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Abstract | Theoretical analysis and computer simulations have proven to be cost-effective
and powerful tools in scientific studies of materials, particularly at nano-scale where
synthesis of nano-structures, interpretation of their observed character and exploration of
new structures are not always straightforward. We present here fundamental principles of
techniques used today for computational simulations of materials, their capabilities and
limitations. We then illustrate efficacy of such studies through review of their applications

1. Introduction

With about a hundred elements in the periodic
table as building blocks, there exist a very large
number of materials that can be synthesized with
different combination of these elements in different
proportions. Interestingly, the structure of a material
may not be unique, as different physical conditions
or growth routes can trap a material in different
meta-stable states. Properties of a material, which
are completely determined by the chemistry and
its structure, exhibit tremendous diversity. While
it is fundamentally interesting how some of the
properties can be classified into different universality
classes, it is intriguing how the properties can
change drastically with a slight change in chemistry
or structure. A simple and commonly known
example is of silicon versus carbon. While they
belong to the same group of the periodic table
and exhibit similar chemical bonding when in the
same structure, the known ground state structures

of silicon and carbon are diamond and graphite.

Journal of the Indian Institute of Science | VOL 89:1 | Jan—-Mar 2009 | journal.library.iisc.ernet.in

to nano-structures of oxide materials, carbon and boron nitride based nano-tubes and
mechanical behavior of nano-structured materials. We finally present a wish-list of new
tools and augmentation of existing tools that would allow expansion of the range of
applications of computer simulations to nano-structures and materials.

While silicon in diamond structure is one of the
most important semi-conducting materials, and
carbon (diamond) is the hardest and relatively
rare material. Interestingly, the structural forms of
carbon known recently, such as fullerene, nano-tube,
graphene exhibit yet newer set of properties. The
diversity in the materials world is what determines
which material can be used in which applications,
and understanding its origin is interesting and
crucial to design of newer materials for technological
applications.

At the nano-scale, there are at least two
fundamental ways in which the diversity in
the properties of materials becomes richer and
interesting: (a) structure of a bulk material can be
altered at nano-scale! (length-scale greater than
the crystalline unit cells) and result in different
properties (for example, mechanical behavior of
nano-structured or nano-grained metal), and (b) a
nano-structure has a large fraction of atoms at
the surface (or interface) whose chemistry can



be different from the atoms belonging to the
bulk, hence possesses very different properties®>.
Experimental control and investigation of the
structure and properties of nano-structures can be
quite difficult and expensive. Measured properties
of a nano-structure sensitively depend on how
the experimental probe interfaces with the nano-
structure mechanically, electrically or chemically.
This necessitates use of tools that are complementary
in their capabilities.

Advances in the hardware of computing
resources and development of algorithms over the
last few decades have resulted in computational
methodologies that provide a powerful and
independent approach to the exploration of
materials, particularly at nano-scale*. Ideally, the
computational approach to materials science has
three goals: (a) understand the stability and
mechanisms of properties of known materials,
(b) complement experimental techniques by
accessing information that is hard to determine
unambiguously, (c) design novel materials and
nano-structures. Such an approach has to capture
both universality and diversity in the properties of
materials and often has to start at the description
of electronic motion in a material, with only input
about the number and type of atoms constituting
a given system, and is called as first-principles
approach. Most commonly used first-principles
methods® today are based on density functional
theory (DFT) developed by Kohn and others in
1964-5°.

From 1960’s to 1990, many efforts were devoted
to development of formalisms and concepts, which
include (a) pseudopotentials and related schemes to
describe effective potential of the atomic nucleus
and core electrons, (b) Car-Parrinello molecular
dynamics for thermodynamic simulations, (c)
variational and iterative schemes for solutions of
ground state and density functional perturbation
theory, (d) “GW” approximation for estimation
of energies of electronic excitations see Ref. 5 and
references therein. Since early 90’s, first-principles
calculations have been used in ever expanding
range of applications [witnessed by a Nobel prize
in Chemistry for Walter Kohn in 1999]. Parallel
to this in the 90’s, efforts were devoted to (a)
improving efficiency and scaling of first-principles
calculations with size of the problem, (b) feeding
the outcome of such calculations into models for
larger-scale simulations. Rapid growth in research in
nano-science instigated by the discovery of carbon
nanotubes in early 90s and its need for simulation
techniques have fuelled both further development
of tools in computational materials science and their
applications.
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Nano-structures are also known as low-
dimensional systems: dimensionality d of a nano-
structure is the number of directions in which
the size of a structure is greater than about 100
nanometers (along the remaining 3—d directions,
the system is spatially confined). For example, the
dimensionality of fullerene, nano-tube, graphene
or epitaxial films is zero, one and two respectively.
Due to confinement of quantum electronic states
and deviation in the local coordination of atoms
from that in the bulk, interesting quantum effects’
and chemistry” emerge at nano-scale. Small changes
in their structure can be introduced through
doping or the strain constraints (as present in
epitaxial films) at their interface with surrounding,
which result in large and often qualitative changes
in their properties. While advances in various
electron microscopies have made it possible to
image these structures at atomic resolution, their
interpretation is often tricky and needs another
“eye” for confirmation, which is often provided by
first-principles computational tools. The doping
of nano-structures, strain engineering of films, their
hetero-structures can be exploited to design novel
nano-materials through computer modeling alone.

Recent development in computing hardware
has been towards high-performance computing
(HPC)8, which is characterized by a large number
of small computers networked together through a
fast and efficient architecture of network switch: a
parallel computer cluster. Another related concept
is of the grid-computing®, in which computers
across a network (not necessarily very fast) with
idle cpu cycles can be utilized for simulations.
Optimal use of such resources involves breaking of a
computing problem and data into small bits that
can be distributed over the large number of small
computers (nodes) in the cluster. This naturally
depends on the numerical representation of a
problem and the extent of communication required
between the nodes during computation. A class of
problems involving large number of small tasks with
minimal amount of inter-node communication is
called as a naturally parallel problem. Design of
materials with a given combination of elements
is one such a problem where studies of different
possible structures or materials can be distributed
across different computing nodes.

In spite of availability of very large and
powerful computers, many important problems in
materials science are too large to be solved through
simulations. Secondly, a large amount of data
generated in large-scale simulations can be quite
hard to learn fundamentals from. Modeling plays
an important role in such problems which enables
efficient solution of a problem and extraction of its
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essential mechanisms. Modeling typically makes
use of symmetries in integrating out irrelevant high
energy degrees of freedom of a system. In any case,
a computer-based solution of a challenging problem
in materials usually involves a judicious choice of
numerical accuracy and computational costs: higher
the accuracy, greater is the cost!

In this article, we review in section 2 the
principles fundamental to most computational
techniques in materials science, and illustrate their
applications in section 3 to some select problems in
nano-materials based on mostly the author’s earlier
work, and summarize in section 4.

2. Basic principles

2.1. Constitutive Energy function

Total energy of a collection of atoms as a function of
atomic numbers (type—chemistry) and positions
(structure) of atoms E.(Zs, Ry) is central to
most computational techniques in materials that
do not aim at the detailed electronic structure
and excitation properties of a system. Born—
Oppenheimer (BO) approximation'? is implicit in
such techniques, which leads to separation between
fast electronic degrees of freedom and relatively
slower nuclear ones. The former are restricted in
this approximation in their quantum mechanical
ground state and the time evolution of the latter
(except for very light elements like hydrogen) can be
treated classically. The BO approximation breaks
down when quantum ground and first excited states
of electrons cross as the nuclear degrees of freedom
evolve.

Ewt(Z1, Ry) contains all the material-specific
details necessary to determine its properties.
Minimization of E with respect to {R;} results
in determination of the theoretical structure of
a system. The symmetry of the system which
controls its universal properties is evident in the
Taylor expansion of the total energy function at the
theoretical structure:
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At the minimum energy or the theoretical structure,
the first-derivative term in this equation vanishes,
and the second derivative of energy with respect
to Ry’s is the force constant matrix, which yields
vibrational frequencies through use of appropriate
masses. Various derivatives of the energy function
give various measurable properties of the system:
first derivative of energy with respect to atomic
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position, electric field, magnetic field and strain
are the forces on atoms, electric polarization,
magnetization and elastic stress of the system.
Similarly, second derivatives with respect to electric
field, magnetic field, and strain give the dielectric,
magnetic and elastic compliances'"!2, Mixed
derivative give piezoelectric, piezomagnetic and
magneto-electric response compliances'"'2. Higher
derivatives of the total energy are related to higher
order (nonlinear) responses of the system'2. The fact
that energy of a system should be invariant under
the application of a symmetry operation of the
system, imposes constraints on various derivatives
of energy, hence on the measured properties.

While the above analysis applies at zero
temperature, it readily generalizes to finite
temperature T through calculations of the free
energy!> F = —kpTInZ, where the partition
function Z is determined from the total energy
function:

Eio
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1

Relationships between derivatives of the total
energy with observed properties translate to finite
temperature through the derivatives of free energy.
Evaluation of the partition function, however, is a
difficult task as it involves a very large dimensional
integral. In practice, it is accomplished through use
of methods such as Monte Carlo and Molecular
Dynamics (MD) simulations'4. While the former
use only the total energy function, the latter use
energies as we as forces on the atoms given by
the first derivatives. Such simulations typically are
suitable to obtain free energy differences and not
absolute values of the free energy. Estimates of
some contributions to absolute free energy can
be obtained through use of simple ideas such as
the quasi-harmonic approximation or the Site-
Occupancy-Disoder techniques'®.

Thus, it should be clear now that the accurate
estimation of the total energy is crucial to
determination of many properties of materials.

2.2. Classical versus Quantum/first-principles
approaches

There are broadly two methodologies that allow
access to the total energy function: (a) empirical
ones in which a form of the total energy function
is assumed with system-specific parameters values
of which are obtained through fitting the energy
function and/or its derivatives for certain relevant
configurations to experimentally observed values,
for example, the Stillinger—Weber potential'® of
silicon, (b) first-principles approaches!”!8 which

11



assume no experimental inputs and start with only
the atomic numbers and possible positions as the
specification of the system, arriving at material-
specific total energy function. They necessarily make
use of an approximate solution of the quantum
mechanical equation of motion of electrons and
include detailed chemistry of a material in mostly
parameter-free way, which allows them to access
material-specific properties.

Empirical approaches are usually very efficient
(they are relatively expensive when long-range
interactions are crucial to the properties of a
material, such as ionic insulator, when the computer
time of these calculations scales as square of the
system size) and highly accurate in estimation of
properties that are closely related to the observables
used in fitting these functions'®. In contrast, first-
principles methods are usually very intensive
computationally (computer time taken for these
calculations scale as cube of the system size) and are
reasonably accurate in most properties of the system.
The biggest limitation of empirical approaches is
that they can be developed practically for relatively
simple systems and that their predictability is limited
in terms of chemically as well as structurally new
materials. Access to electronic details and chemical
bonding of a system render additional advantage
to first-principles methods.

Solution of a quantum many-electron problem
is very difficult and is possible in numerically
exact form with a quantum Monte Carlo method.
However, quantum MC is computationally very
intensive and at present can be used only for
systems with a very small number of electrons.
Most commonly used first-principles calculations
today are based on density functional theory
(DFT), in which the quantum many electron
problem is mapped onto an effective single electron
problem with a potential arising from electrostatic
interaction with nuclei and other electrons, and
exchange correlation interactions of electrons.
The exact form of the latter is unknown and
is approximated through its local dependence
on electron density (local density approximation,
LDA). This approximation is responsible for most
limitations of a DFT-based determination of the
ground state properties. Notably, DFT fails in
materials where electrons are correlated, i.e. motion
of an electron can not be treated effectively using
the mean potential arising from other electrons.
For simple systems, DFT-LDA based description of
materials results in 2% underestimation of bond-
lengths, about 10% errors in compliances such as
bulk modulus with respect to experimental values.

There also exist semi-empirical approaches
which aim at combining strengths of both of these
methodologies.
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2.3. Effective Hamiltonians and Related Methods
There are many problems in materials at nano-
scale which can not be tackled realistically
through direct use of first-principles simulations,
because of the computational resources and
time needed for completion. There are broadly
three strategies one can follow in such cases: (a)
construction of effective Hamiltonian through
identification of the symmetry-invariant subspace
of low energy degrees of freedom and projection of
the full Hamiltonian into this subspace using an
appropriate basis, which can be used in large-scale
simulations, (b) use of first-principles methodology
in a sub-domain embedded in a region treated
with classical (for example, continuum) energy
function obtained as an appropriate limit of first-
principles total energy function, for example,
the quasi-continuum methodology?’, (c) use
of phenomenological models or theories whose
parameters are determined from first-principles
calculations; this approach is useful where neither
(a) nor (b) can be used effectively.

3. Applications To Nano-structures and
Nano-materials

While the structure of a system can be theoretically
determined through minimization of the total
energy function, it is often a very hard task. The
cause of this difficulty lies in the fact that the
total energy function can be a highly nonlinear
function of atomic positions with several possible
local minima. Most methods of minimization of a
function typically start with an initial guess for
a minimizing vector (structure) and iteratively
determine the minimum of function in the
same basin. The phase space of structures grows
exponentially and search through all possible
basins of energy function to determine its global
minimum is a task that can not be solved using the
known computing concepts in time that scales as a
polynomial of the system size. Genetic algorithm
provides a popular option to try to find a global
minimum. In the context of structural optimization
of nano-clusters, we presented an algorithm that
was based on physical intuition and symmetry?!.
Our approach is based on the use of Hessian, the
second derivative matrix of the total energy (with
respect to atomic positions), in addition to the
energy and forces. Eigenvalues of this Hessian relate
to vibrational spectrum of a system, and the modes
with imaginary frequencies specify the directions
in the structural space along which the structure
is unstable, i.e. it would distort to a lower energy
structure. An intuitive assumption in our approach
is that the basins of the energy function can be
“accessible” from a high symmetry structure and
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that different basins can be spanned by considering
various high symmetry structures for clusters of a
given size. In summary, the approach considers
as many high symmetry structures (which are
relatively smaller in number and easier to generate)
of the given size cluster as possible. For each such
a structure, it finds the Hessian matrix (this is
readily accomplished through DFT linear response
calculations) and distorts the structure with the
strongest instability, and subsequently uses the
standard algorithms to find the local minimum
of energy. In the course, this scheme generates many
structures corresponding to local energy minima
along with their vibrational spectrum, which are
relevant to finite temperature analysis. This was
shown to be successful in predicting the structure
of Snjz cluster that is lower than most known
structures of Snjs.

The level of difficulty in determination of
structures reduces as one goes to structures with
higher dimensionality (clusters are zero dimensional
nano-objects) and regularity/periodicity along the
extended dimension. For example, the structure
of a nano-wire or a nano-tube is determined with
fewer parameters even though number of atoms in
it can be large. We review here now computational
studies of nano-structures in 2 and 1 dimensions,
whose structure is relatively simpler to determine
and properties can be quite interesting.

3.1. Two-dimensional Nanostructures of
Ferroelectric Oxides

Miniaturization of devices and development of
chips with a very high density of devices have been
central to technological evolution over the last
several decades. Ferroelectric or piezoelectric oxides,
also known as smart and functional materials, are
essential to the Micro-Electro-Mechanical-Systems
(MEMS), which are used in a very wide range of
applications ranging from ultra-sound detectors
in a hospital to the ones on submarine. Ferroelectric
oxides possess spontaneous (in the absence of field)
electric dipole or polarization that couples strongly
with strain, which allows them to be used as sensors
as well as actuators of mechanical strain. Since this
spontaneous polarization can be switched to other
directions with applied electric field, they can also be
used in non-volatile memories (known as FeRAMs).
Scaling down of MEMS or FeRAMS to nano-scale
(NEMS) depend crucially on how properties of a
ferroelectric films change when the film thickness
shrinks to less than nano-meter.

Fundamentally, the question of existence of
polarization in nano-thin films of ferroelectrics
is also related to probing how the ferroelectric
phase transitions occur when a material is confined
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to less than 100 nm along one of the directions.
In our work, we have combined investigation of
this with the search for lead-free ferroelectrics.
While the development of lead-free ferroelectrics is
essential to environment-friendly technologies, it
is also chemically interesting and challenging to find
alternative routes to develop better ferroelectrics
with out the stereochemically active lone pair
chemistry of lead. Here, we review our work that
tries to make use of tunability at nano-scale of
two types: (a) strain engineering of epitaxial films
of BaTiO3,%? and (b) artificial superlattices of
BaTiO3/SrTiO; (BTO/STO)?.

3.1.1. Ultra-thin films of BaTiOs

The structure of a film of an oxide (or other
materials) is determined by the competition between
(a) the energy of the interface with substrate on
which it is grown, which is most stable then the
film and the substrate are perfectly in registry, i.e.
have the same in-plane lattice constant, and (b)
the elastic energy associated with strain in the film
that may be present to match its lattice constant
with the substrate. For films thicker than a critical
thickness, the elastic energy cost (which scales with
volume) dominates, and the film has a structure
essentially the same as of its bulk form. As a result,
there can be dislocation or other extended defects
at the interface. For thinner films, the interface
energy is dominant and the film has the same in-
plane lattice constant as of the substrate (and often
different from its bulk form). Such a a strain in the
film induced by the substrate is called as epitaxial
strain. As ferroelectrics exhibit a strong coupling
between polarization and strain, epitaxial strain
can be used to engineer properties of ultra-thin
ferroelectric films?*.

First-principles MD or MC simulations of
ferroelectric films (eg. BaTiOs3) are presently not
feasible as the size of systems necessary in a study
of phase transitions is too large (more than a few
thousand atoms). We used an effective Hamiltonian
that is obtained in principle by projecting the
complete lattice dynamical (phonons). Hamiltonian
into the subspace spanned by phonon bands of
the cubic structure which include unstable optical
modes and acoustic modes using phonon Wannier
functions as a localized basis. The form of the
model is naturally determined by the symmetry-
invariant Taylor expansion of the total energy
function in terms of Wannier or local modes,
containing anharmonicity of optical phonons
and their coupling with strain, elastic energy
associated with homogeneous strain, and acoustic
modes within harmonic description. The effective
Hamiltonian thus consists of two classical vector
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Figure 1:

Ferroelectric slab with electrodes modeled as electrostatic mirrors (a) perfect electrode

(b) imperfect electrode. Arrows indicate local electric dipoles. While the electrostatic image of
out-of-plane component of a dipole is parallel to that of the dipole, the image of the in-plane

component is inverted.
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degrees of freedom per cell: one centered at Ba-site
spans the acoustic phonons, and another centered
at Ti-site spans the optical modes. The former
captures the effects of inhomogeneous strain, and
the latter correspond to the local electric dipoles.
Simulations of such an effective Hamiltonian are
still very demanding due to infinite range dipole—
dipole interactions and we have developed a mixed
space MD code®, named as FERAMZ°.

As is known in other contexts such as
conductivity of a nano-tube, properties of a
nano-structure depend sensitively on the probes
interfacing with it during a measurement. In the
present case, the nature of the electrodes determines
the electrical boundary conditions at the surface
of the films (see Fig. 1a). If the electrodes are perfect
metals, the bound surface charges of a ferroelectric
are completely compensated by the free carriers
of the electrode; imperfect electrodes result in
partial compensation of these charges. The effects of
electrodes have been captured with a simple model
based on electrostatic mirrors and that contains
a single length-scale: thickness d of a dead layer
that separates electrodes and the ferroelectric slabs
(see Fig. 1b). Perfect electrodes correspond to the
thickness d of zero, and imperfect electrodes are
simulated with a nonzero d. In the case of former,
the depolarization field associated with bound

Dead Layer

surface charges is zero, where as in the latter, it
is proportional to d/(I4d), I being the thickness
of the film. When d =0, or a, the lattice constant,
it can be shown that overall system consisting of
dipoles in the ferroelectric slab and their images in
electrodes form a periodic system with periodicity
of 2(I4d) along z-axis.

Epitaxial strain constraint is imposed by fixing
the in-plane components of the homogeneous strain.
Polarization, calculated as a thermal average of
spatially averaged local electrical dipoles of the
system, is the order parameter of ferroelectric
phase transitions. Polarization along [001], [110]
and [111] directions correspond to tetragonal,
orthorhombic and rhombohedral ferroelectric
phases respectively. Extensive MD simulations of
BaTiO3; sandwiched between perfect electrodes, at
different epitaxial strains and temperatures, were
used to generate temperature—strain phase diagrams
(see Fig. 2a). Ferroelectric transition temperature
can be enhanced by almost a factor of two (with
respect to bulk) by imposing compressive epitaxial
strain. As the strain becomes tensile, there is a
transformation from tetragonal to monoclinic to
orthorhombic phases, with rhombohedral phase
stabilized only at a specific value of strain. Such
phase diagrams should be useful in design of devices
based on epitaxial ferroelectric films.
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red region down polarization).

Figure 2: (a) Temperature-epitaxial strain phase diagram of BaTiO; slab with perfect electrodes, (b) A

horizontal planar section of the low temperature phase of a ferroelectric slab sandwiched between
imperfect electrodes, exhibiting striped domains polarization (blue region denotes up polarization and
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Effect of electrodes on the nature of ferroelectric
phase is rather striking. For ultra-thin films, when
the depolarization fields are not adequately screened
by the limited free carriers in “imperfect” electrodes,
the low temperature phase develops stripe-like
domains of polarization. Extensive simulations of
this phase showed that the periodicity length-scale
of the stripes varies as square root of the thickness
of the film?>. These simulations have confirmed
experimental observation of striped phases?* and
traced their origin to the nature of electrodes.

3.1.2. Artificial Superlattices of BTO/STO
Advances in epitaxial engineering have made

it possible now the atomic layer-by-layer growth

of oxides films. Different atomic planes can
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alternate or be grown with different periodicity thus
forming superlattices. For example, a 1:1 BTO/STO
superlattice is formed when a layer of BaTiO;
and a layer of SrTiOs3 alternate (see Fig. 3a). This
allows control over both structure and chemistry
of oxides at nano-scale in being able to tune
their properties. Superlattices open up possibilities
of new kind of functionalities arising from the
combination of properties of its constituents as
well as from the interface between the them. While
growth of superlattices is possible, it needs advanced
technologies and is expensive, as there are many
possibilities to explore. First-principles simulations
have proven to be cost-effective and reliable tools in
investigation of such superlattices.

Superlattices of BaTiO3 and SrTiO3; have been
of interest due to (a) moderate lattice mismatch
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Figure 3: (a) BTO/STO superlattice, and (b) its polarization as a function of epitaxial strain.
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between the two, (b) the fact that BTO is a
ferroelectric while STO is a quantum paraelectric,
and (c) the resulting ferroelectric would be lead-free.
Our first-principles simulations of the BTO:STO
superlattices?® have shown how sensitively its
structure and polarization depend on epitaxial
strain. Starting with a tetragonal phase with a very
large polarization at compressive strain, the 1:1
BTO:STO superlattice transforms to a monoclinic
phase at the epitaxial strain of —0.25%. Magnitude
of the polarization in monoclinic phase grows with
tensile strain. Along this transition as a function
of strain, polarization vector essentially rotates in
xz-plane. Most materials exhibit anomalously large
response properties. BTO:STO superlattices exhibit
a very large dielectric response near the epitaxial
strain of —0.25%, arising from one of its TO phonon
with z-polarization that becomes soft.

1.5

3.2. One-dimensional Nanostructures: BC4)N
nano-tubes

Among all the known nano-structures, carbon nano-
tubes (CNT) have attracted a great deal of attention
and research activities?’. CNTs have extraordinary
mechanical stiffness and their electronic properties
sensitively depend on the chirality (i.e. their
structure). CNTs are labeled with integer chirality
indices (n, m) which specify the lattice vector of
graphene lattice along which graphene is rolled
to form the nano-tube. CNTs can be metallic
as well as semiconducting depending on their
chirality: CNTs with integer value of (n—m)/3
are metallic and the rest are semiconducting. While
these properties make CNTs very interesting and
useful in applications, there is no method as of now
that allows separation of CNTs into metallic and
semiconducting types®’.
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p
Figure 4. A junction between (6,6) boron
nitride and carbon nano-tubes.

Boron nitride nanotubes (BNNTs), while
structurally similar to CNTs, are all insulating due
to partial ionic nature of B and N. Doping BNNTs,
for example with carbon, can help in making them
semi-conducting: carbon substitution at B and N
sites make them n-type and p-type semiconductors
respectively. However, the effective mass of the
carriers still remains very high due to relatively flat
electronic bands in the gap arising from dopants.
Similarly, doping of CNTs with B and N allows
tuning of their electronic structure near the Fermi
level?8.

Taking these ideas further, CNR Rao et al?’
synthesized nano-tubes that are sort-of solutions of
CNTs and BNNTs with 2:1 proportion. Interestingly,
the resulting BC4N nano-tubes of (6, 6) chirality,
where the host (6,6) CNTs are metallic, exhibited
insulating behavior. This puzzling experimental
observation was complemented with our first-
principles calculations. Our calculations showed
that the electronic structure of BC4N nano-tubes
is very sensitive to the way in which B and N
decorate (or distribute on) the CNT lattice. We
considered to different configurations: (a) pseudo-
random distribution of B and N, (b) configurations
with a pair of C—C atoms in each hexagonal ring
replaced with B—-N, (c) CNT with BN3 and NB;
local structures randomly distributed, and (d)
CNT with BN3 and NBj local structures linked
with a B-N bond. Our simulations singled out the
configuration (d) as the lowest energy configuration
and also showed that this was the only configuration
exhibiting insulating electronic properties. Thus,
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our calculations not only complemented the
experiments by determining a detailed structure of
BC4N nano-tubes, but also helped in understanding
its link with electronic properties.

Our results for energetics of B and N distribution
on a CNT revealed that there is a good probability
that BNNT and CNT may phase-separate. This
allows us to predict a stable junction between BNNT
and CNT of identical chirality (see Fig. 4). This
junction or a one-dimensional hetero-structure (for
(6,6) chirality) is an insulator-metal junction that
can be exploited in ultra high frequency diode-based
device applications.

3.3. Mechanical Behavior of Nano-structured
Mg-Zn-Y alloys

Bulk materials with nano-scale structure, for
example consisting of nano-sized (<100 nm)
grains, often exhibit a very high mechanical
strength®. Such materials, have a large fraction
of atoms at the interfaces between grains. Due to
different structural geometry and chemistry, this
can qualitatively change their properties at different
scales. Recently, addition of small amount of Y
and Zn was reported to have improved strength of
Mg and also incorporate creep resistance at high
temperatures®!. The origin of these interesting
properties was linked with nano-scale structure
of these alloys—long periodic structures. While
mechanical behavior of a material involves processes
at different, particularly longer length scales, direct
understanding of such phenomena from first-
principles is really ambitious. While classical MD
simulations®® have proven to be very effective in
assessing role of different mechanisms responsible
for unique mechanical behavior of nano-structured
materials, such methods fail to capture the effects
of detailed chemistry. We used first-principles
calculations to confirm the stability of long-
periodic structures and evaluate their implications
to mechanical behavior through phenomenological
concepts such as stacking faults.

Outcome of first-principles calculations can
be connected to mechanical behavior, even to
brittleness versus ductility, through the concepts of
(a) cleavage (or surface) energy, which is the energy
required to separate away its two halves separated by
a crystallographic plane or a grain boundary, and
(b) generalized stacking fault energy surface, which
is the energy required to slide a half of a crystal
with respect to another. While the former relates to
energy release rate required for crack propagation
during brittle failure (Griffith criterion), the minima
and maxima of the latter relate to intrinsic and
unstable stacking fault energies (Rice theory).

Our simulations® of different polytypes of
Mg revealed that the 6-layer structure of Mg is
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remarkably stable, and only about 50 meV/atom
higher in energy than the hcp structure. Origin of
this could be traced through topological analysis
of electron density to the similarity in bonding of
2-layer and 6-layer structures and finally to the close-
packed nature of the two. Addition of small amount
(2%) Y to Mg results in the l-layer structure lower
in energy than the hcp structure. Through extensive
stacking fault energy calculations, we found that
energy of the stacking fault in the basal plane reduces
dramatically with addition of Zn, and showed that
6-layer structure should exhibit activation of the
slip on prismatic plane. These findings should be
useful in understanding deformation mechanisms
in these nano-structured alloys of Mg.

4. Summary

After a brief presentation of basic principles
of the computational methods in materials
science, we illustrated their impact in three
different areas in nano-science through review of
earlier works. We showed how these calculations
complement experimental efforts in synthesis
and characterization of novel nano-structures
such as BC4N nano-tubes. Secondly, we reviewed
computational modeling and prediction of
temperature strain phase diagram of ultra-thin
epitaxial films of BaTiO3 that would help in design
of devices based on epitaxial films of oxides. Finally,
we showed how these calculations can be used within
simple phenomenological theories to connect with
complex materials properties relevant to mechanical
behavior, through an example of nano-structured
Mg alloys.

There are certain limitations of the current
methods in computational materials science
particularly in view of their applications to
nano-scale materials. Most of the first-principles
codes*3> employ periodic boundary conditions,
which are not quite suitable for low-dimensional
systems such as nano-structures. This poses a
particularly tricky problem while simulating charged
nano-structures, for example doped graphene. It
would be ideal to have a first-principles code that
uses mixed boundary conditions, For example,
a code that treats d-dimensions with periodic
boundary conditions and 3—d-dimensions with
open boundary conditions. Secondly, determination
of properties that involve electronic excitations
is not quite straight-forward and readily feasible.
Another limitation of the existing methods lies in
applications to dynamical quantum phenomena
including transport of electrons through nano-
structures. At present, theories and calculations
based on simple model Hamiltonian have been used
in understanding these phenomena, but studies

U.V. Waghmare

with accurate description of realistic electrodes
and interfaces are still limited. While approaches
based on time-dependent density functional theory
have been implemented to tackle some of these
issues, there still is room for developing innovative
methods. Finally, multi-scale simulation methods
(which employ different methodologies for different
scales in the same simulation) are expected to have
a great impact in biological as well as materials
sciences at all scales. In these methods, there is still
need to develop a clear formulation that allows use
of a combination of quantum and classical analysis
in spatially interfacing domains.
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