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The p a p  presenls a cornparatwe \ludy o f  thc techuiquc\ <,f c~lntillullu'. dymmic progralnlnlng (rw), dlbcrcte 
dynamic programmng ( ow)  and parametric progr:!mmtng (IT) ;is .ipplied to the solut~on of thc pmhlern of 
optlmal allocation of tolermccs and claarances in lour-bar lunctlon-gcner:iror linkages. Fa thl\ purpose three 
different n~echanisms gcneiating the R~nction.: y = ~ i n . r ,  y = log,,,x m d  y = 1' have been considered. 
The allocation problem has becn solved using the CDP.'I)DI' and PP technlques fbr hoth + 1" and k0.5' limits on 
mechanical error considering both normsl and uniforni diatrihution for thc location of pin centres in the 
respective clearance circles. The results show that the parametric pmgramming lechniquc yields strictest 
lolerance awl clearance valucs but lakes minimum cornpiiiatiun rimc while discrete dynamic programming 
technique yields comparatweiy liberal lolc~ance and clei~rancc values and taker modrratc computation tune. 
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1. Introduction 

A large number of analytical techniques are available in literature to aid the designer in 
dimensional synthesis of function generator mechanisn~s for minimum structural error. 
In practical mechanisms one has to contend with the additional mechanical error caused 
by the inevitable presence of tolerances on link lengths and clearances in pin joints. The 
techniques available for analysing the effect of tolerances and clearances or for optimal 
allocation of tolerances and clearances are relatively fewer1-", Allocation of optimal 
values for tolerances and clearances is necessary as high values result in low 
manufacturing cost but cause large error in output while low values result in high 
manufacturing cost but reduce error in output. Garret and HalP were the first to present 
a statistical treatment of the effect of tolerances and clearances. They presented the '3-u 
mobility bands' for the four-bar mechanisms synthesized for minimum structural error in 

'First presented at the National Conference on Machines and Mechanisms held at the Indian Institute of 
Science, Bangalore, during February 19-21, 1985. 



~ ~ ~ ~ ~ l ~ ~ ~ d  tial12for senerating thc functions y = x', y =: sin2 and 4. = log x assigning Flat 
tolerances of k(1.005 inch and clearances of 0.001-0.W2 inch. The 3-0 mobility band is a 
band of varying width around the desired output function in which (in the long run) 99.7 
per cent of the mechanisms will operate. Dhande and chakraborty6 presented a 
stochastic model of the four-bar linkage considering the effect of tolerances and 
clearances and formulated the problem of determining suitable tolerances and clearances 
for a limlt on output crror ah an optimizatiori problem. They solved this 
pmhlem in the case of lhc Four-bar mechanim taken from Garret and Hall' for 
generating the sine function by the application of discrete dynamic programming 
technique. This study"emonstrated the superiority of the stochastic approach over the 
mobility band approach3. Continuing on the lines of Dhande and Chakraborty6, 
Chakraborty' formulated the problem as a parametric programming problem and solved 
it using the interior penalty function method incorporating the Powell's conjugate 
direction method for  unconstrained minimization. He considered thc mechanisms from 
Garret and HallZfor generating y = x2, y =sin x and y =  log,^, x tor both t I" and +-0.5" 
error in output. Also both normal and unifonu distlibutions were considered for the 
'location o i  pin centrcs in the corresponding clearance circlcs. Tolcranccs and clearances 
obtained by the  method were almost identical to those obtained in Dhande and 
Chakraborty6. RaoX presented an iterative method in which tolerances and clearances 
are prescribed earlier for synthesis of a mechanism considering structural and mechanical 
errors. Rao and Reddf employed the technique of chance-constrained programming to 
synthesize a mechanism for minimum structural and mechanical error while Rao and 
Hatilo used the game theory approach for the purpose. Recently Sharfi and SmithJ2 
presented a mcthod for allocation of tolerances and clearances which is based on a 
sensitivity analysis of the output variable to small changes in the link proportions. The 
clearance values obtained are considerably lower than those ~ b t a i n e d ~ . ~ .  

A study of relevant literature shows that the stochastic approach employed by Dhande 
and ~hakrabortyQnd Chakraborty7 is probably the most suitable one for allocalion of 
tolerances and clearances in linkages. Iiowever, which particular technique of solution 
yields the best results in terms of reduced computation time and liberal tolerances and 
clearances for prescribed error in output is still not very clear. This is because one of the 
possible fechniques viz., continuous dynamic programming has not been explored. Also 
though more exainples have been considered in support of the approach by 
Chakraborty7 no informationoncomputation time is presented. Hence with a view to get 
a clearer picture the prescnt work makes a comparative study of continuous dynamic 
programming, discrete dynamic programming and parametric programming techniques 
a s  applied t o  the problem of optimal allocation of tolerances and clearances in four-bar 
function generating mechanisms. AU the three functions, viz., y = sinx, y = loglox and 
y =xZ have been considered for both L1" and +0.S permissible deviation in output. 
Also both normal and uniform distributions have been comidered for the location of pin 
centres in the corresponding clearance circles. The results obtained are presented an* 
discussed. 
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FIG 1 Four-bar function generator linkage FIG. 2. Four-har linkage with clearances and lolerances. 
,,,,thout clcaranccs and tolerances. 

2. Formulation of the stochastic model 

The stochaslic model of the lour-bar linkage can be formulated following the procedure 
indicated in references 6, 7. Figure 1 shows the ideal linkage with no tolerance on link 
lengths and no clearance in the pin joints. Here &(i= 1, 2, 3, 4) represent the nominal 
link lengths, 0 and q5 represent the orientations of input and output links respectively, the 
subscript 's' denoting the starting position and 'f' denoting the final position. Figure 2 
shows the schematic representation of the practical linkage in which tolerances on link 
lengths and clearances in pin joints arc present. Here R,(i= 1, 2, 3, 4) represent the 
actual link lengths given by 

where E is the tolerance per unit nominal length, K, are obviously random variables. 
Each link i is assumed to carry a pin at one end and a race at the other end in which the 
pin attached to link j moves. Hence the pin centre of link j can lie anywhere in thc 
clearance circle (of radius r,,) at the end of link i. Let it lie at a point whose coordinates 
are (xi,, y,) referred to a rectangular coordinate system (X;,, Y;,) with origin at the ccntre 
of the clearance circle and Xi, axis along the centreline of Link i. Then the equivalent 
length R ,  of link is given by 

Since y,i is small compared to (R,+xjj) we can write 

The equivalent linkage is shown by dotted lines in fig. 2. The displacement equation for 
the equivalent four-bar linkage is given by Garret and Hallz. 



where 

A =sin B 

Hence we can write 

where V,(i = 1, 2 ,  . . . , 8) given by 

V, = R l ,  V2 = R,, V, = R,, V4 = R,, V, = X I , ,  V, = xZ3,  V7 = x,,,, and V8 = x 4 ~  

are all random variables. The mean and variance of the output angle 4 can be calculated 
if wc know the mean and variances of the random variables Vl to V,. Since the 
manufactured link lengths are known to follow a normal distribution the mean and 
variance of V,(i= 1, 2, 3, 4) are given by 

M[V,I = 1, (54  

As far as the location of the pin centre in the respective clearance clrcle is considered we 
can consider two types of distributions, namely, normal and uniform distributions. For 
normal distribution, 

and 

For uniform distribution 

and 



Expanding the right hand side of eqn. (4) hy X'aylor series about the rncm of the random 
variables V,(i= 1, 2,  . . . , 8) and rrcglcclir~g h i g h  order terms we get. 

'3 

+=.b(O, M[V,];  i =  I ,  2. . . . , X ) +  : : i~b~i ,b: )~ , (V;- iw[V,J)  
/ i 

(8) 

As all the V,s  arc uncorrelated, thc rniw and variancc of (1) is given hy 

The partial derivatives n+IaV, for i = i ,  2,  . . . . X  can he evaluated by differentiating 
eqn. (3). 

3. The allocation problem 

In practicc one would like to employ as iargc a tolcrancc and clearal~cz as possible 
without increasing the resultant mechanical error beyond a prescribed value. Hence the 
problem of optimal allocation of tolerances and clearances can be formulated as 

I 
min Z= 2 - 

, = I  D[V,] 

8 

subject to (a+ldv,)~, D [ V J  5 D[4] 
i = 1  

where D[@] is the prescribed variance in the output angle. Once the variances D[V,] 
are known the tolerances and clearances can be determined from eqns. (5b) and (6b) or 
(7% 



4. Techniqnes for soiiving the alkncatim problem 

The optimal allocation problem represented in eqn. (10) can be solved by ;lpplication of 
the dynamic programming technique or the parametric programmiilg technique. 

4.1 Dynamic programming 

Letting x,= D[Vi], ( d + l d ~ , ) ; *  = a, and D[$] = b we can state the allocat~on problem 
of eqn. (10) as 

8 

min Z = 2 f (x,) 
i = l  

8 

subject to a , x i 5  b 
,=I  

This is the standard dynamic progrannnmg formulation o l  a serial multistage dec~sion 
problem. Here allocation of each tolerance or  clearance is treated as a single stage 
decinion problem, xi= D[V,] bemg the stage decision variablc and h = D[+] being the 
state variable. Dynamic progvamming ~echnique '~  decomposes a multistage decision 
problem into a sequence of single stage decision problems. Since the decision variable x, 
can take on any value in thc range permitted it can be treated as a continuous varlable 
and the continuous dynamic programming technique can be used to solvc the problem by 
employing any standard opt~mization algorithm to arrive at the stage optimum. The 
problem can also he converted to standard discrete dynamic programming type by 
assuming that the decis~on variable x, can take on only values such that .r, = m A x  where 
m =O.  1,2,  . . . , y,. The prohiem then becomes 

8 

subject to 2 (u,Ax)y, 5 b 
i=1 

where y, are integers greater than zero. The stage optimum is determined by a simple 
enumeration. The proper value of a, is to be chosen by trial and error. In both continuous 
and dynamic programming as the coefficients a, are functions of the input anglc 0 the 
allocation is valid only for the particular position. However, it is generally found that if 
the allocation is done for the position of maximum mechanical error it is valid for other 
positions also ie., the mechanical error in other positions does not excced the prescribed 
value. For this purpose thc allocation is carried out first in sorne arbitrary position. ?'he 
mechanism is then analysed to find the position of maximum mechanical error and the 
allocation is carried out at this posit~on to get the final values of clearances and 
tolerances. 



) I 
and the non-negtivity &wsrr;tinr. 

In the presenr wot.k ;I t . o ~ ~ . ~ t , t h i  j m , ; : m , l ~ i ~ ~  hits Recn tbvdoped  to solve the parametric 
Programming prohlcm cnrplrying the I>;tviJoi~-Fl~~rchei~-l'owelI methodt5 of uncon- 
strained minimiziltion. 

The minimization process !,c.gills \r.ith fcasihlc set of  ~ , s  st) Ihat no  constraint is 
violated. The choice of pcn;tlty p;~~.;iinett.r is nrl7itr:tr.y lrut has to be rcduccd In successive 
steps. As it is possible to ; rh i rvc  cluirkcr sonvtrrgcncc hy assuming a moderate value for 
r k .  it is assun~ed to he 1.0 to start with. 'rhc choice of proper c~mver~encb criterion is 

- -- -... - 
imporhnt. Theoretically, / 5 (+i&,)' rhoaid he  equal 1 zero at  the optimum 

ax1 
Point. As this is not possible in ipracticc, the algorithm is terminated when the value of 
this function attains a predcterminrd small number. This number is taken as 0.001 in the 
present case. 
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Table I1 
Results of allofation for the mechanism to generate y = sin x with permissible mechanical error of f 1" and i0.5" 

Results of the present work Results from hterature 

0 
CDP DDP PP Ref. 6 Ref. 7 Ref. 12 

N U N U N U N U N U  
B 
F 

Merhanicol error: f 1" 
P 

Tolerances 1, 2.609 2.606 2.669 2.669 2.550 2.597 2.628 2.82 2.77 2.41 
1, 2.771 2.769 2.798 2.798 2.549 2 .  2.612 2.52 2.57 2.41 

S 
(Unit: in) i? 

Clearances 
(Unit : in) 

CPU time (see) 

Mechanical error; 
Tolerances 
(Unit: 10-3 in) 

Clearances 
(Unit: in) 

1.329 2.571 
1.331 2.556 
1.320 2.611 
1.520 2 952 

14.05 276 
(IBM 7 0 4 )  

1.279 1 294 
1.282 1.286 
1.263 1.277 
1.483 1.401 

0.655 1.266 
0.656 1.259 
0.646 1.285 
0.7M) 1.453 

CPU time (sec) 112.20 65.30 65.28 11.46 25.63 276 
(IBM 7044) 

F 



Table HI 
Results of allocation for the mechanism to generate y = log r with permissible mechanical error of tl" 
and 20.5" 

- 
Rcsults of the present work Results of Lolerance 

CDP DDP PP Ref. 6 Ref. 7 
-- 

N C N U N U N U N U  

Mechanical error. + 1" 
Tulerances 1, 
(Umt: la-' in) 12 

1, 
14 

Clearances r, 2 

(Umc in) '21 

r3, 
741 

CPU time (sec) 

Mechanicol error: i0 .5"  
Tolerances !I  
(Untt: 10 ' in) h 

13 

14 

Clearances r12 
(Unit: lo-' in) 121 

rw 
r41 

CPU time (rec) 

3 607 3 727 
4.129 1412 
2 634 2.833 
2.655 2.860 

1845 3.798 
2.113 4.295 
1 347 2.829 
1.358 2 860 

16.66 279 
(IBM 7044) 

1.854 
2.075 
1.287 
1.322 

0.949 
1.061 
0 554 
0.675 

16 38 



Clearanoes 
(Unit 10.' m) 

CPU tlme (sec) 

Machonicol error: 20.5" 
Tolerances 
(Unit. I0 ' in) 

Clearances 
(Umt. I0 -' ,a) 

C W  time (sec) 

tolerances and clearances 211.2 show11 in fig,. 4. It ciin he wen that the mcchani&l error 
over the entire mngc is now ~.onstrained to lie within ?I" .  

Comparing the thrce tcchniqucs for optimal allocntioil of tolerances and clearances it 
1s seen from Tables !I to IV thal cojttinuous and discrete dynamic programmirg 
techniques yield tolcl.;~nccs and c1u;tr:tnccs of nearly same magnitude while parametric 
Programming tochniquc yiclds generally stricter tolerance and clearance values. For any 
Particular technique :tssurnption ol uniform distribution as against the normal distribu- 
tion for location of pin centres in the ~~'spective clearance circles leads to considerably 
stricter clearances. As far as the colnputntion times itre concerned the continuous 
dlnamic programming technique taker; maximuin time followed by the discrete dynamic 
Programming and parametric pgr;rmnling techniques. Considering both the magnitude 
of tolerance and clearal~cc values ;ind the spred of computation the discrete dynamic 
Programming technique appears t o  he thc most suitahle for allocation of tolerances and 
clearances in function-generator linkages. 



6. Conclusions 

The techniques of conti~~uous dynamic, discrete dynamic and parametric programming 
have been applied to solve the problem of optimal allocation of tolerances and clearances 
in Four-bar function-generator linkages. J t  is found that the discrete dynamic 
programming technique takes moderate computatioll times and yields comparatively 
liberal tolerances and clearances. 
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