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Abstract

s of materials, But conveying becomes difficult

Oscillating conveyors are used in industries o convey a v
when it is required to convey up an incline, to convey rolling particles or to convey the material with low
coefficient of friction. A new idea of using o trough with saw-tonth kke serrations has been proposed by
Konnur and Parameswaran 1o overcome this difficulty. The present paper suggests a simplitied method of
determining the dimensions of serrations. The operating parameters wnder which @ serrated trough gives better
performance than a comventiomd plape troagh are abo indicated.
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1. Introduction

Oscillating conveyors are commonly used in industries for conveying a variety of bulk
materials such as dry chemical powders, ores, sand, food grains, ete. Barlier studies b2
have shown that these conveyors pose diffieulties and limitations while conveying rolling
particles such as stcel bails, while conveying up an incling and while conveying materials
with low coefficient of friction.

These difficulties are due to excessive backward relative displacement of the varticles.
An earlier study” conducted by the authors has shown a method of overcoming such
difficulties by using a new type of trough with saw-tooth like serrations which help in
preventing the backward sliding or rolling of the particles. A generalized analysis of
motion of a reiling particle by simulating iis motion on a digital computer has also been
presented in that study.

In the present paper a simplificd method of estimating the dimensions of serrations is
described. Only pure rolling and pure sliding types of motion are considered. However,
there is a possibility of combined stiding and rowation during the forward relative
displacement of the particle. Bui in order to simplify the estimation this case can be
considered similar to the one of pure sliding motion. The ervor tnvolved will be on the
safer side and gives a conservative cstimate of the serration step length.

The size of the particle affects the convevability. A simple analysis shows how to take
into account the size of the particle while deciding the dimensions of the serration.

*VFilst presented at the Natiosnial Conference on Machines and Mechonisms held at the Indian Institute of
Science, Bangalore, during Fobruary 1921, 1985,
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The performance curves for plane and serrated troughs are superimposed in order to
get an idea of the regions of operating parameters under which a serrated trough can be
preferred to a plane trough.

2. Analysis of metion of a particle

For the purpose of analysis a spherical particle is considered and only the sliding and
olling frictions are taken into account. It is assumed that the particle is small in
comparison with the size of the serration, the particle does not leave the contact with the
trough surface until it reaches the end of the serration step and all the impacts between
the particles and the walls of the serration are fully plastic.

2.1. Equations of motion

A schematic diagram of a rolling particle resting on a sinusoidally oscillating trough is
shown in fig. 1. The motion of the trough is governed by

e
~ e e

= §in 7 oS « @1
¥=2=ginr cos « 2.2)
where 7= .

Considering the free body diagram of the particle the frllowing equations can be
writgen

F=m{gsin 8’ + %) (2.3)
N=m(g cos B+ y) (2.4)
1b=— F? kN (@5

g N
where = am o =mass moment of inertia and

a= 2 constant depending upon the geometry of the particle.
2.2, Pure rolling of the particle

‘When the p‘articl_e'is in contact with the short side of the serration the relative backward
movement is positively prevented and the particle sticks to the trough until either rolling
ot sliding o1 both are initiated in the forward direction. The rolling begins at the instant

T=TRL
when ~m(gsin §' +X):%K N

g sin B’ +2—kcos B
which gives sin 7 =-5_ D " 2.6)

s 2k
cos a’ + =Z sin o
D o
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A raling particle

€ -Tilting edge

¢ Backward tilting of the particle.

¢ i scillating serrated trough.
FiG. 1. Conveyance of a rolling particic on a sinusoidally oscillating serr 2
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Eliminating F from equations (2.3) and (2.5) and re-arranging the terms, the equation of
motion can be wriiten as

5 =d. + B, sinT @
1 g o 2k ,)
= + = 2,
where A, T <;;;z) (Sll‘l B cos 8 2.8)
2k
and  By=-—— 1+ (TDﬁ sin @' —a cos « ) (2.9

This motion will end in two possible ways, viz: (1) from pure rolling to combined
rotation and slipping and (2} stoppage of rolling leading to zero relative velacity.

The first type of termination of pure rolling occurs at the nstant of time 725 when

[F|=pN
. 5 . g sin 8+ Acos B
ich sip e e 2.10
which gives sin 7rs ro? cos o+ Asin o @10
o 5 (2k
where A= (1+a)p, —sgn @ 3 2.11)
When the second type of termination occurs at 7= 749, ¥ =X = X.
Solving equation (2.7) with the end conditions at 7=7g, ¥=X and 7z, ¥=X
COS TRy COS Tr| .
Tpp = 4 . 2.12
R i e sin TRI @)

From this equation g, can be obtained.
If pg is very high, vz, > 75

and the particle will have only pure rolling until it terminates. In this condition,
maximum reladve displacement occurs during the interval A, = 74, — Tri-

Integrating equation (2.7) twice with the initial condition at 7g;, ¥ = X and
¥= X and simplifying,

{1+ a) (% max <

— sin g1 + A, €OS TRy — SIN TRy (2.13)
% .
=2 gin @' +cos @ /
D
Y+ a@) (£ )max
Representing -—ﬁﬁh( +4 &)

sin &’ +cos o

SR

vy 2Ry

1 re? cos @’ + (—D») sin a

and —2e =2 \YS L
sinTg g £

sin B’ + (Zk‘) cos g’
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Fi6. 2. Influence of & on the distance travelled by a volling partiche on the long side of serration during
jumpless motion.

The values of 5 can be computed by taking i set of vajues of £ from equation (2.13). The
relationship between m and ¢is shows in fig. 2. The ciupirical equation for this curve can
be

= — 1966973 + 2.038602€ — 0, 2321396% + 0.0096117£°. (2.14)

2.3. Pure sliding of the particle

This motion is similar to that of a non-rolling particle and occurs if the value of k is large,
such that

iy @2.15)

s @ + Jeg SID @’
Considering only the equations (2.3) and (2.4) and substituting 7= uN the equation of
motion during sliding can be written as

f=A+Bsinr (2.16)



218 V. S. KONNUR AND M. A. PARAMESWARAN

where A= —r%i [sin B’ + p cos B] 2.17)
and B=psin o', (2.18)

Equation (2.16) is of the same form as that of equation (2.7). Also thf: end conditions at
=1, %=X, i= X and at 7= 1, ¥= X are similar to those ct)nanered Aunder pure
rolling type of motion. Therefore the equation for maximum rclatlyc displacement
(8, ) rmas OCCUrting during the interval A, = 7, — 7, is also similar to equation (2.13) and by
representing

1 _refcosaltpsine
sin Ty g mcos B +sin g
()Er)max N

and — e =

usin o +cos «

the relationship between & and n' is given by the same curve as shown in fig: 2 and the
same empirical relationship as given by equation (2.14) can be used by replacing £and n

by £ and 3’ respectively.

2.4. Combined sliding and rotation

The particle will move with combined rotation and sliding if 7ry > 75> 7r1-

Tabfe 1

Correction factors C for maximum relative displace-
meni

D=3mm, r=455mm, «a=40°

k=0.05 mm, e=10°

B Frequency p=015 p=02 p=025 w=03 p=035

cycles
per min.
0 480 10569 1.1179  1.1880 1.26 1.35
0 S0 10382 10927 11394 1.213 128
0 50 10250 10734 11200 1.176 1.228
0 540 10147 1.0564  1.096 1.14 1.187
0 480 10618 11073 1.162 1.223 1.3
10 500 10519 1.0929 1134 1.183 1.238
0 520 10443 1.0795 1.115 11535 1,197
0 540 1.036 1.067 1.098 1.129 1,165
20 480 1.002 1.024 10663 1.11 1.1775
20 500 1.008 1.034 10615 1.094 1.1342
A 520 1.019 1.038 1.0602  1.083 1.1121

0 540 1.024 1.039 1.0597  1.078 1.0085
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The exact analysis of motion can be done by simulating the motion on a computer’,
However, in order to simplify the design procedure an assumption can be made that the
major portion of forward relative displacenient is due o sliding. With this assurmption
(F)max AR be calculated from

Fdmax = Cn' L sin @' +cos w']

where C is the correction factor.

A set of values of C obtained by conducting cxact analysis for a typical set of operating
conditions is given in Table 1.

For smaller values of ., higher values of B and frequencies the correction factor is very
small. Therefore, in such cases even if = [ is taken, one would estimate a smaller and
hence a conservative value of the step length of serration.

The particles of most of the commercial bulk materials are not exactly spherical and
the values of k are quite large. Due to this the sliding motion will be predominant during
their relative displacement. Also in the case of materials with smaller coefficient of
friction the sliding type of motion predominates.

Thus, estimating the dimensions of serrations by assuming pure sliding, though
approximate, can be justificd.

3. Influence of the size of the particle

When the particle sizc in comparison with that of the serration increases beyond a certain
limit, the effectiveness of the serrated trough vanishes. This is because of the probability
of backward tilting of the rolling particic and it tendency to climb the edge of the short
side of the serration. There are two cireumstances during which a rolling particle would
experience backward tilting over the edge of the serration. These are: (i) during the
positive acceleration of the trough, and (i) during the impact of the particle with the
short side of the serration when the particle relatively rolls or slides down along the long
side of the serration.

3.1 Tiling during the acceleration of the trough

Referring to fig. 1c and taking moments about the tilting edge E, the tilting will be
possible if

(%)— h) (g sin B’ + ra? cos a') = E1(g cos B +ro” sin a') (3.1)
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Simplifying and rearranging the terms the tilting will be possible if

2h o i
e B2
PN
2
sin g + 22 s o
) g
where 2 = —————p———
vt
cos B +—-sin o'
g

3.2. Climbing over the edge due to impact

For the purpose of estimation the relative velocity at the time of impact is taken as the
velocity of impact. This assumption is justificd since the trough mass is very large
compared to that of the particle. Also it is assumed that the particle will not rebound
after impact, in order to simplify the problem.

The particle tends to rotate about the edge E during impact. Applying the principle of
impulse and momentum to the particle the following equation can be written.

18, + mv, (gﬂh) + O:I(?g+mvlvzp (3.3)

v =X - X1 =relative velocity at the time of impact. Since the particle rotates
about E,

=20

v

p .
2
Substituting in equation (3.3)

Vo= [1 - 13%’1‘)] Vi (3.4

If the particle has to go backwards it has to climb on the edge so that its centre of
gravity rises to a height k.. Assuming that the particle falls on the back step as soon as it
reachgs a height b, even if the velocity of its centre of gravity reduces to zero, and
applying the principle of conservation of energy backward motion will occur if

Yamvd + %2 193 = mgh, 3.5
which gives
V32 28he (3.6

1+a
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Table II

Compuated values Q2D for (he con-
vevance of steel balis

am 4P, =015, F=4.55 mm,

£=0.05 mm, D=3 mm.

{20/ DY Tor dilferemt
fre

&°) B() 8 913 it
4} 071 0.35 0,758
5 0.82 0.62 057
10 0.96 .56 .54
10 15 L3 1.01 .63
20 1.1 b1 KL

25 1.13 115 1.1
30 1.13 116 10
0 0.81 o0 .42
5 0.9 1X5] 073
10 0y 1 uny

20 15 1.01 105 Lol
20 1.04 1608 o7

25 1.06 i1 1.1l
30 1.67 113 113

From geometrical relationship

hc=§D {1 —sin <B/ +sin! {1~ gli/} ) | 3.7

VD

S“_bSti}uting for v; and A, in cquation (3.6) and simplifying the condition for back
climbing can be written as

. 1
]—sm( ! 4 gin”! < - @))
25 gD £ D

1+a 2h 2
( —[3'(l +a))

v

(3.8)

The results of astudy conducted by taking some typical sets of operating conditions to
ca'lcul_ate the minimum ratio of 24/1> below which the particle can travel backwards by
dimbing over the edge are given in Table II.

4. Designing the serrated trough

The_désigﬂ C({nSists of determination of the dimensions S,  and ¢ of the serrations. Since
£ ‘S_H!V(ﬂved in the equations of the relative displacement it has to be initially assumed.
While § is determined from the (£,)nax values, i depends upon the size D of the particle.
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4.1. Determination of S

The conveyance will occur if during the forward relative displacement the particle travels
up to or beyond the length of step S and falls on the next step. Therefore the condition
for conveyance will be

$= (%) max

ie. S r( max -

4.2. Determination of h
Once S is determined after assuming a suitable value of &,
h=Stan ¢.

This value of h has to be such that

B ()
D D in-

Some typical values of (24/D)n, given in Table II will help to estimate a suitable value
under a given set of operating conditions.

5. A comparison between a serrated trough and a plane trough

For the purpose of comparison of the performance of a serrated trough with that of a
plane trough the particle is considered to be non-rolling and all the parameters are
expressed in non-dimensional groups. However, for the serrated trough, typical values of
u and £ are taken for the study. Designating the non-dimensional groups as:

pgcos B
17T 3
FTCOS «
t
p,- B
u
Py=ptan o
(Vz) £ for pl t h
= T
RIPL™ oo plane troug
X
and (Ve)sr= ————— for serrated trough.
Cos @ COs &

1t can be shown® that
(V&)pL=f(P1, P2, P3)
and (Ve)sr=&(Py, P2, P, p, £).
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Non - dimensional parameter

FiG. 3. Conveying velocity of a non-rolling particle on a serrated trough comp:
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¥t can be shown that the performance of the plane trough reaches its best when Py = P,
for any g and o', Therefore, it is possible to compare the perfonmance of serrated trough
with the best performance of a plane trough by taking Py= Fj.

Taking a set of Py, P, p and & and using the condition P, = P, the values of (Vg)g,
and (Vg)p, are computed and the results are plotted in tig. 3. These figures show the
regions of operating conditions which indicate the superiority of one type of trough over
the other.

6. Conclusions

The method of estimating the dimensions of the serration is quite simple. Both for purely
rolling as well as purely sliding types of motion the same empirical equation as given in
(2.14) can be used by using the appropriate variables (i.e. £ and n or £’ and n") depending
on the type of motion. For higher values of 8 and lower values of p (say less than 0.25)
the -estimation of (¥, )}qmax can be made by assuming pure sliding type of motion even in the
case of combined sliding and rotation, without introducing serious errors. Even if the
error i inttoduced it gives a conservaiive estimation of the size of the serration. The
particle. size plays an important role in deciding the height 4 of the serration. Therefore,
the value of (24/D)uy, should be propetly selected. It is preferable’to assume slightly
higher values for (2A/D)y, in order to be on the safer side. Figure 3 shows that for
smaller values of P; and larger values of P, the serrated trough gives higher conveying
velocity than that obtainable from a plane trough.

Nomenclature

a multiplying factor
non-dimensional factors
non-dimensional factors
diameter of the particle
a force acting in the direction parallel to the sliding surface
tangential force which the trough tries to impose on the particle
acceleration due to gravity
depth of serration
mass moment of inertia of the particle about an axis passing through its
centre of gravity
lever arm. of rolling friction
mass of the particle
a force acting in the direction normal to the sliding surface
. P, P3 non-dimensional parameters
amplitede of oscillation of the trough
length of the long side of the serration
tirne
R non-dimensional average conveying velocity

B R
CES
2

a

N iy

nZIx

<™ @
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displacement ot the centre of gravity of a particle paralle! to the sliding

x
surface

% displacement of the centre of gravity of a particle with respect to the trough
surface along x-axis

X displacement of the trough in the direction paraliel to she sliding surface

Y displacement of the trough in the direction normal to fhe sliding surface

@ throw angle

o« (a—¢)

B angle between the trough surface and the horizontal

3 (8 )

[ angle of serration

[ angle of rotation of the particle

M kinetic coefficient of friction

e static coefficient of friction

£ non-dimensional factors

T non-dimensional time

o circular frequency of the trough

References

1. SarAGUCHI, K. Vibrating conveyaace of granular materials, Budl. JSME, 1977, 20(143),

5545600
2. Havasur, M., Behaviour of a particle bed in the feld of vibration—V, Powder
SuzUKI, A. AND Technol., 1972, 6(6), 3
Tanaxa, T.
3. KONNUR, V. §. AND The motion of a particte on a sinusoidally oscillating serrated trough,

PARAMESWARAN, M. A.  Fordern Heben, 1982, 32(12), 954-964 (in German).

kel

KONNUR, V. S. AND Motion of a particle on an inclined sinusoidally oscillating conveyor,
PARAMESWARAN, M. A. Fordern Heben, 1982, 322), 88-96 (in German),





