
Abstract 

Graph theory is used and an nth order syrnmc:iic mntriu h:!aut'l on 'dtrtancc' is defincd to rcprescni a slrnplc and 
multiplc jointed d i n k  hine~mtic chain. f3;iscd on F:tddecv--Lcverricr nrethod n computer plogmm is uscd for 
generating the coetfic~ent o! ilic cha~actariatic pulynomiul of the m:!tnx ilasoci:itcd with the kinemlts cham. A 
comparison ofcharncteristic polynimiala of the m.:lnces dcteits thc ~wrnorphic cham,. A method is ~llustrated 
by application tu single and twi, degrrs of Irccrlotn liokogv'. 
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Recognition and identification of equivalence of kinematic chains is generally done 
either by graphical methods based on visual inspection of various forms of simplified 
schematic diagrams or Iry using rn;lthernatical techniqucs based on the theory of 
However even to-date a conclusive and easily applied test, for possible isomorphism . 
(equivalent topology) o i  two kinematic chains, is lacking. 

Using graph theory, Uicker and Kaicu" have represented a simple jointed kinematic 
chain by an nth order symmetric zero-one adjacency matrix. When two links are 
connected it is indicated by one in the matrix while zero indicates that the links are not 
connected with each other. Later, Mruthyunjaya and ~ a ~ h a v a n ' ~  have presented a 
generalized matrix notation to reprezcnt simple as well as multiple-jointed kinematic 
chains. According to this notation the value of the matrix element is taken equal to the 
number of jo~nts if two links are connected with each other and taken as zero if 
otherwise. The characteristic polynomial of the above matrices is expected to be of use in 
the detection of isomorphism. But in the ~iteratnre'~ examples are known where 
non-isomorphic graphs have identical characteristic polynomials. Tlius the comparison of 
characteristic polynomials of adjacency matrices do not lead to a fool-proof method in 
detecting possible isomorphism. Here it is proposed that the characteristic polynomial of 
distance matrix can serve as a reliable invariant for both simple- as well as 
multiple-jointed kinematic chains. 

' Fint presented at the Nationill ~ ~ ~ f ~ ~ ~ . ~ ~ ~  on bfachines and Mechanisms held at the Indian Institute of 
Science, Bangalore, during February l't21, 1985. 
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2. Distance matrix representation 

In this matrii representation the elements of the matrix are taken equal to the distance 
i.e. minimum number of edges between the vertices of the graph'? Figures l a  and b 
represent respectively a four-bar chain and its graph in which the verttces correspond to 
links and the edges indicate the connection between vertices. The distance matrix A for 
the graph (fig. l(b)), will be as follows. 

I t  may be noted that similar to adjacency matrix the distance matrix also comes out to be 
a square symmetric one. 

3. Characteristic polynomial computation 

Uicker and Raicu" have presented a recursive method for the calculation of the 
coefficients of characteristic polynomial. Later, Mruthyunjaya and ~ a ~ h a v a n "  have 
presented an alternative method based on Bocher's forn~dae  having the advantage-of 
simpler calculation. In this method, powers of matnx are used and hence is limited to a 
low order matrix. The reason for this is that the raising matrices to  various powers, in 
addition to requiring a great number of calculations, in many cases result in loss of 
accuracy as the elements of the new matrices require more significant figures15. Here 
Faddeev-Leverrier method16 is presented which is simple and an efficient tcchnique for 
generating the polynomial coefficients when the order of the matrix is large. 

Let the characteristic polynomial of the matrix A be represented by (-1)" 
( A " - ~ , A " - ' - ~ ~  An-z-p3A'-3 . . . p,) = 0 where the factor (- 1)" is used merely to 
give the terms of the polynomial the same signs that they would have if the polynomial 
were generated by expanding a determinant. The polynomial coefficients pk(k = 1, 2, 
3, . . . n) values are determined, by forminga sequence oE matrices B, , B2, B3 . . . . Bn 



where I is the identity matrix of the orilcr of A. For example consider matrix A of the 
four-bar chain shown in fig. I(a). 

B, = A and P ,  = trace BI = 0. 

B2 = A ( B I  - p J )  

or 

"2 = i 1 and p2 = .! trace Bz = 12 
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12 4 

B3 = and p3 = 4 trace B1 = 16 
4 12 4 3 

4 -4 4 12 

On substituting values of p,,  p, ,  p, and p. in the expression 
(- 1)" (An  -p, An-' -p2~n-2- . . . . p , ) ,  the characteristic polynomial for the four-bar 
cham (fig. l(a)) is given by h4-12hZ-16h. 

Faddeev and ~addeeva'~.have proved that for nth order matrix B ,  = PJ. This 
can also be observed in ;he above example. Therefore, one can always obtainp,, simply 
a s  P, = 611 = b, = . . . = b,, where the bii are identical elements composing the trace 
of B,, . 

The Fortran source program is written for the generation of the coefficients of the 
characteristic polynomial by using the Faddeev-Leverrier method. It consists of 30 
statements and takes less than 3 seconds on HP 1000 for computing the characteristic 
coefficients of a nine-link chain. 

For theclassof matrices representing large linkages, the present method is reliable and 
the calculations involved are simple and well suited for computation. 

4. Application 

To show that the charactensr~c polynomial can be used as an index of isomorphism and 
that the method of computation of the characteristic coefficients presented in this paper 
is valid for the multiple-jointed chains also, two six-link multiple-jointed chains (fig. 2) 
are taken. Their respective graphs are drawn in fig. 3. It i s  found that both the six-link 
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multiple-joinled chains have thc same characteristic polynomial, viz., 
h6-%a4- l18A3 - 1 14h2 - 10A +7.  Thus these chains are isomorphic. 

The charactcristic rolynomials for all the possible. seven-link chains (fig. 4-simple 
jointed chains and fig. 5----multiple-;r~in~~~cl chains) are calculated. The characteristic 
polynomials arc worked out as different for ali the possible chains shown in figs 4 and 5. 
Hence the chains arc non-iwmorphic. 

POI all the existing eight- and jrine-link simple joinrcd kinematic chains the 
characteristic polyno~nials arc con\pute.d to cvnluate nonisomorpbic chains and the 
results are found to be in agrcoment with the rcsults of Freudenstein and ~obr j ansky j '~  
and C r o s ~ l e ~ ' ~  

To show that the present test is more reliable in detecting isomorphism than the test 
based an characteristic polynomials of the adjacency matrix, consider three seven-link 
chains given by Balaban and I-1araryi3. These chains and their respective graphs are re- 
Presented in figs. f ~ &  On computation the characteristic polynomials of adjacency ma- 
trices of graphs reprcscnted by figs. 6(b), 7(b) and 8(b) are obtained as the same, i.e. 
A 7 - ~ l ~ 5 - 1 0 ~ 4 + 1 6 ~ 3 + 1 6 h 2 .  Whereas on applying the present test the charac- 
'elistic polynomials based on distance matrices of these three nonisomorphic graphs are 
obtained as A'- 6 1 ~ ~ - 2 @ ~ ~ - 4 4 2 ~ ~ -  302h2- 6 6 ~  in the case of fig. 6(b), 
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~ ~ - 5 1 ~ ' - 1 - 2 6 ~ " - 3 ~ ~ ' - 2 9 6 ~ ' - 8 ~ 1 ~  in the Lase of fig. 7(b) and A'-&A' 
-292~'-478h3- 318~'- 68h in the case of fig. X('5). Thus the new characteristic 
polynomials of the nonisomorphii graphs arc different. 
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