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Abstract

The paper presents a comparative study of the techniques of continuous dynamic programming (Cop), discrete
dynamic programming (pOP) and parametric programming (Pp) as applied to the solution of the problem of
optimal allocation of tolerances and clearances in [our-bar function-generator tinkages. For this purpose three
different mechanisms generating the functions y =sinx, y=logy,x and y=x* have been considered.
The allocation problem has been sotved using the CpP, DDP and PP techniques for both +1° and £0.5° limits on
mechanical error considering both normal and uniform distributions for the location of pin centres in the
respective clearance circles. The results show that the parametric programming technique yields strictest
tolerance and clearance values but takes minimum computation time while diserete dynamic programming
technique yields comparatively liberal tolerance und clearance values and takes modesate computation time.

Key words: Continuous dynamic programming (cpp), discrete dynamic programming (DDP), parametric
programming (PP), optimal allocation, computation time, structural error.

1. Introduction

A large number of analytical techniques are available in literature to aid the designer in
dimensional synthesis of function generator mechanisms for minimum structural error.
In practical mechanisms one has to contend with the additional mechanical error caused
by the inevitable presence of tolerances on link lengths and clearances in pin joints. The
techniques available for analysing the effect of tolerances and clearances or for optimal
allocation of tolerances and clearances are relatively fewer'™2, Allocation of optimal
values for tolerances and clearances is necessary as high values result in low
manufacturing cost but cause large error in output while Jow values result in high
manufacturing cost but reduce error in output. Garret and Hall® were the first to present
a statistical treatment of the effect of tolerances and clearances. They presented the 3-o
mobility bands® for the four-bar mechanisms synthesized for minimum structural error in

*F_ Irst presented at the National Conference on Machines and Mechanisms held at the Indian Institute of
Science, Bangalore, during February 19-21, 1985.

191



192 T. 5. MRUTHYUNJAYA et af

Garret and Hall? for generating the functions y = 2, y=sinx andy = Jog x assigning flat
tolerances of +0.005 inch and clearances of 0.001-6.002 inch. The 3-0- mobility band is a
band of varying width around the desired output function in which (in the long run) 99.7
per cent of the mechanisms will operate. Dhande and Chakraborty® presented a
stochastic model of the four-bar linkage comsidering the effect of tolerances and
clearances and formulated the problem of determining suitable tolerances and clearances
for a prescribed limit on output error as ap optimization problem. They solved this
problem in the case of the four-bar mechanism taken from Garret and Hall® for
generating the sine function by the application of discrete dynamic programming
technique . This sudy® demonstrated the superiority of the stochastic approach over the
mobility band approach®. Continuing on the lines of Dhande and Chakraborty®,
Chakraborty’ formulated the problem as a parametric programming problem and solved
it using the interior penalty function method incorporating the Powell’s conjugate
direction method for unconstrained minimization. He considered the mechanisms from
Garret and Hall* for generating y = x%, y =sin x and y = log, x for both *1° and +0.5°
error in output. Also both normal and uniform distributions were considered for the
Jocation of pin centresin the corresponding clearance circles. Tolerances and clearances
obtained by the method were almost identical to those obtained in Dhande and
Chakraborty®. Rao® presented an iterative method in which tolerances and clearances
are prescribed earlier for synthesis of a mechanism considering structural and mechanical
errors. Rao and Reddy’ employed the technique of chance-constrained programming to
synthesize a mechanism for minimum structural and mechanical error while Rao and
Hati'® used the game theory approach for the purpose. Recently Sharfi and Smith’?
presenied a method for allocation of tolerances and clearances which is based on a
sensitivity analysis of the output variable to sroall changes in the link proportions. The
clearance values obtained are comsiderably lower than those obtained®’.

A study of relevant literature shows that the stochastic approach employed by Dhande
and Chakraborty® and Chakraborty” is probably the most suitable one for allocation of
tolerances and clearances in linkages. However, which particular technique of solution
yields the best results in terms of reduced computation time and liberal tolerances and
clearances for prescribed erfor in output is still not very clear. This is because one of the
possible techeiques viz., continuous dynamic programming has not been explored. Also
though more examples have been considered in support of the approach by
Chakraborty’ no information on computation time is presented. Hence with a view to get
a clearer picture the present work makes a comparative study of continuous dynamic
programming, discrete dynamic programming and parametric programming techniques
as applied to the problem of optimal allocation of tolerances and clearances in four-bar
function generating mechanisms. Al the three functions, viz., y=sinx, y = log;ox and
y =17 have been considered for both +1° and +0.5° permissible deviation in output.
Also both normal and uniform distributions have been considered for the location of pin

centres in the corresponding clearance circles. The resuits obtained are presented and
discussed.
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Clearance circle

Fic. 1. Four-bar function generator linkage FiG. 2. Four-bar linkagé with clearances and tolerances.
without clearances and tolerances.

2. Formulation of the stochastic model

The stochastic model of the four-bar linkage can be formulated following the procedure
indicated in references 6, 7. Figure 1 shows the ideal linkage with no tolerance on link
lengths and no clearance in the pin joints. Here [(i=1, 2, 3, 4) represent the nominal
fink fengths, ¢ and ¢ represent the orientations of input and output links respectively, the
subscript ‘s’ denoting the starting position and ‘f’ denoting the final position. Figure 2
shows the schematic representation of the practical linkage in which tolerances on link
lengths and clearances in pin joints are present. Here R;(i =1, 2, 3, 4) represent the
actual link lengths given by

R;=L+el; W

where € is the tolerance per unit nominal length, R; are obviously random variables.
Each link i is assumed to carry a pin at one end and a race at the other end in which the
pin attached to link j moves. Hence the pin centre of link j can lie anywhere in the
clearance circle (of radius r;;) at the end of link i. Let it lie at a point whose coordinates
are (x, y;) referred to a rectangular coordinate system (Xj;, Y;) with origin at the centre
of the clearance circle and Xj; axis along the centreline of link i. Then the equivalent
length R; of link is given by

Ri= (Ri+xyY+y%. 2
Since y; is small compared to (R;+x;) we can write
Ri=Ri+x;.

The equivalent linkage is shown by dotted lines in fig. 2. The displacement equation for
the equivalent four-bar linkage is given by Garret and Hall®.

oo 2]
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where

A =sin 6

Ry
B=cos 0———
R
> L p2._R2AR: R
_ RutRy—Ru+Ry Booc o
2R21R41 R41

D=+ JA2+ B~ C?
Hence we can write

$=¢(0, V)) @
where V{(i=1,2,...,8) given by

C

Vi=Ry, Va=Ry, V3=R3, Va=Ry, Vs=x13, V=X, V7=X3, and Vg=1xy

are all random variables. The mean and variance of the output angle ¢ can be calculated
if we know the mean and variances of the random variables V; to Vj. Since the
manufactured link lengths are known to follow a normal distribution the mean and
variance of Vi(i=1, 2, 3, 4) are given by

M{V]=1; (5a)
D{V]= (eli/3). (5b)

As far as the location of the pin centre in the respective clearance circle is considered we
can consider two types of distributions, namely, normal and uniform distributions. For
normal distribution,

MV;i=35,...,8]=0 (6a)
and

D[Vsl=(ry/3)

D[Vg] = (r/3)

D{V) = (r34/3)

D[Vg] = (ra/3) (6b)
For uniform distribution

M[V;; i=5,..., 8]=0 (7a)
and
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4 .
D[V = e

4 .,
D[V7] = "j‘; 34

S (70)
D{Vs]= EyEaly

Expanding the right hand side of eqn. (4) by Taylor series about the mean of the random

variables V;(i=1,2, ..., 8) and ncglecting higher order terms we get,
&
b=, MV i=1,2, ..., 8+ 2 (6dlaV )y V,~M[V,]) ®
1

As all the Vis are uncorrelated, the mean and variance of ¢ is given by

M[d]= (8, M[V)]; i=1,2,..., 8) (9a)
D(¢)= ‘{5‘1 {3/ V) DIV] . (9b)

The partial derivatives d¢p/oV, for i=1, 2, ..., 8 can be evaluated by differentiating
eqn. (3).

3. The allocation problem

In practice one would like to employ as large a tolerance and clearance as possible
without increasing the resultant mechanical error beyond a prescribed valne. Hence the
problem of optimal allocation of tolerances and clearances can be formulated as

min Z= f_; D[]V] Q10

8
subject to Z} (9¢/aV)L D[Vi] = D[¢]

where D[¢] is the prescribed variance in the output angle. Once the variances D[ Vi]
Zire)known the tolerances and cicarances can be determined from eqns. (5b) and (6b) or
7b).
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4. Techniques for solving the aflocation problem

The optimal allocation problem represented in egn. (10) can be solved by application of
the dynamic programming technique o1 the parametric programming technique.

4.1 Dynamic programming

etting x;= D[V}], (86/3V;)% = a; and D[$] =b we can state the allocation problem
of eqn. (10) as

min Z = 28: flxd) (11)
i=1

3
subject to ¥ ax;=b.

i=1

This is the standard dynamic programming formulation of a serial multistage decision
problem. Here allocation of each tolerance or clearance is treated as a single stage
decision problem, x; = D{V,] being the stage decision variable and b = D[] being the
state variable. Dynamic programming technique'® decomposes a multistage decision
problem into a sequence of single stage decision problems. Since the decision variable x;
can take on any value in the range permitted it can be treated as a continuous variable
and the continuous dynamic programming technique can be used to solve the problem by
employing any standard optimization algorithm to arrive at the stage optimum. The
problem can also be converted to standard discrete dynamic programming type by
assuming that the decision variable x; can take on only values such that x, == mAx where
pr=0,1,2, ..., y. The problem then becomes

min Z = % fOubx) 12)

i=1
8
subject to 2 (aAx)y; < b
i=1

where y; are integers greater than zero. The stage optimum is determined by a simple
erumeration. The proper value of g; s to be chosen by trial and error. In both continuous
and dynamic programming as the coefficients a; are functions of the input angle ¢ the
allocation is valid only for the particular position. However, it is generaily found that if
the allocation is done for the position of maximum mechanical error it is valid for other
positions also i.e., the mechanical error in other positions does not exceed the prescribed
value. Eor this purpose the allocation is carried out first in some arbitrary position. The
mechanism is then analysed to find the position of maximum mechanical error and the

allocation is carried out at this position to get the final values of clearances and
tolerances.
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In the present work compuler progroms in roikas have been developed to
implement both the continuous dynamie progrimmming and diserete dynimic progran-
ming techniques. The former incorporates the complex method of Box' for stage
optimization. A valuc of 75 fov v, i found 1o give satistactory resalts in the discrete

ws the range of the state varable b s

programming technigue. For both the technd
divided into 100 cqual parts.

4.2 Parametric programeing

Since the constraints in cqn. (10} will have to be satisticd for all positions they can be
expressed with the input angle (8« & ¢, us shown in fig. 1) as o purameter, Heneg the
problem can be stated as

8 1
min Z= % -- (13)
. X
Qe i
subject to
b

(1) glx. 0) = 2 oV, sux, - Dlb) - 0

N
and the non-negativity constraint,
(il) gi(x) = ~x; s G where x, = DIV, ]
The problem is now formulated as a parwmetric programming problent. Tt can be solved
by the interior penalty function metbod of constrained optimization. The penaity function

is taken as
2,

& A & !
b= 3 | [ o X - (14)
S T g et

where r, s the penally parameter. The minimization of &f{x, ) can be carried out
utilizing any standard technique of unconstrained minimization.

In the present work a voRTRAN progrmume has been developed to solve the parametric

: . . 5
programming problem emploving the Davidon-Fletcher-Powell method'” of uncon-
strained minimization.

The minimization process beging with o feasible set of x;8 so that no constraint is
violated. The choice of penalty parameter is arbitrary but has 1o be reduced in successive
steps. As it is possible to achicve quicker convergence by assuming a moderate value for
Tk, it is assumed to be 1.0 to start with, The choice of proper convergence criterion is

important. Theorctically, / S (#idx)® should be equal to zero at the optimum

i - oA=L . . . ;
pomt. As this is not possible in practice, the algorithm is terminated when the value of
this function attains a predetermined small number. This number is taken as 0.001 in the
present case.
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Table II

Results of allocation for the mech

to generate y = sin x with permissible mechanical error of £1° and £0.5°

Results of the present work

Results from literature

CDP DDpP PP Ref. 6 Ref. 7 Ref. 12
N u N u N 18] N U N U
Mechanical error: £1°
Tolerances In 2.609 2.606 2.669 2.669 2.550 2.5%7 2.628 2.82 271 2.47
{(Unit: 1072 in) I 2.771 2769 2.798 2.798 2.549 2.601 2.612 2.52 2.57 2.41
1y 2.746 2.744 2773 2.773 2.533 2.577 2.593 237 2.88 2.94
Iy 3.227 3.220 2.845 2.845 2.824 2.965 2.846 292 2.88 243
Clearances re 2700 1.390 2.669 1.366 2.550 1.329 2.571 2.82 1.37 1.215
(Unit: 1072 in) rey 2,597 1350 2798 1365 2550 1331 255 2.52 1.26 1.205
ryy 2735 1.443 23973 1.419 2.5M 1.320 2.611 2.37 1.14 1.205
rg o 2.994 1350 2.845 1456 2.824 1.520 2952 2.92 1.40 1.215
CPU time {sec) 10133 6495 6474 2246 1405 276
{IBM 7044)
Mechanical error; +0.5°
Tolerances
(Unit: 107* in) 4 1,360 1.359 1.194 1.194 1.285 1.279 1.294 1.36
L 1.356 1.355 1.399 1.399 1.282 1.282 1.286 1.32
I 1.404 1.403 1.386 1.386 1.261 1.263 1.277 1.13
I 1.463 1.527 1.423 1.423 1.482 1.483 1.401 1.23
Clearances I 1.404 0.669 1.194 0.683 1.285 0.655 1.266 0.70
(Unit: 1072 in) (2% 1.358 0.697 1.399 0.683 1.282 0.656 1.259 0.68
Tas 1.369 0.718 1.386 0.709 1.261 0.646 1.285 G.64
ra 1.39%0 0,705 1.423 0.728 1,482 0.760 1.453 0.83
CPU time (sec) 112.20 65.30 65.28 11.46 25.63 276
(IBM 7044)

STONVEVITD NV SHINVATIOL 40 NOILVOOTIV TVINLLIO
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Table XI

Results of allocation for the mechanism to generate y =log x with permissible mechanical error of £1°

and 6.5°

Results of the present work

Results of tolerance

Cbp DDP PP Ref. 6 Ref. 7
N T N 192 N U N N U
Mechanical error. £1°
Tolerances 4 3.799 3,792 3.799 3.79% 3.606 3.607 3.727 3.68 4.99
(Unit: 1077 in) 23 4.637 4.357 4.247 4.247 4.132 4.129 4.412 4.85 4.35
) 1 2.749 2.748 2.876 2.876 2.632 2.634 2.833 2.85 2.33
N 2.850 2.466 2.579 2.579 2.656 2.655 2.860 270 2.26
Clearances s 3.613 1.865 3.799 1.944 3.607 1.845 3.798 3.68 2.03
(Unit: 1072 in) r 4351 2,056 4.247 2.173 4.132 2.113 4.295 4.85 2.01
Fay 2.855 1.394 2.876 1.472 2.632 1.347 2.829 2.85 1.36
Tay 2.595 1.541 2.579 1.320 2.654 1.358 2.860 270 1.65
CPU time (sec) 104.62 98.49 65.37 65.32 23.09 16.66 279
(IBM 7044)
Mechanical error: £0.5°
Tolerances iy 1.997 1.996 1.899 1.899 1.704 1.854 1.66
(Unit: 107 in) A 2,152 2.151 2.124 2.124 2.357 2.075 1.97
I 1.362 1,361 1.438 1.438 1.281 1.287 1.08
N 1.348 1.304 1.290 1.290 1,315 1.322 1.33
Clearances r, 1632 0.982 1.899 0.972 1.704 0.949 1.01
(Unit: 1073 in) rs 2000 L022 2424 1087 2357 1.061 1.37
rag 1.362 0.723 1.438 0.736 1.285 0.654 0.84
ray 1.506 09.707 1.290 0.660 1.314 0.675 0.82
CPU time (sec) 104.70 93.19 65.11 64.63 20.19 16.38 —

o0
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Table IV . -
Results of allocation for the mechanism o generate y = &~ with permissible mechanical error

of £1° and +0.5°

Resuits of the present work Results from literature

oor T Thoe PE

N %) N u N u N U

.7

Mechanical error: £1°
LT B0 3981 3670 38T 3G AW 30 3.31

Talerances

[Uait: 107" in) A 3.955 3,777 dagi A6RY 7 3661 3.58 2.93
Lo 4048 3685 4004 46 36l 36T0 3.6l 3.04
I, 7477 RO aRSS 683 SN B3T 881 7.25

Clearances 7z 3788 LYS7 5671 L% 37 st 360 2.06

(Unit: 1072 in) rpso 3939 Lo sl LERS  3.667 STy 355 2,40
g 3683 2064 SADE 2100 260 18T 36 2.1
ra 6852 A4.163 6855 3.508 N2 4,240 3.81 470

CPU time (sec) 9692 9R3% oA 65T 172 1324

Mechanical error: £0.5°

Tolerances A Loy %17 L8 Lale Lash 1831 1.96

{Unit: 1677 in) b 1.981 1980 [T 1874 1,754 1.70
A 1842 Led2 2082 1777 1793 L7
L 343 372 2428 T 4649 4.52

Clearances r 19T 09 LE36 0.939 1851 0937 0.96

(Unit: 107% i) rao 203 LOR LEd 0942 1887 9898 0.91
ro LUOZ 070 2052 LBS0 1776 (0.846 0.89
rag 3485 1942 3428 1784 3900 2379 215

CPU time (sec) 96.36 64.36 65.09 15.36 23.83

tolerances and clearances arc shown in fig. 4. It can be seen that the mechanical error
over the entire range is pow constrained to lie within £1°

Comparing the three techniques for optimal allocation of tolerances and clearances it
is seen from Tables {1 to IV that continuous and discrete dynamic programming
techoiques yield tolerances and clearances of nearly same magnitude while parametric
programming technique yields generally stricter tolerance and clearance values. For any
particular technique assumption of uniform distribution as against the normal distribu-
tion for location of pin centres in the respective clearance circles leads to considerably
stricter clearances. As far as the computation times are concerned the continuous
dynamic programming technique takes maximum time followed by the discrete dynamic
Programming and parametric programming techniques. Considering both the magnitade
of tolerance and dlearance values and the speed of computation the discrete dynamic
programming technique appears to be the most suitable for allocation of tolerances and
clearances in function-generator linkages.
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Fic. 3. Error after allocation at an arbitrary Fic. 4. Error after allocation at maximum mech-
position (6-6, = 80°). anical error position 6-6; = 64°).

6. Conclusions

The techniques of continuous dynamic, discrete dynamic and parametric programming
have been applied to solve the problem of optimal allocation of tolerances and clearances
in four-bar function-generator linkages. It is found that the discrete dynamic
programming technique takes moderate computation times and yields comparatively
liberal tolerances and clearances.
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