
Oscillating conveyors are comn?on!y useti in iiidastrie~ for convrying a variety of hulk 
materials such as dry chcmic:~l piw~ti~u~s., tirss, sand. food p i n s ,  etc. Earlier studies " 2  

have shown that tlicsc C O I I \ ~ C ~ O I . : ~  pose difiicultics imd Iimiti!iions whiie conveying rolling 
particles such as stcel h:riis, while come~inj:  up an incli~e and while co~iveying materials 
with low coefficient of Irictioi: 

These difficulties :Ire duc to cxn:ssivc hackw;rd rc!:rtivc displacement of the particles. 
An earlier study%c:.ind~ct~d Ry tlic autiicws has shown :I method cri overcoming such 
difficulties by iisiaig :I new type o f  :scmgh with saw-tooth like sen-ations which helw in 
preventing the hackward sliding rir rolling of the particles. A gcxcra!ized analysis of 
malion of a rolling particle hy simulating its niotim on a digital computer has also been 
presented in that study. 

In thc present paper ;I sisnp1iiic.d method of estimating the dimensions of serrations is 
described. Only pure n~lliirg ;.mu pure sliding types of nwtion are considered. However, 
there is a possibility of combined sliding and rotation dirring the forward relative 
displacement of the partick. Bui in :,rdri. to simplify the estimation this case can be 
considered similar to the one of p r c :  sliding miition. T1-lc error rnvolved will be on the 
safer side and gives a conservalivc esrirnatc of the serration step length. 

The size of the particle affects the conceyabi1ify. A simple analysis shows how to take 
into account the size or the particle while deciding the dimensims of the serration. 



The  performance curves for plane and serrated Irougbs are superimposed in order to 
get an idea of the regions of operating parameters under which a serrated trough can be 
prcfeired to a plane trough. 

2. Analysis of motion of a particle 

For the purpose of analysis a spherical particle is considered and only the sliding and 
rolling frictions are taken into account. It is assumed that thc particle is small in 
comparison with the sire of the serration, ti?c particle does not lcavc the contact with the 
trough surface until it reaches the end of the serration step and all the impacts between 
the particles and the wails of the serration are fully plastic. 

2.1. Equations uf motiorr 

A schematic diagram of a r o h g  particle resting on a sinusoidally oscillating trough is 
shown in fig. 1 .  The motion of the trough is governed by 

- V 
Y='=ain T cos u (2.2) 

wherz T =  w f .  

Considering the free hody diagram of the particle the fnliowing equations can be 
writeen 

F = m j g s i n p ' + x )  (2.3) 

N = m ( g  cos P' + y) (2.4) 
l g = - ~ D  - k ~  

2 (2.5) 

whcre I= am = m i s s  moment of inertid and 
4 

a =  a constant depending upon the geometry of the particle. 

2.2. Pure roiiiq of the particle 

When the particle is in contact with the short side of the serration the relative backward 
movement is positively prevented and the particle sticks to the trough until either rolling 
o r  sliding or both are initiated in the forward direction. 'The rolling begins at the instant 

when - r n ( g s i n p ' + m ) = ~ ~  
D 
sin + cos P' 

which gives sin TR, = D 
rw2 

cos a' + sin a' 
D 
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Eliminating Ffrorn equations (2.3) and (2.5) and re-arranging the terms. the equationof 
motiotl can be written as 

2 -A, + B, sin r (2.7) 

where A, = - (4) (rio p' + cos p' 
I + a  \ro (2.8) 

This motion will end in two possible ways, viz: (1) from pure rotling to combined 
rotation and slipping and (2) stoppage of rolling leading to zero relative velocity. 

The first type of termination of pure rolling ocmn a1 the instant of timc 3, when 

IF1 = p.,Ar 

g sin p' + A  cos 6' which gives sin Ti(s= - 
,2 GOS a' + A  sin a' 

where A = (1 + a)  & -sgn 0 (2.11) 

When the second type of termination occurs ai T =  !rR2. iC =kc =x. 
Solving cqualion (2.7) with the end conditions at T=TR,.  .?=z and T R ~ ,  ?=% 

From this equation can bc obtained 

and the particle will have only pure rolling until it terminates. In this condition, 
maximum rel:itive dispiaccment occurs during the interval A, = T ~ ?  - r ~ ,  

- 
Integrating equatioll (2.7) twice with the initial condition at rRi ,  1 = and 

P = X and simplifying, 



2.3. Pnre sliding of the particle 

This motion is similar to that of ;I non-rolling par~iclc and occurs if the value of k is large, 
such tha t  

From the condition of relative n:st t h z  ft)rwmd sliding motion begins at ~ $ 1 ,  glven by 

Considering only thc eclualicpns (2.3) and (2.4) and substituting F= pN the equation of 
motion during sliding can bc writton as 

? = A + R s i n ~  (2,.16) 
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Equation (2$) is of - the same form as thalof equation (2.7). Also tile end condittous at 
7= T?,, k =X, P =  X and at 7 =  T'~, i = K  are similar to those considered undcr pure 
rolling type of motion. Therefore the equation for maximum relative displacement 
(i,),,,,,,occurring during the inter\,al4 = ?vz - r,[ i$ also simila~ to equallon (2.13) and by 
representing 

1 - ro2 cos a' + + sin a' =5' 
sin rSl g p cos P' + sin 6' 

(%)mar - = v' and 
p sin rul + cos a' 

the relationship between 5' and 7' is given by the same curve as shown in fig. 2 and the 
same empirical relationship as given by equation (2.14) can be used by replacing and 
by 6 and 9' respectively. 

2.4. Cornblned sliding and rotation 

The particle will move with combined rotation and sliding if TRZ > T K . ~  > r ~ 1  

Table I 
Correction factors C for maximum relative displace- 
ment 
D=3rnm. r = 4 5 5 m m ,  a=40U, 
k = O U S  mm, ~=10". 

p Frcqucncy p=  0.15 =o.Z p = I1 25 =0.3 ir = 0.35 
cy"lr\ 
per rnm 



A set of values of C obtained h y  conducting enact siwlysis for  a typical sct of operating 
conditions is given in Table I .  

For smaller valucs of p, higher valucs of'p end frr.c;uencies thc correction factor is very 
small. Therefore, in such cilscl; even if ('- 1 is taken, trnc would estlmnte a smaller and 
hence a conservative value o f  thc >rep length of serration. 

Tne particles of most of the cornrncrcial hulk materi:~ls arc not exnctly spherical and 
the values of k are quite large. Doe to t h ~ s  the sliding molion will he predominant during 
their relative displacement. Also in thc case of materials with snialler coefficient of 
friction the sliding hype of motion predominiites. 

Thus, estimating the din~ensions of' serrations by assuming pure sliding, though 
approximate, can be justified. 

3. Influence of the skire uf the particle 

When the particle sizc in conrparison with that of the serration increases beyond a certain 
limit, the effectiveness of the sormtcd trough vanishes. This is because of the probability 
of backward tilting of the rollmg p;~rticlc and it; tendency to climb the edge of the sho~? 
side of the serration. There ;ire two circumstimces during which a rolling particle would 
experience backward tilting over the edge oC the serration. These are: (i) during the 
positive acceleration of the trough, and (ii) during the impact of the particle with the 
short side of the serration when the particle ~clatively rolls or slides down along the long 
side of the serration. 

3.1. Tilting during the accrleralion of the trough 

Referring to fig. l c  and taking moments shout the tilting edge E, the tilting will be 
possible if 

where E, = f - ( I  - w)' 
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Simpiifying and rearranging the terms the tilting will be possibie if 

raZ 
s in? '+-  cosn' 

uhere r = h? - 
rwZ 

LOS p' +-sm a' 
g 

3.2. Climbing over the edge due to impact 

For the purpose of estimation the relaiive velocity at the time of impact is taken as the 
velocity of impact. This assumption is justified since the trough mass is very large 
compared to that of the particle. Also it is assumed that thc particle will not rebound 
a£ter mapact, in order to aimplily the problem. 

Thepart~cle tends to rotate about the edge E during impact. Applying the principle of 
impulse and momentum to the pauticle the idlowing equation can be written. 

v ~ = i l -  XI =relaiivz velocity at the time of impact. Since the particle rotates 
about E, 

Substituting in equation (3.3) 

If the particle has lo go backwards it has to climb on the edge so that its centre of 
gravity rises to a height h,. Assuming that the particle falls on the back step as soon as it 
reaches a height h, even if the velocity of its centre of gravity reduces to zero, and 
applying the principle of conservation of energy backward motion will occur if 



Table 11 
~ ~ ~ ~ ~ t ~ d  values (Zhld)),,,,,, for the con- 
,yqee of steel balls 
.=1(p. &=O.L5. r - J  55 m111, 

From geometrical relationship 

substituting for v2 and h.. in equ;~tion (3.6) and sinrplifying the condition for back 
climbing can be written as 

The results of a study conducted by taking some typical sets of operating conditions to 
calculate the minimum ratio of 2h/D below which the particle can travel backwards by 
climbing over the edge are given in Table 11. 

4. Designing the serrated krougb 

The design consists of determination of the dimr:nsions S, h and E of the serrations. Since 
involved in the equations of the relative displacement it has to be initially assumed. 

While S is determined from the (f,),,, values, h depends upon the size D of the particle. 
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4.1. Determination of S 

The conveyance will occur if during the forward reialive displacement the particle travels 
up to o r  beyond the length of step S and hils on :he next step. Therefore the condition 
for  conveyance will bc 

4.2. Determination of h 

Once 7 is determined after assuming a suitable value of E. 

h= S tan E. 

This value of h has t o  be such that 

Some typical, values of (2h/D),,, given in Table I1 will heip to  estimate a suitable value 
under a givcn set of operating conditions. 

5. A comparison between a serrated trough and a plane trough 

For the purpose of comparison of the performance of a serrated trough with that of a 
plane trough the particle is considered to be non-rolling and all the parameters are 
expressed in non-dimcosional groups. Iiowever, for the serrated trough, typical values of 
fi and s are taken for the study. Deqignating the non-dimensional groups as: 

f ig  cos P 
P, = -r 

170- cos a 

pz = tan! 
P 

( V R ) P L = ~  for plane trough 
cos a 

It can be shown4 that 
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I t  can be shown that the performance of the plane trough reaches its best when PI = p, 
for any p and d. Therefore, it is possible to compare she perlormmce of serrated trough 
with the best performance of a plane trough by taking P I = & .  

Taking a set of P, , Pz ,  p and E and using the condition PI = P,, the values of (V,),, 
and (VR)PL are computed and the results are plotted in fig. 3. These figures show the 
regions of operating condition$ which indicate the superiority of one type of troughover 
the other. 

6. Conclusions 

The method of cstimating the dimensions of the serration is quite simple. Both for purely 
rolling as  well as purely sliding types of motion the same empirical equation as given in 
(2.14) can be uscd by using the appropriatevariables (i.e. Sand 11 or E' and 7') depending 
on the type of motion. For higher values of P and lower values of f i  (say less than 0.25) 
the estimation of (i,),,, can be made by asmning pure sliding type of motion even in the 
case of combined sliding and rotation, wirhouk introducing serious errors. Even if the 
error is int~oduced it gives a conservative estimation of the size of the serration. The 
particle size plays an important role in deciding the height h of the serration. Therefore, 
the value of (2hlD), ,  should be properly selected. It is preferable'to assume slightly 
higher values for (2h/D),,,, in order lo be on the safcr side. Figure 3 shows that for 
smaller values of PI and larger values of F2 the serrated trough gives higher conveying 
velocity than that obtainable from a plane trough. 

Nomenclature 

a multiplying factor 
non-dimensional factors 
non-dunensional factors 
diameter of the particle 
a force acting in the direction parallel to the sliding surEace 
tangential force which the trough tries to impose on the particle 
acceleration due to gravity 
depth of serration 
mass moment of inertia of the particle about an axis passing through its 
centre of gravity 
lever ann of rolling friction 
mass of the particle 
a force acting in the direction normal to the sliding surface 

P3 non-dimensional parameters 
amplitude of oscillation of the trough 
length of the long side of the senation 
time 
non-dimensional average conveying velocity 
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displacement ol the ccntre of gravity of a particle parallel to the sliding 
surface 
displacement of the centre of gravity of a pnrticie with respect to the trough 
surface along x-:)xis 
displacement of the tnmgh in thc direction parallel to ihc sliding surface 
displacement of the trough in the direction normal to rtlc sliding surface 
throw angle 
(a - c )  
angle between the trough surfucc and the horizontal 
( P  4- E )  
angle of serration 
angle of rotation of the particle 
kinetic coefficient ol' friction 
static coefficient of friction 
non-dimensional factors 
non-dimensional time 
circular freqncncy of thc trough 
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