, by the Riemann-Lebesgue lemma.

ince !i_rghj (x, 8,0}/ 1 == Hp (x,5,-%9) (4.9)

nd (cosec -21- t— 51 ) Bxst) g integrable in (0, 8), the well-known technique adopted
t

or the treatment of convergence of Fourier series gives (Titchmarsh®, pp. 403-406).
IS+ 0(1), as p tends to infinity,
"

here,

12 sin(u+ /Dt kB(xst)
Swi= —— . d
" 2 j(; sinl/2¢ t
nd

1
Sui + —Z‘ Ho (x,5,~2) =0(1),

; p tends to infinity.
ltogether, Iy = = /2 Hu (x,8.-%°) + o(1) 4.10)

i u tends to infinity.
gain, .

J— h,(x.s,l) sin®1/2ut
g ,z

L = —

o 3

i

Iy + I, say.

‘om the continuity and consequent integrability of A, {x, s, 1)/ over (8, 1), it follows by the
iemann Lebesgue lemma that

122 = o(1), as p tends to infinity.

7 the usual technique adopted for the consideration-of the summability of Fourier series
Yitchmarsh®, pp. 412-413)

I =2 oy (p) + o(1), as p tends to infinity,

here .
1 1 sin®Vout By (xs1)
o(p) = —— « — | 22 2K HAGAT)
1(a) 2 I J; sin? 1 ¢ 1 d
W gj(p) =~ % H, (x,5,-%) + o(1), as g tends to infinity.
hus
L= = Hu (x,5-%) +o(1) 4.1

5 u tends to infinity.
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From (4.8), (4.10) and (4.11), we have
[ 2y gesvydv == 2 Hu(xs—ey +o(l) @n
0 L 2
as p tends to infinity.
w
| B, (x5 v) dv is thus summable (C,1).
0

Also since

24 n
% jj Bi(x.5v) dv s{ (1- 'y;)ﬁf(ms,v)dv

,T Bj(x,s,») d is convergent in the usual sense.
0

Therefore,
X

. 1
i — [ vB;(xsv)de=0
L}
(Hobson', p. 386).
The result (4) then follows from (4.12).

When 1 is complex, /{x,5.1) is an entire function of s and hence in particular infinitely
differentiable in the neighbourhood of 1 = 0. The uniformity in (4 ) then follows from the
boundedness of h{x,s 1) and ah/ar

5. The Fourier system: The asymptotic formula for H(x,y,\)}

The Fourier system corresponding to the given system (1.1) is the system (1.1) with p{x)=
g{x)=r{x)=01ie Q(x)=0.If ¢/, 6] are the ¢, § of the Fourier system satisfying (1.9),
(1.10), it is easy to verily that the matrix HT(x,y, u) for the Fourier system corresponding to
the matrix H; (x,y, i) for the general has the simple representation

sinu(x—s) f
XS5
where I is the unit 2X2 matrix.

HY (s,p) = 3 - .5

Also H (-) behaves in the same way with respect to the Fourier system as the H(+) with
respect to the given system (1.1). That is #7(*) generates the resolution of the identity of the
operator T" which corresponds to the Fourier differential operator.

Let f(x) = ( j,l)t Ly (—o0,%) and let ¥, (x,5) be defined as follows.
2

Vo(xs)=P(x,s¢)forse (x—¢, x+e)

= otherwise,
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where P(x. s, €) is given by (2.5). Then using (2.4), (2.6) and the generalized Parseval relation

stated in section 2, we obtain after some easy calculations that
xte

+1 717 v /R [ HGes NS () ds = 51 | Pxsassa
5.2)
Now {e™}, —ee < n < o0, is closed aver (~rr, 7} and hence form a complete orthogonal

, o0 < n <0, isclosed ove.r(~rr, );inother

X

inx
system on (—zr, w). Therefore the vector -g—_m
[4

words these vectors form a complete orthogonal system in the subspace of those(f ) €
4

Ly (—m,w) @® L (—m, ) satisfying g (—=x) = f(x} -
Since the vector fin (5.2) is arbitrary, we choose
eins
f(s) = ( -,-,,,,) ,~o < n<Coo, xme S s < x+te
e
= (

otherwise;
then it fogows from (5.2) that
f_w 1 /% ¥e(VA) dy H(xsA\) = /2 P(x,5¢), for [x—s| < ¢
=0, for | x—s|>¢ (5.3)
The convergence of the integral on the left of (5.3) is ensured from lemma 3.3 and the
fact that 1/ ¥ (g) = O(1/ "), as p tends to infinity.
As in section 3, put g (ta)=g, (1) cosat,

where a is an arbitrary positive number. Then form (5.3) it follows as before

/ 71_; [ e (VA+a) + T (v/A-a)] dr H(x.50) =1 P(xs.ac),

iflx—s|<e
=0 if|x-s|>e€
(5.4)
where

P(x,s,a,€) =f ge (La) [ I+Q(x1,5) ~AQ (x,6,x+1) —BQ (x,t,x~1) ] dr

x-5]
and 7 is the 2X?2 unit matrix, A, B being those as defined in (2.5).
Then noting as before that when A >0, A = ) H(x,y,A)= H(x, y, u) and for fixed x, y,

Hy is continued to negative u as a matrix whose elements are all odd functions, it follows
from (5.4) that
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f % e (u=a) du Hi (x.5,1)

= P(x,s,a,e)-wa '{.‘gi “’")Eﬁ\/& dx H(«\_‘J,)\)dl;IX‘s!Se
— i, sin \/’):t e
2L£gf‘ a) v ay H(x, 5, M) dr; [x—s| > ¢ (5.5)

For the Fourier case we have 0{x) = 0. Also from (4.2), T(x, 1,5} = 0 and consequently
Q(x,1.5) = 0. Thus for the Fourier case we have from (5.5)

. (
[ s vwaanicsw=nr] gads xsise
! o s

=0 | x—s | > ¢ (5.6)
where we utilize the fact for the Fourier case the negative part of the spectrum is absent
(compare Chakravarty and Senguptag).
Put ¢
g(xsae)= P(xs.ae)— 1T f g.(1,a)dt
Ix=s
= [ (0L - A2 (xxtn=BO(xtx-0)] £.(t.a)dr

sl

and @ (x5 0) = Hi (x,5,u)— HT (x5 1)
Then from (5.5) and (5.6)
f —17 ¥ {p-aya, ®(xsp)

s 0 €
= g lnnad -2 f fg ("a)Mdt dy H(x,8N5 [x—s] Se

=-2f fgé(,,,)“"\/)"drd/\fl(mm [x=s| >e. (5.7

By the Parseval theorem for Fourier sine transforms applied to each element of
pa (x5 1) defined in lemma 4.3 and

v, (a) = ofgs(t,a) sinn/kr

defined in sectiop 3, and noting that ¥_ (-} is odd, we obtain

(58)

1
j: a Plemoaxspydp =g (e ) if s <
=0 if (x—s| > (5.9)
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Again, by ¢hanging the order of integration which is easily verifiable from lemma 3.3, and
the conditions imposed on g, therein we have

o ¥ .

i A
L sua) @ G B s = [ pwayh s ac (510

where k (x,5,1) is defined as in lemma 4.2,

Again by the Parseval theorem for the Fourier sine transform applied to (5.8) and each
element of 1/ p B (x, s, 1) defined in lemma 4.2 and from consideration that T, (1) is odd, we
obtain for 0 < e =1,

I % ¥, (u=a) B(xs,u) du= 7 [ £ (1a) ki (x.5,1) dr. .11
et 0

Hence, from (5.7), {5.9), (5.10) and (5.11) it follows that

L % ¥ (p-a)d, @* (x,5p) =0 (5.12)
where
- h 2 f
S* (x,5p) = ®(x,8u)- fa (x,5,v)dv + f B (x.s5,v)dv. (5.13)
o m [

Since a is arbitrary and ¥, is continuous, (5.12) can be written in the form

L Xe(p)rd, @* (x5,u)=0 (5.14)
where x, (u)= ]7 ¥, (u) which is the Fourier cosine transform of {—h,(¢) } introduced in
connection with lemma 3.3. As in lemma 3.2 it follows easily that for fixed »,

¥ (x,s.utr)~®* (x5p)<€C (5.15)
where C is a constant matrix C = C (xo, X1}, ( Xo, x1 ) being any fixed interval which x and s
vary.

We now use the following modified version of the Marchenko Tauberian theorem
(Marcenko®; also Levitan and Sargsyanz; pp- 90-92, special p. 92):
Theorem A: Let f be the set of infinitely differentiable functions jn-(—o¢,%) and let
I Boyatem-en =0,
where.
—iAx
Ef(A) = ] f+e  dxand p(N), o(X) (o0 < A < )

are nondecreasing and continuous on the left such that one of the functions o (X), say,
satisfies

Illir_n {o (a+Xo)—o(a)} = o* (A) < oo, for some Ao > 0
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(or p{X), o)) are odd functions and ¢(\) has a bounded derivative). Then
gi,{rgq {p(M)—o(N)}=0.

Applying this theorem, we obtain from {5.14),
Iim &* (x5p)=0 (5.16)
prisey

uniformly in every finite interval containing x, s.

Therefore, from (5.13), we obtain by using (5.16) and the lemma 4.1 and 4.2, the following
theorem.

Theorem: If Q (x) satisfy (4.1), then

lim [H (o) = HT (s} = H (xs,-),

for each fixed x, s, the result holding uniformly in every finite domain in which x, s vary, A7
being given by (5.1).

Put x = s == (1. Then from the initial conditions it follows that the matrices 8 and ¢ in(1.11)
are the zero and the unit matrices respectively. Hence H (x, s, u) reduces in this case to the
matrix p(p) whose elements in terms of my, My are given explicitly by

. M (A} Mo (A} + mn (M)
- = | L I LR
pr (1) = flm [ mi (M) — My (X)

v=0 0

] du; A=u+iv

and

prs (1) =

lim fam['””“‘)M”“H’””“)M"m]du
-0 g m (N) =~ My (3}
P (p) = po(A), mEs=12

Then from the theorem we have the representation
: K
lim [p(p) = 2 - 1]=p (~o)
s

where J is the unit 2X2 matrix.

(For discussion involving my, My, etc., and introduction of the matrix # (x,s, u) in the
explicit form (1.11), (see').

Incidentally, we remark that the Titchmarsh *® (p.43) spectral function k(A ) is obtained by
putting x =y =01in 9§ (x, y, \), the spectral function which occurs in Levitan and Sargsyan
(p-22 formula (2.1.13) ). To verify this the formula (2.1.13) of Levitan and Sargsyan hastobe
obtained in the same way as in authors’ paper’, by deriving the explicit form of the Green’s
function for the Sturm-Liouville equation in the singular case [0,%), H(x, y, A) similarly
yields (k- (A) ), the generalization of & (A) in the matrix case for the interval [0,%0).
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In what follows we obtain an equiconvergence theorem for the eigenfunction expansion
associated with the system (1.1) and therefrom deduce a general expansion theorem involv-
ing an arbitrary vector f(x) € Ly (—oe,o@).
6. Some preliminary investigations
Let

S{x, ) :7 H(x,s,X) f(s)ds
64)
s n) = ji HE (x5, 0\) f(s) ds
HY () being the resolution matrix in the Fourier case.

For A = p® let H(x, p, A\) = Hi (epop); HE (o M) = HY (x0.0):

S(xA)= S (x,u), ST (x. A}y = 5f (x, u) for p > 0.

For fixed x,p, as before let H; (x,», u) be continued to the negative half-line as an odd
function.

Similarly for ¥7 (x, 1, ).
Also for 4 < 0, let S1 (x, ) = =S (x,~p) with a similar meaning for ST (x, u).
As in section 3, let
& (1.a) =g (1) cosar, a an arbitrary positive number; it follows from (5.2) that
_l__ 3 ] xte
3l VALY (VR+a) + ¥ (VA-a) T4, Sx )= 5 Pxsae ) ds
x-¢
6.1y
where f(x) € L (~°<f°°) P(x.5,4, ¢) has the same meaning as in (5.4) and

Y. (p,a)= [‘I’ (uta)+ ¥, (u- a)]-—f g (ta) sin prde 6.2)

the Fourier sine transform of g, (1, ).
Therefore, (5.2) can be written as

[ L eoods =
xte 0 “

7 [ Plusaef(ds-2 | [ fg((,,a)_s’_“\/;_}\/t}_’ di1dy S(xh). (6.3)
. o [}
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The corresponding formula for the Fourier case (Q (x) = 0) is

<

xte
J v o, staw=a] I [ gaadlfe)d. 6

L x-e Tr=s1

Put .
R(xp)=St(x.p)— ST (xp)
Then from (6.3) and (6.4),

xte

f #i‘l’((/.l"d)d”R(X,#):ﬂf g (x.s,a,¢)f(s)ds

-2 L [ng("“) _s‘.'iﬁﬂ dr1ds S ()

(6.5)
where g (x,5,4,¢) is the same as in section 5.
By a change in the order of integration
7 gxsae)fisNds= [ g (La)y(xor)de (6.6)
X-€ 0

where

»n(xt) x+t
yix. ) =< ) = f[O(x,t,S)—Aﬂ(x,t,x+t)—Bﬂ(x,t,x—t)]f(s)ds

ya(x, 1) x
6.7)
{2 (x,1,5) and the constants A, B being those of section 2.
Put A )
A(xp)= ( (2 ) = [ vy (xr)sinve do (6.8)
Az (x,v) 0

Then applying the Parseval theorem for the Fourier sine transform to each element of (6.8)
and (6.2), it follows that

€

1 1 ™
2 TF[‘I’AM-«:) +Y e JAwds = 5 [ e ay@nd
° (6.9)
Hence since ¥, (p) is an odd function of u, we have from (6.6) and (6.9)
1 }' 1 T xte
2 Lo g T Axwde= 5 gxnsaaf(s)ds (6.10)

x-e

Again by a change in the order of integration

f [ I g,(t,a)smT\)‘/x’ dr]dxs(x.)\)= j;g&(t,a)Z(x,t)d‘t 6.11)
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where Zi(x,1) ¢ sin VX
] :
= _ S VA g S0 (6.12)
Z(x.1) ( z:(x,r)) _fa VA
r =k 0=r=1
Since

. ‘

sin \/Kt =f cos (VA w)du
VA 0

therefore

Sin VAL << for0s<s= I,
x

Hence (sin \/)\—t )/\/X is uniformly continuous in each bounded point set, Therefore, by
Radon’s definition of Stieltjes integrals (see Bochner '\p. 307), Z (x,7) exists uniformly in z.

1
B(x, . .
puc BB = 700y sin pr dr, (6.13)
® [

Let us apply the Parseval equality for the Fourier sine transforms to each term of the vector
B(x, ) defined in (6.13) and the relation (6.2), use the equality (6.11) and argue as before
with ¥ _(y). We then ultimately obtain

1 1

5 1 s ¥, (u—a) B(x,p) dp

0, €

= *;r" f fz,(z.a>fi~“\%{:)‘_‘ dr1ds S(xA). (6.14)

0

B, R
Putting R * (x, p) = R(x,@«!A (xv)dr +2/7 | B(xv)dv
0
it follows from (6.5), (6.10) and {6.14) that
f %“I'(m«a)duk*(x.y):o, 0=e<1. (6.15)

In view of the continuity of ¥, and arbitrariness of &, (6.15) is equivalent to

[ v warmm=o (©.16
7. Some lemmas

We now establish some lemmas which are utilized in the proof of the equiconvergence
theorem and the generalized Fourier integral theorem.

Lemma 7.1: Let Q (x) satisfy the relation (4.1} and A (x, ¥) be given by (6.8). Then

B

[ Ay av=oq)
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as u tends to infinity, and for fixed ».
pty

[ 4 (xuwdu=0(l)

,‘
as p tends to infinity; both the results hold uniformly in every finite interval containing x.

Proof: Integrating by parts,

' E2u H

Lla] 4 (xu)du——(f +fa= ) Ay av .y
® oo [l N

so that without loss of generality we can assume A, (x, &) positive and hence the following
inequality
1§20

1
= 3 f.Aj(x,V)dv,j= 1,2. (12
0

On changing the order of integration, we have, by using the definition of 4 (x,»),

I u sin pt 2(1-cosur)
= —;{y,(x,l)[* 7 + 7 de==5+1, say. (7.3)

Now,

3 1
(%1 :
_(y](x.t) smfz dt—<f & f)h(j ). smtut ar
0 5

= In -+ Iy, say. (7.4)
By the relation (4.3), it follows by the Minkowsky inequality

| yi(x1) l <ot (1.5}
¢
Thus

L]
|l < Cafz""w dr = K 8% < 4, say

where we choose 77 as small as we please with 8, independently of x. Having so chosen 8, /i
tends 10 zero as g tends to infinity uniformly in x over any finite interval (xo, yo), say, by the
Riemann-Lebesgue lemma.

Thus altogether I, = o(1), as u tends to infinity uniformly in x over any finite interval.

For the estimate of /, we argue in the same manner as we did in lemma 4.1 by following
Titchmarsh® (p. 414). Thus L, = o(1), uniformly as u tends to infinity.

The first part of the lemma then follows from (7.2) and (7.3). The second part is evident
from the first part and the lemma therefore completely follows.

Lemma 7.2: Let f (s) be any vector which belongs to 1., (—%0,%) and § (x, A),
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Z (x,1) and B (x,v) be defined respectively by (6A), (6.12) and (6.13).

Then for every fixed x,

“

tim, 2 | B(xv)dv=-8(x=),
0

and if v is fixed.
utv

f B{(xu)du=o(l)

A
as p tends to infinity: both the results hoid uniformly in every finite interval containing x.

Proof: Integrating by parts, utilization of the expression for B (x,v) and a subsequent
integration by parts we obtain

# ) | ,
1:!(1— =) Bilxy)dv= 7%( dv!B,(x,u)du

_ 1 ; ) usinpr 2 (I —cosur)
= 7{21()’,[) e e dr

=~ [y + 5L, say (7.6)

where [ = 1,2.

The function Z, (x, )/t exists at t = 0 and Z: (x,¢) ¢ is an analytic function of ¢ and
therefore integrable over (0,8), where 8 >> 0 is arbitrary and we write

L] 1 .
sinut
k :(fo + 4)2, (x,1) 2 de= Aot i, say.

Then by the Riemann-Lebesgue lemma /2 = (1), as u tends to infinity uniformly in xlying
inany fixed finite interval. Also, a Fourier series type of analysis as contained in Titchmarsh®
(pp. 404-406) leads to

I 1

T ET S S (x,~°) + o(l)
as u tends to infinity and x fixed.

We proceed with the estimate for I, in the same way as in lemma 4.2 50 asto finally obtain
™

1= 2 Si(x,~ee) +o(1),
as p tends to infinity for fixed x.

The first part of the lemma follows by exploiting. as before, a criterion giving a necessary

and sufficient condition for the ( C, 1) summability of}i f () dt (Hobson’, p. 386). The
uniformity of the limit for every x in any given finite intetval containing x follows from the
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continuity of Z (x,1){t as well as that of its partial derivative with respect to 1,
The second part is an immediate consequence of the first.
’Lemma 7.3: Let f(x) e Lz (—°, «). Then

S (xpute)= Si(xu)=o(l),

as p tends to infinity, uniformly in any fixed interval contammg x, where v is fixed and
81 (x,u)is as defined at the beginning of section 6.

Proof: 1t follows from the generalized Parseval relation (see authors’ paper’, p.151)

wty 5 2
{ [ -E. Eu EydEy+ 2,2' Ey Eydn; + ﬁ; Ehdin ]: o (1) (17)
Li= = L=

as p tends to infinity and » fixed. Here Ej €5, ny and {11 are those which oceur in the
theorem.

By substituting for the explicit form of the matrix H\ (x, y, ) as given in (1.11), it follows
from lemma 3.2 that
kv

[ Temnae®) o3 + o (x M) dn () 87 (r2)

FO(N)dn (N ¢T (WA B (A AL BTN << C

where v is fixed; x,y lie in the fixed interval (xo, x;) and C= C(xo, x1)1s a constant matrix
depending on xo, x, only. 4

Then putting x = p,
aty 2 2 2
{ ,-,-2::, wdlyt2 3 wxdnyt 2 X?dln] = o(D) 78)
3 . ij= i=

with a simitar result with u replaced by » and x replaced by y. (u;, v; are elements of the
matrix ¢ and x,y;those of 8 and £;;, 94, {11 are those of £, #, { that occur in the explicit form
of the resolution matrix Hy (x,y, u).

¥ Silop) = Sn(X-ll))
V(X u4) (Su(x,p!) , we have

Su (x utv)— S (xu)
wt»

— 2 2 2, 2
f { 112-:1 w Eydég+ HEIM Ex dny +U%l,xf Ey;dny +,§,, % Eud{ul

»

with similar expression for Si (x, p+v) = Sp2 (x, ). 9
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We now make use of the inequality (Hardy er al'? section 29, p. 33).

> a, Xy, = (5 au x“xy)l/z ( Sa,x, x,)m‘,
where a,, = a,, and %a,x,x,isa positive quadratic form (with real but not necessarily
positive coefficients) and the Schwarz inequalitv in (7.9).

Then from (7.7) and (7.8) it follows that for a fixed v,
Sy (x, utv)— Su (x,u) = ofl),
as p tends to infinity uniformly, x lying in a fixed interval (xo, x1) say.
Similarly for Siz (o, g+v) ~ Si2 (x, p).
The lemma therefore follows.
8. The eguiconvergence theorem and the expansion theorem
It follows from lemma 7.3 and the same lemma applied to ST (x, u), that for fixed »,
R(x,ptv)y— R(x.u)=o0(l),
as u tends to infinity uniformly in any fixed interval.
Therefore, by lemma 7.1 and lemma 7.2, it follows from (6.16), that for fixed v
R* (xuty) = R (xp) = o(1) @1
as u tends to infinity uriformly in every finite interval of variation of x.

Now x, (u) = 1/p ¥, (u) is the Fourier cosine transform of { ~ A, (¢) }, introduced in the
proof of lemma 3.3.

The condition of the Marchenko-Tauberian theorem (Theorem A, section 5) being
satisfied, it follows from (6.15) that

lim R* (xu)=0.

uniformly in each finite interval over which x varies. We thus obtain the equiconvergence
theorem

Theorem I: If Q(x) satisfies (4.1) and f (x )=( Si(x)

) € Ly (—o0,0)
2 (x)

then

hmj {Hi(x5p) - Hf(x,s,u)}f(s)dszzn Hi(x,5,-%) f(s) ds,

the result holding uniformly in every finite interval containing x.
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Replacing HY (x,s, 1) by its value given explicitly in (5.1), we obtain that if /' (x) satisfies
certain local conditions as to the validity of the Fourier single integral formula (see
Titchmarch '®, p. 434), then

lim I,, HE (x5, ) f(s) ds = 7 [ (x)

uniformly for x in any finite interval.
We thus deduce the expansiop formula (valid under Fourier conditions)
Theorem II: If Q (x) and f (x) satisfy the conditions of Theorem I, and if further f (x)

satisfies certain local conditions for the validity of the Fourier single integral formula, then

f(x) = % tim I@ {H (s )~ Hu(es,~p) 1 (s) ds.

For the expansion formula under a different set of conditions, see authors’ paper' (p. 158,
formula 5.4).
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Appendix

We outline below an alternative method, suggested by a referee, to show that the operator
T of section I is self-adjoint having recourse to deriving the spectral resolution of the
operator T.

Let P o

P=—i(d/dx), i::(

. A0 Q)
), r=r-+ W==T+( )

0 p? Q) B(Q)
where A, B, C are real-valued integrable functions and (A4 (Q) /) (x) = A4 (x), etc., the
Hilbert space being H = L, (R) @ L2 (R). Then the following lemmas hold.

Lemma I: f ¥ e Ly (R). (P+i)"' ¥ (Q)(P+i)"is a trace class operator (Kato ', p. 521)
and hence is a compact (completely continucus) operator on L; ( R).

This follows from the fact that (P+i)™' ¥ (@) and V: (@) (P+i)™" are both Hilbert-
Schmidt operators, where ¥ == V' V5, with ¥}, Vo e Ly (R).

In particular, (T+1)™ W (T+1)7" is a trace class operator.
Lemma 2: For each ¢ > 0, there exists a b > 0, such that
< WLf><e< ?ﬁf>+b<ﬁf>forallfedom T.
The lemma is a consequence of the following

i) the operator families { T+ 1)"? (T+ny) "2 (T4+n)"? (T+1)"” are bounded for
n=1;

i) §-lim (T+my ™" (T+ 1) =0,
i) (7+1)"* W (T+1)"* is compact (by lemma 1).

The self-adjointness of T follows by utilising lemma 2 with KLMN theorem ' (Th. X. 17,
Vol. 2).

The following points may be noted:

a) Negative eigenvalues of T, if any, can accumulate only at 0, (See™, cor 4,/ p. 116,
Th. X1I1. 14, Vol. 4}.
b} The absolutely continuous part of 71s unitarily equivalent to T.

This is a consequence of the Birman theorem ** (Th. XI, 10, V?g. 3),since (T+ 1) W[ T
+ 1)71/2 is trace class and dom (| 7| + 1) = dom (£+ 1.





