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Remote Sensing Applications in Water Resources
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Abstract | With the introduction of the earth observing satellites, remote 
sensing has become an important tool in analyzing the Earth’s surface 
characteristics, and hence in supplying valuable information necessary 
for the hydrologic analysis. Due to their capability to capture the spatial 
variations in the hydro-meteorological variables and frequent temporal 
resolution sufficient to represent the dynamics of the hydrologic proc-
esses, remote sensing techniques have significantly changed the water 
resources assessment and management methodologies. Remote sensing 
techniques have been widely used to delineate the surface water bod-
ies, estimate meteorological variables like temperature and precipitation, 
estimate hydrological state variables like soil moisture and land surface 
characteristics, and to estimate fluxes such as evapotranspiration. Today, 
near-real time monitoring of flood, drought events, and irrigation manage-
ment are possible with the help of high resolution satellite data. This paper 
gives a brief overview of the potential applications of remote sensing in 
water resources.
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1 Introduction
In the earlier days, implementations of conven-
tional methods of hydrologic modeling were 
hampered by the lack of detailed information 
about the spatial variability of the physical and 
hydrological parameters of the catchment. With 
the evolution of the remote sensing technology, 
satellite-based remote sensing methods are now 
being widely used to capture the spatial variation 
in the hydro-meteorological and catchment char-
acteristics, resulting in significant improvement in 
the hydrologic modeling.

Major focus of remote sensing applications 
in hydrology include the estimation of hydro-
meteorological states (such as land surface tem-
perature, near-surface soil moisture, snow cover, 
water quality, surface roughness, land use cover), 
fluxes such as evapotranspiration1 and physi-
ographic variables that can influence hydrologic 
processes. Remote sensing applications in hydrol-
ogy can be classified into three broad classes:2

•	 Simple	 delineation	 of	 readily	 identifiable,	
broad surface features, such as snow-cover, 
surface water or sediment plumes.

•	 Detailed	 interpretation	 and	 classification	 of	
the remotely sensed data to derive more subtle 
features, such as specific geologic features or 
various land-cover types.

•	 Use	 of	 digital	 data	 to	 estimate	 hydrological	
state variables (e.g. soil moisture) based on 
the correlation between the remotely sensed 
observations and the corresponding point 
observations from the ground.

Physiographic variables, hydro-meteorological 
state variables and fluxes estimated using remote 
sensing techniques have been clubbed with the 
hydrologic and water quality models to achieve 
better simulation and understanding of the water 
budget components and water quality param-
eters. Such studies have wide range of applica-
tions in river morphology analyses, watershed/
river basin management, irrigation planning and 
management, water conservation, flood moni-
toring, groundwater studies, and water quality 
evaluations.

Remote sensing is the science of obtaining 
information about an object, area or phenomenon 
without any physical contact with the target of 
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investigation. The information is derived by using 
sensors to measure the Electromagnetic Radiation 
(EMR) reflected, or emitted by the target. The 
EMR spectrum is divided into regions or intervals 
of different wavelengths (called bands) as shown 
in Figure 1. The bands that are most commonly 
used in satellite remote sensing include the visible 
(VIS, wavelength 0.4–0.7 µm), infrared (IR, wave-
length 0.7–100 µm) and the microwave regions 
(wavelength 0.1–100 cm). The IR region is fur-
ther classified as near IR (NIR, 0.7–1.3 µm), mid 
IR (MIR, 1.3–3 µm), and thermal IR bands (TIR, 
3–5 µm and 8–14 µm).3

Depending upon the elevation of the sensors 
from the earth surface, remote sensing may be 
termed as ground-based remote sensing (sensors 
are hand-held or mounted on a moving platform), 
low-altitude or high-altitude areal remote sens-
ing (sensors onboard aircraft), or remote sensing 
from the space (sensors onboard polar orbiting or 
geo-stationary satellites).

The sensors used in remote sensing studies 
can be broadly classified into active and passive 
sensors. The active sensors (e.g., Radar) send 
pulses of electromagnetic radiation (specifically, 
microwave radiations) and record the energy 
reflected or scattered back. Characteristic of the 
reflected energy received at the sensor antenna 
depends on the target properties, its distance 
from the antenna, and the wavelength of the 
signals.

Passive sensors only record the energy reflected 
or emitted by the targets. It can be achieved 
by using the VIS and IR bands (called optical 
remote sensing), thermal bands (called thermal 
remote sensing) or the microwave bands of the 
EMR spectrum. Landsat Multi-Spectral Scan-
ner (MSS), Thematic Mapper (TM), Enhanced 
Thematic Mapper (ETM), Indian Remote Sens-
ing (IRS) LISS-3 and P6 are some of the sensors 
that operate in the VIS and IR spectral ranges. 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) onboard NASA’s (National Aeronau-
tics and Space Administration) Aqua and Terra 

satellites uses 36 bands ranging from the VIS to 
the thermal bands of the EMR spectrum. Sen-
sor that record reflected energy in the microwave 
bands are also used in remote sensing of the Earth. 
Special Sensor Microwave/Imager (SSM/I) carried 
aboard Defense Meteorological Satellite Program 
(DMSP) satellites is a passive sensor that records 
microwave radiations. It records microwave radia-
tions in four frequencies raging from 19.35 GHz 
to 85.5 GHz.

The energy reflected by an object varies with 
the characteristics of the object as well the wave-
length of the energy band. In passive remote 
sensing, energy reflected back in more than 
one band are recorded, and are used to retrieve 
information about the target. The approach 
of measuring the reflectance in more than one 
band of broad wavelength, using parallel array of 
sensors, is called multi-spectral remote sensing, 
and this has been the most common approach 
in satellite remote sensing. Landsat TM, ETM+, 
IRS LISS, MODIS are some of the examples 
for multi-spectral sensors used in the satellite 
remote sensing.

Recent technological development in pas-
sive remote sensing is the use of several narrow, 
continuous spectral bands, which is called hyper-
spectral remote sensing. A typical hyper-spectral 
sensor collects reflectivity in more than 200 chan-
nels of EMR spectrum.5 For example, the Hype-
rion sensor onboard the satellite NASA-EO-1 
provides data in 220 spectral bands in the range 
0.4–2.4 µm.

There are many papers that give detailed review 
of the remote sensing applications in the water 
resources. Most of these papers discuss the role of 
the remote sensing techniques for any one partic-
ular application viz., estimation of rainfall,6,7 land 
surface evaporation,8 water quality,9–11 runoff,12 
flood,13 and drought14 management, and applica-
tions in irrigated agriculture.15,16 Several studies are 
also available evaluating the multi-dimensional 
applications of remote sensing in water resources 
assessment and management.1,17 With remote 

Figure 1: Bands in the EMR spectrum that are commonly used in the remote sensing (Modified from  
Short, 19994).
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sensing technology evolving at a very rapid rate, 
many sensors and algorithms are coming up mak-
ing significant advancement in the water resources 
applications. This paper presents a concise over-
view of a broad range of application of the remote 
sensing technologies in water resources, summa-
rized under three broad classes:

•	 Water	resources	mapping
•	 Estimation	 of	 the	 hydro-meteorological	 state	

variables and fluxes
•	 Applications	 of	 the	 remote	 sensing	 data	 in	

water resources management

Under	 each	 section,	 details	 of	 the	 sources	 of	
global remote sensing data products, if any, are 
also included.

2 Water Resources Mapping
Identification and mapping of the surface water 
boundaries has been one of the simplest and 
direct applications of the remote sensing in water 
resources studies. Optical remote sensing of water 
resources is based on the difference in spectral 
reflectance of land and water. Figure 2 shows the 
reflectance curves of water, vegetation and dry soil 
in different wavelengths.

Water absorbs most of the energy in NIR and 
MIR wavelengths, whereas vegetation and soil 
have a higher reflectance in these wavelengths. 
Thus, in a multi-spectral image, water appears in 
darker tone in the IR bands, and can be easily dif-
ferentiated from the land and vegetation. Figure 3 
shows images of a part of the Krishna river basin 
in different bands of the Landsat ETM+. In the 

Figure 2: Spectral reflectance curves of different land cover types (Modified from http://www.rsacl.co.uk/
rs.html).

Figure 3: Landsat ETM+ images of a part of the Krishna river basin in different spectral bands.
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VIS bands (bands 1, 2 and 3) the contrast between 
water and other features are not very significant. 
On the other hand, the IR bands (bands 4 and 5) 
show a sharp contrast between them due to the 
poor reflectance of water in the IR region of the 
EMR spectrum.

Mapping of the surface water bodies using 
remote sensing techniques finds applications in the 
areas of flood monitoring, water resources moni-
toring, and watershed management studies, which 
are explained in Section 4 in this paper. Water 
resources mapping requires remote sensing data 
of fine spatial resolution so as to achieve accurate 
delineation of the boundaries of the water bod-
ies or inundated areas. Mapping of surface water 
resources in Jodhpur District in India is a good 
example for the application of satellite remote sens-
ing for the water resources mapping, in which water 
bodies up to 0.9 ha surface area have been mapped 
with the help of Landsat TM images of 30 m spatial 
resolution.18 With the help of very fine resolution 
images like IKONOS and SPOT images, with less 
than 1 m spatial resolution, further accurate map-
ping of the water resources can be achieved.

Optical remote sensing techniques, though 
provide very fine spatial resolution, are less capa-
ble of penetrating through the cloud, which limit 
their application in bad weather conditions. This 
is particularly a problem in the tropical regions, 
which are characterized by frequent cloud cover. 
Also, this limits the optical remote sensing appli-
cations in flood monitoring, since floods are gen-
erally associated with bad weather conditions. 
Another major limitation of optical remote sens-
ing is the poor capability to map water resources 
under thick vegetation cover.

Use	of	active	microwave	sensor	helps	to	over-
come these limitations to a large extent. Radar waves 
can penetrate the clouds and the vegetation cover 
(depending upon the wavelength of the signal and 
the structure of the vegetation). Water surface pro-
vides a specular reflection of the microwave radia-
tion, and hence very little energy is scattered back 
compared to the other land features. The difference 
in the energy received back at the radar sensor is 
used for differentiating, and to mark the bounda-
ries of the water bodies. Radar remote sensing has 
been used successfully to mark the surface water 
bodies19 and flooded areas under thick forest.20–22

Another important development is the use 
of thermal bands for detecting the boundaries of 
the water bodies through thick vegetation.23 The 
method used brightness temperature (T

B
) meas-

urement using TIR band (10.5–12.5 µm) of the 
Meteosat. The T

B
 data was processed to obtain 

the thermal maximum composite data (Tmax), 

and the areas showing lower values of Tmax were 
marked as the inundated areas. The method was 
successfully applied to monitor the inundated 
areas for Lake Chad, in central Africa. The method 
is advantageous in cases where very frequent data 
is required (temporal frequency of the data is 
30 min.). On the other hand, the poor spatial reso-
lution (5 km) of the data is the major drawback of 
the methodology.

3  Estimation of Hydro-Meteorological 
State Variables

Hydrological processes are highly dynamic in 
nature, showing large spatio-temporal variations. 
Conventional methods for the estimation of the 
hydrologic state variables are based on the in-situ 
or point measurement. Enormous instrumental 
requirements, manual efforts and the physical 
inaccessibility of the areas often limit the observed 
data availability to only a few points within a catch-
ment, and a very poor temporal coverage. These 
point observations are generally interpolated to 
derive the spatially continuous data. Capability of 
the resultant data to capture the spatio-temporal 
dynamics is largely constrained by the spatial and 
temporal frequency of the observation. Applica-
tion of the remote sensing techniques in estimating 
the hydro-meteorological state variables is a major 
leap in technology that significantly improved the 
hydrologic simulations.

This section briefly explains the application 
of remote sensing techniques for the estima-
tion of the hydrologic state variables such as 
rainfall, snow and water equivalent, soil mois-
ture, surface characteristics and water quality 
parameters.

3.1 Rainfall
Conventional methods of rainfall measurement 
using a network of rain gauges suffer a major 
drawback due to inappropriate spatial coverage 
required to capture spatial variation in the rainfall. 
Physical accessibility is one of the major factors 
that limits density of the rain gauges over remote 
areas as well as over oceans. Application of the 
remote sensing techniques helps to overcome the 
issue of spatial coverage. Sensors operating from 
the areal or space borne platforms are better capa-
ble of capturing the spatial variation over a large 
area. Remote sensing techniques have been used 
to provide information about the occurrence of 
rainfall and its intensity. Basic concept behind the 
satellite rainfall estimation is the differentiation of 
precipitating clouds from the non-precipitating 
clouds24 by relating the brightness of the cloud 
observed in the imagery to the rainfall intensities.
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The earlier methods of satellite rainfall esti-
mation were based on the optical remote sensing, 
where VIS, IR, and water vapor bands were used 
to identify the precipitating clouds. High spatial 
resolution (∼30 m) and the possibility of frequent 
temporal sampling from space are the advantages 
of the optical remote sensing. Several algorithms 
are documented in literature for rainfall estimation 
using the VIS and IR bands. More than 20 such 
methods from various sources have been listed by 
Gibson and Power.24 GEOS Precipitation Index 
(GPI), RAINSAT, FAO, CROPCAST, and ADMIT 
are a few of them. Since the relationship between 
cloud brightness observed using the VIS bands 
and the rainfall is poor, in these methods the VIS 
imagery is used in conjunction with the IR obser-
vations. IR observations, particularly Cloud Top 
Temperature (CTT), are very significant in satel-
lite rainfall estimation, since the heavier rainfall 
events are generally associated with larger and 
taller clouds, and hence colder cloud tops. For 
example, the GPI algorithm uses a direct relation-
ship between the CTT and the tropical rainfall as 
shown below:25

GPI (mm) = 3F
c
t  (1)

where GPI is the rainfall estimates, F
c
 is the frac-

tional cloudiness which is the fractional coverage 
of IR pixels colder than 235K in a 2.5° × 2.5° box, 
and t is the time in hours for which the fractional 
cloudiness is estimated.

Table 1 lists some of the important satellite 
rainfall data sets, satellites used for the data collec-
tion and the organizations that controls the gen-
eration and distribution of the data.

Microwave remote sensing using both passive 
and active sensors (radar) has also been largely 
used for the estimation of instantaneous precipi-
tation.	Use	of	radar	in	rainfall	simulation	has	been	
reported since the late 1940s.26,27 In radar rain-
fall estimation, microwave back scatter from the 
clouds are recorded, and the relations between the 
radar reflectivity of the cloud and the rain rate was 
used to estimate the rainfall. Advantages of the 
radar system are the following:28

•	 Capability	to	operate	in	all	weather	conditions
•	 Capability	 to	scan	a	 large	area	within	a	short	

duration
•	 Ability	 to	 provide	 finer	 temporal	 resolution	

data including information about the forma-
tion and movement of the precipitation system

Table 1: Details of some of the important satellite rainfall products.

Program Organization Satellites involved Spectral bands used Characteristics and source of data

World 
Weather 
Watch

WMO EUMETSAT  
GEOS, MTSAT  
NOAA-19

VIS, IR 1–4 km spatial, and 30 min. temporal 
resolution 
(http://www.wmo.int/pages/prog/
www/index_en.html)

TRMM NASA JAXA TRMM VIS, IR  
Passive & active 
microwave

Sub-daily, 0.25° (∼27 km) spatial 
resolution 
(ftp://trmmopen.gsfc.nasa.gov/pub/
merged)

PERSIANN CHRS GEOS-8,10, GMS,  
Metsat, TRMM,  
NOAA-15,16,17  
DMSP F-13,14, 15

IR 0.25° spatial resolution 
Temporal resolution: 30 min. 
aggregated to 6 hrs. 
(http://chrs.web.uci.edu/persiann/)

CMORPH NOAA DMSP F-13,14,15 
NOAA-15,16, 17,18 
AQUA, TRMM

Microwave 0.08 deg (8 km) spatial and 30 min. 
temporal resolution 
(http://www.cpc.ncep.noaa.
gov/products/janowiak/cmorph_
description.html)

Acronyms
CHRS: Center for Hydrometeorology and Remote Sensing, University of California, USA
CMORPH: Climate Prediction Center (CPC) MORPHing technique
DMSP: Defense Meteorological Satellite Program
EUMETSAT: European Organization for the Exploitation of Meteorological Satellites
GEOS: Geostationary Operational Environmental Satellite, USA
GMS: Geostationary Meteorological Satellite, Japan
JAXA: Japan Aerospace Exploration Agency
MTSAT: Multifunctional Transport Satellites, Japan
NASA: National Aeronautics and Space Administration, USA
NOAA: National Oceanic and Atmospheric Administration, USA
PERSIANN: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network
TRMM: Tropical Rainfall Measuring Mission
WMO: World Meteorological Organization
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In passive microwave remote sensing, T
B
 of the 

clouds are recorded using passive microwave radi-
ometers (e.g., Special Sensor Microwave Imager, 
SSM/I), which is then related to the precipitation 
rate.29 However, poor spatial resolution (of the 
order of a few km) is a major limitation of the pas-
sive microwave images.

Satellite rainfall products find applications 
in the areas of hydrologic modeling, flood and 
drought monitoring, as mentioned in Section 4.

3.2 Snow cover and water equivalent
Periodic snow cover depth and extent, which are 
some of the essential information required for the 
snow melt runoff forecasting, are often very much 
limited mostly due to the physical accessibility 
to the Snow Cover Areas (SCA). Satellite remote 
sensing, with its capability to provide images of 
the snow covered areas at fine spatial and tem-
poral resolution, is becoming a vital tool for the 
near-real time monitoring of the SCA with good 
accuracy. Satellite remote sensing of SCA map-
ping includes optical as well microwave (both 
passive and active) remote sensing techniques. 
Table 2 gives a list of satellites/sensors used for 
snow mapping and the spectral ranges used.

Optical remote sensing using the VIS and 
NIR bands is the most commonly used approach 
for SCA mapping. Finer spatial resolution of 
the images is the major advantage of the opti-
cal remote sensing. However, cloud cover com-
monly observed over SCA is generally one of 
the major hindrances in optical remote sensing. 
Active microwave remote sensing (e.g., Synthetic 

Aperture radar, SAR) has been adopted in many 
studies to overcome this problem.34,35 Glacier map-
ping using SAR is based on the difference in back-
scattering of the microwave signals by the snow 
and that by the bare ground. When snow is wet, 
the attenuation from the snow becomes dominant 
leading to a low backscattering. Thus, the differ-
ence between bare ground and wet snow is eas-
ily identifiable. Nevertheless, dry snow does not 
change the backscattering significantly compared 
to the bare ground, and hence discriminating dry 
snow areas from the surrounding land masses is 
difficult using radar remote sensing. On the other 
hand, optical remote sensing is advantageous for 
mapping dry snow cover.

Another approach in snow mapping is the 
use of passive microwave imaging. Microwave 
signals reflected from the surface are used to esti-
mate the brightness temperature of the surface, 
using which the snow depth, snow extent and 
snow water equivalent are estimated.1 Snow Water 
Equivalent (SWE) is related to the brightness tem-
perature and can be obtained using the following 
relationship:1

SWE = +
−
−

A B
T f T f

f f
B B( ) ( )1 2

2 1

 (2)

where A and B are the regression coefficients, T
B
 

is the brightness temperature and f
1
 and f

2
 are the 

frequencies of the low scattering and high scatter-
ing microwave channels, respectively.

Passive microwave data is advantageous over 
optical remote sensing due to their capability to 
penetrate through the cloud cover. Reduced cost 

Table 2: List of satellites/sensors that are most commonly used for snow mapping.

Sensor Satellite Spectral bands Characteristics References

SMMR Nimbus-7 Passive microwave Daily data at 25 km spatial 
resolution

30

AMSR-E AQUA Passive microwave Daily data at 12.5 km spatial 
resolution

31

Landsat TM Landsat VIS NIR 30 m spatial resolution, revisit 
period is 16 days

32

AVHRR NOAA VIS, NIR Daily data at 1 km spatial 
resolution

33

MODIS Terra VIS, NIR Daily data at 250 m spatial 
resolution

34

SAR and  
Polarimetric SAR

ERS-1 and 2, 
Radarsat

Active microwave 8–100 m spatial resolution 
Repeat cycle is 24 days

35–38

Acronyms
AMSR-E: Advanced Microwave Scanning Radiometer-Earth Observing System
AVHRR: Advanced Very High Resolution Radiometer
ERS: European Remote Sensing Satellite
MODIS: Moderate Resolution Imaging Spectroradiometer
SAR: Synthetic Aperture Radar
SMMR: Scanning Multichannel Microwave Radiometer
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involved and availability of global coverage using 
passive microwave sensors are the advantages of 
passive microwave imaging over the radar remote 
sensing for snow mapping. However, the poor spa-
tial resolution is a major limitation of the passive 
microwave image application in SCA mapping.

With the introduction of remote sensing tech-
nology in snow mapping, global level, daily snow 
cover maps are now available by aggregating the 
data available from multiple satellites. Daily maps 
of global snow cover at about 4 km spatial resolu-
tion is now available from NOAA by combining 
IR and microwave data from multiple satellites 
including NOAAs GOES Imager and Polar Orbit-
ing	Environmental	Satellites	(POES)	AVHRR,	US	
Air	 Force	 DMSP/SSMI	 and	 EUMETSAT	 MSG/
SEVIRI sensors. Figure 4 shows the snow depth 
data	 over	 United	 States	 on	 9th	 March	 2013,	
obtained from the NOAA.

3.3 Soil moisture estimation
Remote sensing techniques of soil moisture esti-
mation are advantageous over the conventional 
in-situ measurement approaches owing to the 
capability of the sensors to capture spatial varia-
tion over a large aerial extent. Moreover, depend-
ing upon the revisit time of the satellites, frequent 
sampling of an area and hence more frequent 
soil moisture measurement are feasible. Remote 
sensing of the soil moisture requires information 

below the ground surface and therefore spectral 
bands which are capable of penetrating the soil 
layer are essential. Remote sensing approaches 
for soil moisture estimation are mostly confined 
to the use of thermal and microwave bands of the 
EMR spectrum.

Remote sensing of the soil moisture is based 
on the variation in the soil dielectric constant, and 
in turn T

B
, caused due to the presence of water. 

However, in addition to the soil moisture con-
tent, T

B
 is influenced by the surface geophysical 

variables such as vegetation type, vegetation water 
content, surface roughness, surface temperature, 
soil texture etc.,39 which makes remote sensing of 
soil moisture a difficult task. Vegetation canopies 
partially absorb and reflect the emissions from 
the soil surface. General algorithms used to incor-
porate the vegetation influence in soil moisture 
estimation can be grouped into three:40 statistical 
techniques, forward model inversion and explicit 
inverse methods. The statistical techniques are 
based on the regression analysis between T

B
 and 

soil moisture for different land cover types. In the 
forward model inversion approach, the model is 
initially developed to estimate the remote sensing 
parameter (e.g., T

B
 ) using the land surface param-

eters (e.g., soil moisture, canopy cover, surface 
roughness etc.), which is then inverted to estimate 
the land surface parameters using the actually 
observed remote sensing parameter. The third 

Figure 4: Map of snow depth over United States on 9th March, 2013, generated using the data from mul-
tiple satellites. 
Source: http://www.eldoradocountyweather.com/climate/world-maps/world-snow-ice-cover.html
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type, explicit inverse method, uses explicit inverse 
functions to directly transfer the remotely sensed 
parameters into the land surface parameters.

Remote sensing of the soil moisture using the 
thermal bands is achieved by interpreting the effect 
of soil moisture on thermal inertia of the land 
surface.41 For example, Cai et al.42 used a thermal 
inertia model to estimate the soil moisture in the 
North China Plain using the surface temperature 
estimation from the MODIS sensor onboard Terra 
satellite. The soil moisture map derived from the 
MODIS data was found to be showing only 4.32% 
difference from the in-situ measurement and has 
been considered as a promising algorithm for soil 
moisture estimation. However, poor capability of 
the thermal wavelengths to penetrate the vegeta-
tion and the coarse spatial resolution are some of 
the major drawbacks of the thermal remote sens-
ing in soil moisture mapping.

Use	 of	 passive	 microwave	 radiometers43–47 
and active radar instruments such as SAR48,49 are 
the most commonly adopted approaches for the 
remote sensing of the soil moisture. A large number 
of studies conducted in the past have proven the 
usefulness of the microwave signals to determine 
the moisture content of the surface soil layer. 
Microwave bands having wavelengths ranging 
from 0.3 cm to 30 cm are considered to be effective 
in the soil moisture measurement. Wagner et al.50 
mentioned that the microwave L band (wavelength 
15–30 cm), C band (wavelength 3.8–7.5 cm), and 
X band (wavelength 2.5–3.8 cm) are the most 
important bands for soil moisture estimation.

Major limitation of the microwave remote 
sensing in soil moisture estimation is the poor 
surface penetration of the microwave signals. Sur-
face penetration capacity of the microwave signals 
varies with the wavelength of the signal. Several 
previous studies have shown that microwave sig-
nals can penetrate the surface of thickness up to 
1/4th of the signal wavelength.51,52 Therefore, the 
microwave remote sensing is considered to be 
effective in retrieving the moisture content of the 
surface soil layer of maximum 10 cm thickness. 
However, in hydrologic analysis soil moisture in 
the entire root zone is important. In the recent 
years, attempts have been made to assimilate 
the remote sensing derived surface soil moisture 
data with physically based distributed models to 
simulate the root zone soil moisture. For exam-
ple, Das et al.53 used the Soil-Water-Atmosphere-
Plant (SWAP) model for simulating the root zone 
soil moisture by assimilating the aircraft-based 
remotely sensed soil moisture into the model.

Another major concern in the passive remote 
sensing application is the poor spatial resolution. 

Passive microwave remote sensing employs 
larger wavelengths, and hence smaller frequen-
cies, resulting in coarser spatial resolution 
(10–20 km) of the images.54 However, the wider 
swath widths (more than 1000 km) of the images 
help to attain frequent temporal coverage (once 
in every 4–6 days on an average).55 Some of the 
satellite-based passive microwave sensors used 
for soil moisture measurement include SMMR, 
AMSR-E and SSM/I. Data from the AMSR-E 
sensor onboard Aqua satellite has been used to 
derive daily soil moisture data at a spatial resolu-
tion of 0.25°.

In active remote sensing, even though, a fine 
spatial resolution (<30 m) is possible with the 
use of SAR instruments, temporal coverage of 
the images is very poor. For example, repeat 
cycle of the ERS satellites used for the soil mois-
ture studies is 35 days. Advanced SCATterometer 
(ASCAT)	aboard	the	EUMETSAT	MetOp	satellite	
is another active microwave sensor used for soil 
moisture estimation. ASCAT soil moisture data is 
based on the radar back scatter measurement in 
the microwave C band. The data gives soil mois-
ture in the topmost 5 cm of the soil for the period 
2007–2011, at 5 days interval and at 0.1° spatial 
resolution. The data is available for the entire land 
masses except the area covered by snow, and can 
be obtained from the Institute of Photogram-
metry	and	Remote	Sensing,	Vienna	University	of	
Technology. The active microwave remote sensing 
data	 from	 the	 Vienna	 University	 of	 Technology	
were combined with the passive remote sensing 
data from the Nimbus 7 SMMR, DMSP SSM/I, 
TRMM TMI and Aqua AMSR-E sensors under the 
Climate Change Initiative (CCI) of the European 
Space Agency (ESA). The integrated product, CCI 
soil moisture data, is available at near global scale 
with 0.25° spatial resolution for the period 1979–
2010. The data can be obtained from ESA-CCI 
website. Figure 5 shows the global average monthly 
soil moisture in May extracted from the integrated 
soil moisture data base of the ESA-CCI.

Use	 of	 hyper-spectral	 remote	 sensing	 tech-
nique has been recently employed to improve the 
soil moisture simulation. Hyper-spectral monitor-
ing of the soil moisture uses reflectivity in the VIS 
and the NIR bands to identify the changes in the 
spectral reflectance curves due to the presence of 
soil moisture.56 Spectral reflectance measured in 
multiple narrow bands in the hyperspectral image 
helps to extract most appropriate bands for the 
soil moisture estimation, and helps to capture the 
smallest variations. Also, the hyperspectral images 
provide fine spatial resolution (∼30 m), making 
it possible to monitor the spatial variation in soil 
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moisture, which is highly advantageous in hydro-
logic analyses.

3.4 Water quality
Water quality is the general term used to describe 
the physical, chemical, thermal and biological 
characteristics of water e.g., temperature, chloro-
phyll content, turbidity, clarity, Total Suspended 
Solids (TSS), nutrients, Colored Dissolved Organic 
Matter (CDOM), tripton, dissolved oxygen, pH, 
Biological Oxygen Demand (BOD), Chemical 
Oxygen Demand (COD), total organic carbon, 
and bacteria content. Conventional method for 

monitoring the water quality parameters by taking 
in-situ measurement and conducting laboratory 
analysis is very elaborate, and time consuming. 
The method is generally less capable of provid-
ing temporal and spatial coverage necessary for 
the accurate assessment in large water bodies. 
Application of the remote sensing techniques, 
due to their capability to provide better spatial 
and temporal sampling frequencies, are gain-
ing importance in the water quality assessment. 
Figure 6 shows the chlorophyll concentration in 
the off-coast of California using observation from 
the SeaWiFS and MODIS sensors.

Figure 5: Global monthly average soil moisture in May from the CCI data.
Source: http://www.esa-soilmoisture-cci.org/

Figure 6: Chlorophyll concentration in the off-coast of California estimated using the SeaWiFS and MODIS 
sensors. Bright reds indicate high concentrations and blues indicate low concentrations. 
Source: http://science.nasa.gov/earth-science/oceanography/living-ocean/remote-sensing/
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In remote sensing, water quality parameters 
are estimated by measuring changes in the optical 
properties of water caused by the presence of the 
contaminants.57,3 Therefore, optical remote sens-
ing has been commonly used for estimating the 
water quality parameters. Water quality param-
eters that have been successfully extracted using 
remote sensing techniques include chlorophyll 
content, turbidity, secchi depth, total suspended 
solids, colored dissolved organic matter and trip-
ton. In addition, thermal remote sensing methods 
have been widely used to estimate the water surface 
temperature in lakes and estuaries. Table 3 gives a 
brief summary of some of the works wherein the 
remote sensing data has been used for estimating 
the water quality parameters.

In remote sensing, optimum wavelength to 
be used to measure the water quality parameter 
depends on the substance that is measured. Based 
on several in-situ analyses, the VIS and NIR por-
tions of the EMR spectrum with wavelengths 
ranging from 0.7 to 0.8 µm were found to be the 
most useful bands for monitoring suspended sedi-
ments in water.66,67 Optical properties of the water 
measured using remote sensing techniques are 
then converted into the water quality indices by 
using empirical relationships, radiative transfer 
functions or physical models.

In the empirical models, relationship between 
the water quality parameters and the spectral 
records are used to estimate the parameters.68 
General forms of such relationships are the 
following:1

Y = A + BX  or  Y = ABx (3)

where Y is the measurement obtained using the 
remote sensors and X is the water quality parameter 
of interest, and A and B are the empirical factors.

For example Harding et al.69 used the follow-
ing empirical relationship to estimate chlorophyll 
content in the Chesapeake Bay.

log
10

 [Chlorophyll] = A + B (-log
10

 G) (4)

G
R

R R
=

( )
.
2

2

1 3
 (5)

where A and B are empirical constant derive from in 
situ measurements, R

1
, R

2
 and R

3
 are the radiances 

at 460 nm, 490 nm and 520 nm, respectively.
The empirical models, though simple and effi-

cient, lack a general applicability. The relationship 
derived for one area and one condition may not 
be applicable for other areas or conditions. A more 
general approach can be the use of analytical models 

that employ simplified solutions of the Radiative 
Transfer Equations (RTEs) to relate the water sur-
face reflectance (R

rs
) to the controlling physical 

factors. Such analytical algorithms require calibra-
tion of the empirical coefficients.63,70 For example, 
Volpe et al.70 used a RTE to relate the reflectance 
measured using remote sensing techniques to the 
physical parameters, so as to determine the Sus-
pended Particulate Matter (SPM) concentration 
in lagoon/estuarine waters. The model was repre-
sented using the following equations:71,72
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where
r

rs
 = subsurface remote sensing reflectance

r
rs
dp =  r

rs
 for optically deep waters = (0.084 + 

0.17 u)u
u =  b

b
/(a + b

b
), where b

b
 is the backscatter-

ing coefficient and a is the absorption 
coefficient

K
d
 =  Vertically averaged diffuse attenuation 

coefficient for downwelling irradiance = 
D

d
α

D
d
 =  1/cos(θ

w
), where θ

w
 is the subsurface solar 

zenith angle
K

u
C =  Vertically averaged diffuse attenuation 

coefficient for upwelling radiance from 
water-column scattering = D

u
Cα

K
u
B =  Vertically averaged diffuse attenuation 

coefficient for upwelling radiance from 
water-column scattering = D

u
Bα

α = a + b
b

D
u
C = 1.03 (1 + 2.4u)0.5

D
u
B = 1.03 (1 + 5.4u)0.5

ρ
b
 = Bottom albedo

H = water depth

The backscattering and the absorption coef-
ficients were determined by calibration. The RTE 
algorithms help to get a better insight about the 
processes and hence are applicable to a wider range 
of conditions compared to the empirical models.70

Remote sensing of the water quality parameter 
in the earlier days employed fine resolution opti-
cal images from the satellites e.g., Landsat TM.60 
However, poor temporal coverage of the images 
(once in 16 days) was a major limitation in such 
studies. With the development of new satellites 
and sensors, the spatial, temporal and radiomet-
ric	resolutions	have	improved	significantly.	Using	
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sensors such as MODIS (with 36 spectral bands) 
and MERIS (with 15 spectral bands) better accu-
racy in the estimation of water quality parameters 
has been achieved.73,74

A recent development in the remote sensing 
application in water quality monitoring is the use 
of hyper-spectral images in monitoring the water 
quality parameters. The large number of narrow 
spectral bands used in the hyper-spectral sensors 
help in improved detection of the contaminants 
and	 the	organic	matters	present	 in	water.	Use	of	
hyper-spectral images to monitor the tropic sta-
tus of lakes and estuaries,58,75,76 assessment of total 
suspended matter and chlorophyll content in the 
surface water77–79 and bathymetric surveys80 are a 
few examples.

3.5 Land cover classification
Land cover classification using multispectral 
remote sensing data is one of the earliest, and well 
established remote sensing applications in water 
resources studies.17 Detailed land cover classifica-
tion has been used to extract the hydrologic param-
eters that are important in distributed hydrologic 
modeling.81 Remote sensing also finds applica-
tion in hydrologic analysis to study the impact of 
changing land use pattern (e.g., forest coverage, 
urbanization, agricultural pattern etc.) on various 
hydrologic responses of the catchment.

Land use/land cover classification from the 
satellite imageries is based on the difference in the 
spectral reflectance of different land use classes 
in different bands of the EMR spectrum. A large 
number of earlier studies show the hydrologic 
application of the land use/land cover maps gen-
erated from the IRS LISS-382,83 and Landsat MSS 
and TM+84,85 imageries. Spatial resolution of the 
land use/land cover maps generated from these 
imageries ranges from 23–30 m. With the avail-
ability of finer resolution satellite images (e.g., 
IKONOS, and Quickbird), now it is possible to 
generate the land use land cover maps of less than 
1 m spatial accuracy.

The use of hyper-spectral imageries helps to 
achieve further improvement in the land use/land 
cover classification. In hyperspectral remote sens-
ing, the spectral reflectance values recorded in the 
narrow contiguous bands are used to generate the 
spectral	 reflectance	 curves	 for	 each	 pixel.	 Using	
these spectral reflectance curves which are unique 
for different land use classes, it is now possible 
to achieve differentiation of classes (e.g., identi-
fication of crop types) that are difficult from the 
multi-spectral images.86

With the help of satellite remote sensing, 
land use land cover maps at near global scale 

are available today for hydrological applications. 
European Space Agency (ESA) has released a glo-
bal land cover map of 300 m resolution, with 22 
land cover classes at 73% accuracy (Fig. 7).

3.6 Evapotranspiration
Evapotranspiration (ET) represents the water and 
energy flux between the land surface and the lower 
atmosphere. ET fluxes are controlled by the feed-
back mechanism between the atmosphere and the 
land surface, soil and vegetation characteristics, 
and the hydro-meteorological conditions. There 
are no direct methods available to estimate the 
actual ET by means of remote sensing techniques. 
Remote sensing application in the ET estimation is 
limited to the estimation of the surface conditions 
like albedo, soil moisture, vegetation characteris-
tics like Normalized Differential Vegetation Index 
(NDVI) and Leaf area Index (LAI), and the sur-
face temperature. The data obtained from remote 
sensing are used in different models to simulate 
the actual ET.

Couralt et al.87 grouped the remote sensing 
data-based ET models into four different classes: 
empirical direct methods, residual methods of 
the energy budget, deterministic methods and 
the vegetation index methods. Empirical direct 
methods use the empirical equations to relate 
the difference in the surface air temperature to 
the ET. For example, Jackson et al.88  used a rela-
tionship to relate the difference in the canopy 
and air temperatures to the ET as given in the 
equation.

ET = 0.438 – 0.064 (T
c
 – T

a
) (8)

where T
c
 is the plant canopy temperature, and T

a
 

the air temperature 0.15 m above the soil.
The surface air temperature measured using 

the remote sensing technique is used as the input 
to the empirical models to determine the ET.

Residual methods of the energy budget use 
both empirical and physical parameterization. 
The popular Surface Energy Balance algorithm 
for Land (SEBAL) is an example.89 The model 
requires incoming radiation, surface tempera-
ture, NDVI (Normalized Differential Vegetation 
Index) and albedo, which are estimated from the 
remote sensing data. FAO-56 method,90 based on 
the Penmann-Monteith method, is another com-
monly used model. It is used to estimate refer-
ence ET (ET from a hypothetical reference grass 
under optimal soil moisture condition) by using 
the solar radiation, temperature, wind speed and 
relative humidity data. Actual crop ET is estimated 
from the reference ET, with the help of additional 
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information like crop coefficients and soil mois-
ture condition. Remote sensing data can be used 
to retrieve such additional information at finer 
spatial and temporal resolution.

Deterministic models simulate the physical 
process between the soil, vegetation and atmos-
phere making use of remote sensing data such as 
Leaf Area Index (LAI) and soil moisture. SVAT 
(Soil-Vegetation-Atmosphere-Transfer) model is 
an example.91 Vegetation index methods use the 
ground observation of the potential or reference 
ET. Actual ET is estimated from the reference ET 
by using the crop coefficients obtained from the 
remote sensing data.92,93

Optical remote sensing using the VIS and NIR 
bands have been commonly used to estimate the 
input data required for the ET estimation algo-
rithms. As a part of the NASA/EOS project to 
estimate global terrestrial ET from land surface 
by using satellite remote sensing data, MODIS 
Global Terrestrial Evapotranspiration Project 
(MOD16) provides global ET data sets at regu-
lar grids of 1 sq.km for the land surfaces at 8-day, 
monthly and annual intervals for the period 
2000–2010. Three components of the ET viz., 
evaporation from wet soil (related to the albedo), 
evaporation from the rainwater intercepted by 
the canopy (related to the LAI) and the transpi-
ration through the stomata on plant leaves and 
stems (depends on LAI, pressure deficit, and daily 
minimum air temperature) are considered in 
this. The project used remote sensing data from 
the MODIS sensor to estimate the land cover, LAI 

and albedo. This information was clubbed with 
the meteorological data viz., air pressure, humid-
ity, radiation to calculate the ET by using the 
algorithm proposed by Mu et al.94 Figure 8 shows 
the flowchart showing the methodology adopted 
for the MOD16 global ET product. In this, TIR 
bands are used for the remote sensing of the sur-
face temperature, which is an essential input data 
for the estimation of ET, whereas the VIS and NIR 
bands are used for deriving the vegetation indices 
such as NDVI.

Finer spatial resolution of the VIS and NIR 
bands makes the field level estimation of the 
vegetation indices possible. Nevertheless, spatial 
resolution of the TIR bands are relatively less 
(1 to 4 km) compared to the VIS and NIR bands, 
making the field level temperature estimation not 
viable. A comparison of the spatial and temporal 
resolution of the some of the commonly used sen-
sors for the ET estimation is provided by Courault 
et al.87 Kustas et al.95 proposed a disaggregation 
methodology to estimate sub-pixel level tempera-
ture data using a relationship between the radio-
metric temperature and the vegetation indices. 
This is a promising approach for the estimation of 
the field level ET from the remote sensing data.

4  Applications of Remote Sensing  
in Water Resources

Estimation of the hydro-meteorological state 
variables and delineation of the surface water 
bodies by using the remote sensing techniques 
find application in the areas of rainfall-runoff 

Figure 7: Global 300 m land cover classification from the European Space Agency. 
Source: http://www.esa.int/Our_Activities/Observing_the_Earth/ESA_global_land_cover_map_available_online
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modeling, irrigation management, flood forecast-
ing, drought monitoring, water harvesting and 
watershed planning and management. Some of 
these applications are briefly mentioned in the 
following subsections.

4.1 Rainfall-runoff studies
The most common application of the remote 
sensing techniques in the rainfall-runoff studies is 
the estimation of the spatially distributed hydro-
meteorological state variables that are required for 
the modeling, e.g., rainfall, temperature, ET, soil 
moisture, surface characteristics and land use land 
cover classes. Remote sensing methods used for 
the estimation of these parameters are described 
in the previous sections. Advantage of the remote 
sensing techniques over the conventional methods 
is the high spatial resolution and areal coverage 
that can be achieved relatively easily.96

While selecting the hydrological model for 
integration with the remote sensing data, spatial 
resolution of the hydrological model structure 
and the input data must be comparable. Papadakis 
et al.97 carried out a detailed sensitivity analysis in 
the river basins in West Africa to find the spatial, 
temporal and spectral resolution required for the 
hydrologic modeling. Fine resolution data was 
found to be relevant only if the hydrologic mod-
eling uses spatially distributed information of the 
all the relevant input parameters sufficient enough 
to capture the spatial heterogeneity, and when the 
highly dynamic processes were monitored.12

Hydrologic models that incorporate the remote 
sensing information include regression models, 
conceptual model, and distributed model. One of 
the widely used conceptual model is the SCS-CN 
model,98 which compute the surface runoff using the 
parameter Curve Number (CN). The CN is related 
to the soil and land use characteristics. Application 
of the remote sensing data allowed a better repre-
sentation of the land use, and thus a more reliable 
estimation of the relevant CN.99	Use	of	remote	sens-
ing data also helps in updating the land use changes 
in the hydrologic models, particularly in the areas 
where the land use pattern is highly dynamic, caus-
ing significant variation in the hydrologic processes. 
Another commonly used model is the Variable Infil-
tration Capacity (VIC) model.100 VIC model requires 
information about the atmospheric forcing, surface 
meteorology and surface characteristics, which can 
be derived from the remote sensing data.100

Remote sensing application also helps to im-
prove the hydrologic modeling by providing vital 
information about the soil moisture content101,102 
and ET rates.103,104	Use	of	radar	images	for	estimat-
ing the Saturation Potential Index (SPI), an index 
used to represent the saturation potential of an area, 
is another application of the remote sensing in run-
off modeling. Gineste et al.105 used the SPI derived 
from remote sensing, together with the topographic 
index in the TOPMODEL to improve the runoff 
simulation.

With the advancement of technology, today 
it is possible to estimate the stream discharge by 

Figure 8: Schematic representation of the MOD16 ET algorithm94 (courtesy: http://www.ntsg.umt.edu/
project/mod16).
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measuring the channel cross section and slopes 
from remote sensing platforms. Durand et al.106 
used radar images from the Surface Water and 
Ocean Topography (SWOT) mission to extract 
the water surface elevation, which was further 
used in a depth and discharge estimation algo-
rithm to calculate the channel flow depth and 
the discharge in the Ohio River. The error in the 
instantaneous discharge measurement was found 
to be less than 25% in 86% of the observations. In 
another study by Bjerklie et al.,107 surface velocity 
and width information obtained using the C-band 
radar image from the Jet Propulsion Laboratory’s 
(JPL’s) AirSAR was used to estimate the discharge 
in the Missouri River with 72% accuracy.

4.2 Drought monitoring
Monitoring of drought events and quantification of 
impact of the drought are important to place appro-
priate mitigation strategies. The advantage of remote 
sensing application in drought monitoring is the 
large spatial and temporal frequency of the obser-
vation, which leads to a better understanding of the 
spatial extent of drought, and its duration. Satellite 
remote sensing techniques can thus help to detect 
the onset of drought, its duration and magnitude.

Remote sensing methods are now being widely 
used for large scale drought monitoring studies, 
particularly for monitoring agricultural drought. 
Agricultural drought monitoring from the remote 

sensing platform is generally based on the meas-
urement of the vegetation condition (e.g. NDVI) 
and/or the soil moisture condition,14 using which 
various drought monitoring indices are derived, 
at a spatial resolution of the imagery. A map of 
the drought monitoring index can be used to 
understand the spatial variation in the drought 
intensity. Figure 9 shows a sample weekly Palmer 
Drought Index map, derived using the satellite 
remote	 sensing	 data,	 for	 the	 United	 States	 pub-
lished by NOAA.

Remote sensing methods of drought monitor-
ing can also be used to predict the crop yield in 
advance.108 A concise review of the remote sens-
ing applications in drought monitoring has been 
provided by McVicar and Jupp.14 Remote sensing 
data from the satellites/sensors viz., AVHRR,109,110 
Landsat TM and ETM+,111,112 IRS LISS-1 and 
LISS-2,113,114 SPOT115 and MODIS116,117 have been 
widely used in drought monitoring. Some of the 
operational drought monitoring and early warn-
ing systems using remote sensing application are 
the	 following:	 Drought	 Monitor	 of	 USA	 using	
NOAA-AVHRR data, Global Information and 
Early Warning System (GIEWS) and Advanced 
Real Time Environmental Monitoring Informa-
tion System (ARTEMIS) of FAO using Meteosat 
and SPOT—VGT data, and Drought assessment 
in South west Asia using MODIS data by the Inter-
national Water Management Institute.

Figure 9: Weekly Palmer Drought Index map for the United States. 
Source: www.cpc.ncep.noaa.gov
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The National Agricultural Drought Assess-
ment and Monitoring System (NADAMS) project 
of India is another very good example of effec-
tive drought monitoring and early warning 
system using satellite remote sensing. The NAD-
AMS project uses moderate resolution data from 
Advanced Wide Field Sensor (AWiFS) of Resourc-
esat 1 (IRS P6), and WiFS of IRS 1C and 1D for 
detailed assessment of agricultural drought at 
district and sub-district level in Andhra Pradesh, 
Karnataka, Haryana and Maharashtra.

4.3 Flood forecasting
The poor weather condition generally associated 
with the floods, and the poor accessibility due to 
the flooded water makes the ground and aerial 
assessment of the flood inundated areas a difficult 
task. Application of satellite remote sensing helps 
to overcome these limitations. Through the selec-
tion of appropriate sensors and platforms, remote 
sensing can provide accurate and timely estima-
tion of the flood inundation, flood damage and 
flood-prone areas. Table 4 provides a list of sat-
ellites commonly used for flood monitoring and 
their characteristics.

Satellite remote sensing uses both IR and 
microwave bands for delineating the flooded 
areas. The algorithms used for delineating the 
flooded areas are based on the absorption of 
the IR bands by water, giving darker tones for the 
flooded areas in the resulted imagery.130 Images 
from Landsat TM and ETM+, SPOT and IRS 
LISS-3 and LISS-4 are largely used in the flood 
analysis. Satellite images acquired in different 
spectral bands during, before and after a flood 
event can provide valuable information about the 
extent of area inundated during the progress or 
recession of the flood.131 For example, Figure 10 
(from Bhatt et al.)132 shows the IRS P6 LISS-3 and 
LISS-4 images of the Bihar floods which occurred 

in August 2008 due to the breeching of the Kosi 
River embankment. The images taken shortly after 
the flood (Fig. 10a) shows the extent of inundated 
areas, compared to the image taken 8 months after 
the flood (Fig. 10c).

Sensors operational in the optical region of 
the EMR spectrum generally provides very fine 
spatial resolution. Nevertheless, major limitations 
of the optical remote sensing (e.g., Landsat and 
IRS satellites) in flood monitoring are the poor 
penetration capacity through cloud cover and 
poor temporal coverage. Revisit periods of these 
satellites typically varies from 14 to 18 days. Even 
though the AVHRR sensors onboard NOAA sat-
ellites provide daily images, spatial resolution of 
the images is very coarse. In addition, operational 
difficulty in the poor weather condition is also a 
major limitation.

Microwave, particularly radar remote sensing, 
is advantageous over the optical remote sensing as 
the radar signals can penetrate through the cloud 
cover and can extract the ground information 
even in bad weather conditions. Taking the ben-
efits of radar imaging and optical remote sensing, 
in many studies, a combination of both has been 
used for flood monitoring.13,128,133,134

Digital Elevation Model (DEM) derived using 
the remote sensing methods (e.g. SRTM and 
ASTER GDEM) also finds application in flood 
warning. When a hydrologic model is used to 
predict the flood volume, elevation information 
can be obtained from the DEM, using which the 
areas likely to be inundated by the projected flood 
volume can be identified.135 With finer and more 
accurate vertical accuracy of the DEM, better anal-
yses can be undertaken using it. With the techno-
logical development, it is feasible to generate very 
fine resolution DEM using the Light Detection 
and Ranging (LiDAR) data, and this can signifi-
cantly improve the flood warning services.

Table 4: Some of the important satellites and sensors used for flood monitoring.

Sensor Satellite Characteristics References

Landsat TM Landsat 4–5 30 m spatial resolution, Temporal coverage: 
once in 16 days, Poor cloud penetration

118, 119

IRS LISS-3 IRS 1C/1D 23 m spatial resolution, Temporal coverage: 
once in 24 days, Poor cloud penetration

120, 121

SPOT SPOT 8–20 m spatial resolution, Temporal coverage: 
once in 5 days, Poor cloud penetration

122

AVHRR NOAA ∼1.1 km spatial resolution, Temporal coverage: 
Daily coverage, Poor cloud penetration

123, 124

MODIS Terra 250 m spatial resolution, Temporal coverage: 
Daily coverage, Poor cloud penetration

125, 126

SAR Envisat, ERS 1, 2, 
Radarsat

20–30 m spatial resolution, Temporal 
coverage: 1–3 days, Good cloud penetration

127–129
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In India, disaster management using satellite 
remote sensing has been operational for more than 
two decades136 by the National Remote Sensing 
Agency (NRSA), and the Indian Space Research 
Organization (ISRO). In case of a flood event, 
maps showing the flood affected areas and the 
flood damage statistics are released near real-time. 
The system uses the near real-time meteorologi-
cal data from KALPANA-1 satellite and the rainfall 
data from the TRMM to generate the flood warn-
ing. Also, satellite imageries (from IRS satellites) 
are collected at different intervals to detect the 
changes in the inundated areas. This information 
is integrated with the other data like land cover 
maps, basin utility maps, administrative bounda-
ries etc., to analyze the flood damage.

4.4 Irrigation management
Remote sensing application in irrigation man-
agement includes crop classification, irrigated 
area mapping, performance evaluation of the 
irrigation systems, and irrigation advisory serv-
ices. Crop classification using the satellite remote 
sensing images is one of the most common appli-
cations of remote sensing in agriculture and 
irrigation management. Multiple images corre-
sponding to various cropping periods are gener-
ally used for this purpose. The spectral reflectance 
values observed in various bands of the images are 
related to specific crops with the help of ground 
truth data.137,138

Identification of the irrigated area from the 
satellite images is based on the assessment of the 
crop health and the soil moisture condition.139–141 
For example, Biggs et al.142 used data from the 
MODIS sensor to map the irrigated areas in the 

Krishna basin in India. Time series of the NDVI 
were generated from the MODIS images and used 
to assess the crop health, and to group the crops 
into various random classes. Ground truth and the 
statistical information were then used to identify 
the irrigated and non-irrigated areas from these 
random classes.

In irrigation management studies satellite 
remote sensing data are used to capture the spa-
tial and temporal variations in the crop ET and 
soil moisture. This information is clubbed with 
various models to simulate the crop production 
and to estimate the irrigation efficiency. Perform-
ance of the irrigation system is generally evalu-
ated using indices such as relative water supply 
and relative irrigation supply.143 Bastiaanssen144 
has listed a set of irrigation performance indices 
derived with the help of the remote sensing data. 
Soil-Adjusted Vegetation Index (SAVI), NDVI, 
Transformed Vegetation Index (TVI), Normalized 
Difference Wetness Index (NDWI), Green Vegeta-
tion Index (GVI) are a few of them. Several studies 
conducted in the past show the potential of the 
remote sensing data from Landsat TM, MODIS, 
IRS-LISS and WiFS sensors in the evaluation of 
the irrigation system performance.143,145–147

Irrigation Advisory Services (IAS) are the serv-
ices used to help the farmers to improve the irri-
gation efficiency and to optimize the agricultural 
production from the use of irrigation water.16 
Irrigation scheduling information based on the 
crop type, agro-meteorology and the soil mois-
ture availability, is an example.90 The conventional 
methods of IAS using in-situ measurement from 
the field were less capable of providing the infor-
mation at a spatial and temporal resolution to 

Figure 10: Images of Kosi River breach occurred in August 2008 (a) IRS P6 LISS-3 image on 25th Oct 2008 
(b) IRS P6 LISS-4 image on 5th Jan 2009 (c) IRS P6 LISS-4 image on 20th April 2009. 
Source: Bhatt et al.132
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adequately represent the dynamics of the problem. 
The use of remote sensing to capture the dynamic 
crop characteristics has drastically improved the 
capability of the IAS systems. Remote sensing 
application in IAS system includes the extraction 
of the spatial variation in the crop characteristics 
such as cropping pattern, estimation of the crop 
ET and crop indices such as NDVI, and the regu-
lar update of the information to capture the tem-
poral variation.16 With the help of remote sensing 
data, the spatio-temporal variation in the irriga-
tion water demand is better captured, resulting in 
a more efficient irrigation scheduling. DEMETER 
(DEMonstration of Earth observation Technolo-
gies in Routine irrigation advisory services) is a 
very good example of the use of satellite remote 
sensing in IAS. DEMETER has a few pilot scale 
implementations in Spain, Italy and Portugal.16,148

4.5 Rain water harvesting
The techniques of rainwater harvesting are highly 
location specific149 and need extensive field anal-
ysis. Identification of the rainwater harvesting 
potential of the area, and suitable locations for the 
water harvesting structures are the essential pre-
requisites for the successful implementation of 
any rainwater harvesting projects. Remote sensing 
techniques, due to their wide range of capabilities 
for identifying the geomorphologic and surface 
characteristics, is advantageous in analyzing the 
water harvesting potentials and to identify the suit-
able sites for the water harvesting structures.149–152

In a study by Jasrotia et al.,149 satellite images 
from IRS 1D LISS-3 were used to extract the land 
use land cover map. This information was inte-
grated with the other data like soil, slope, and 
drainage maps to identify the suitability of various 
water harvesting sites in Devak-Rui watershed in 
Jammu District, in India. In another study, Kumar 
et al.150 used images from IRS LISS-2 sensors to 
prepare thematic layers of land use/land cover, 
geomorphology, and lineaments. These layers, 
along with the geology and drainage information 
were used to identify the potential sites for rain-
water	harvesting	in	the	Bakhar	watershed	in	Uttar	
Pradesh, India. Results of these studies show the 
advantages of the remote sensing data in estimat-
ing the runoff harvesting potential and in iden-
tifying suitable locations for the water harvesting 
structures.

4.6  Watershed planning and 
management

Remote sensing through air-borne and space-
borne sensors, can be effectively used for water-
shed characterization and watershed priority 

assessment. Application of remote sensing has 
multiple dimensions in the watershed manage-
ment like water resource mapping, land cover 
classification, estimation of water yield, soil ero-
sion, land prioritization and water harvesting, as 
mentioned in the previous sections. Mapping of 
saline and water logged areas is another appli-
cation of the remote sensing data in watershed 
management.

Remote sensing data have been clubbed with 
the hydrological models to simulate the impacts 
of human interventions (e.g. agricultural prac-
tices, reservoirs, water harvesting) and external 
influences (e.g. climate change) on the water 
balance. Rainfall and hydro-meteorological vari-
ables, watershed topography, watershed area, size 
and boundary, surface characteristics, drainage 
pattern, land use/land cover, soil moisture condi-
tion, ET, water quality parameters etc. are a few 
of the essential information that remote sensing 
can supply for the hydrologic monitoring of the 
watershed. Data products from the Landsat MSS, 
ETM+, IRS LISS-3, IKONOS, AMSR-E, MODIS, 
and AVHRR sensors have been widely applied in 
watershed management studies at various levels as 
mentioned in the previous sections. In addition, 
active microwave remote sensing using SAR are 
also largely used in watershed studies (e.g., SRTM 
DEM, radar for rainfall estimation, ASCAT soil 
moisture data). With the technological advance-
ment, currently hyper-spectral sensors are also 
used to achieve high resolution crop classification 
and water quality estimation in watershed man-
agement studies.

Use	of	IRS	LISS-2	and	LISS-3	images	for	water-
shed characterization and to study the suitability 
of soil conservation measures in different terrain 
and land use conditions,153 use of Landsat TM 
images in a watershed prioritization study to iden-
tify the potential for soil and water conservation,154 
prioritization of sub-watersheds based on the sat-
ellite remote sensing (IRS LISS-3) derived river 
morphometric parameters,155 are some good case 
studies of the remote sensing application in water-
shed management.

4.7 Groundwater studies
Another important application of remote sensing 
is in groundwater assessment and management. 
Comprehensive reviews of the remote sensing 
application in the groundwater studies have been 
provided by Meijerink156 and Brunner et al.157 
Remote sensing application in the groundwater 
studies are generally classified into three broad 
areas: estimation of the geomorphologic param-
eters essential for the groundwater modeling, 
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estimation of the groundwater storage, and esti-
mation of the groundwater potential.

Extraction of geological and surface infor-
mation such as presence of faults, dykes and 
lineaments, changes in the lithology, terrain 
characteristics, using different types of sensors 
(e.g., Landsat TM, IRS LISS) have been some of 
the common applications of remote sensing in 
groundwater studies. Remote sensing techniques 
can also be used to extract the water levels in the 
lakes and rivers, which is an essential input for the 
groundwater modeling. Terrain height, another 
important parameter, particularly in the case 
of phreatic aquifer, can also be derived from the 
remote sensing techniques. With the use of mod-
ern techniques like radar interferometry and Lidar 
altimetry, fine resolution DEM is now available, 
which can significantly improve the groundwater 
simulations. Remote sensing data, when combined 
with the ground–based observations and numeri-
cal modeling have been found to have many appli-
cations in the groundwater studies.158

Since the optical and microwave signals used 
in satellite remote sensing cannot penetrate 
beyond the top soil layer,159 direct estimation of 
the groundwater storage is not possible using these 
bands. Current approaches to estimate the ground-
water storage levels are based on the Terrestrial 
Water Storage (TWS) estimated using the data 
from the Gravity Recovery and Climate Experi-
ment (GRACE) satellites of NASA, along with the 
ground-based observations. GRACE satellites are 
used to measure the temporal variation in the grav-
ity field, which is used to estimate the changes in 
the TWS.159 Yeh et al.160 used the monthly TWS data 
from the GRACE together with the in-situ meas-
urements of soil moisture to estimate the regional 
groundwater storage in Illinois. The algorithm 
used to retrieve the groundwater storage from 
TWS considered the change in the TWS as the sum 
of the changes in the soil moisture (∆SM) and the 
groundwater storage (∆GW) as shown in Eq. 9: 

TWS = + = +∆ ∆SM GW nD
ds

dt
S

dh

dty  (9)

where, n is the soil porosity, D is the root zone 
depth, s is the soil relative saturation, t is the time 
period, S

y
 is the specific yield, h is the groundwa-

ter level. Knowing the changes in the soil moisture 
from the field measurements, and the TWS from 
the GRACE data, changes in the groundwater stor-
age can be estimated, which may be further used to 
estimate the groundwater level. In another study, 
Rodell et al.159 clubbed the soil moisture simula-
tions from a hydrologic model with the TWS 

change derived from the GRACE data to show the 
drastic groundwater depletion in the Rajasthan, 
Punjab and Haryana states in India.

Groundwater potential zone identification is a 
typical multi-criteria evaluation problem, where 
the thematic layers of hydro-geological parameters 
are integrated in a GIS environment to identify 
the groundwater potential. Identification of the 
groundwater potential zones in the Marudaiyar 
Basin in India using remote sensing techniques 
is an example.161 Thematic maps such as lithol-
ogy, landforms, lineaments and surface water were 
prepared from the remote sensing data and these 
were combined with the other information such 
as drainage density, slope and soil types. Logical 
conditions defining the groundwater potential 
were evaluated using these thematic layers. The 
groundwater potential zones thus identified were 
found to be in good agreement with the borewell 
data collected from the field.161 Potential of the 
remote sensing data from IRS-LISS162 and Land-
sat TM163 sensors in identifying the groundwater/
recharge potential areas are well documented in 
the literature.

5 Concluding Remarks
Remote sensing techniques and the data derived 
using the remote sensing methods have multi-
dimensional applications in water resources stud-
ies. Applications of the remote sensing to water 
resources range from the simple resource map-
ping to the complex decision making related to 
the watershed characterization and prioritization.

Remote sensing data used in hydrologic stud-
ies are derived from different passive and active 
sensors onboard various satellites. Overview of 
the applications of the passive sensors operat-
ing in the VIS, IR and microwave wavelengths 
shows the enormous potential of the remote 
sensing data in improving the hydrologic studies. 
Recently developed hyper-spectral remote sens-
ing technique, with its capability to achieve very 
fine spectral and spatial resolution, shows the 
scope for achieving further improvement in the 
hydrologic studies. The active microwave sensors, 
with an all-weather operational capability find 
potential application in the flood analysis and 
flood warning services.

An overview of the remote sensing applica-
tions in different fields of water resources shows 
the potential of the remote sensing data in water 
resources management. One of the major advan-
tages of the remote sensing application is the bet-
ter spatial and temporal coverage that can be easily 
obtained to represent the dynamic nature of the 
hydrological and meteorological state variables. 



D. Nagesh Kumar and T.V. Reshmidevi

Journal of the Indian Institute of Science  VOL 93:2  Apr.–Jun. 2013  journal.iisc.ernet.in182

Capability to obtain near-real time data from 
remote sensing has been found to be particularly 
advantageous in flood monitoring, irrigation 
management and drought monitoring.
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