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Hilbert Transform Relations in Frequency-Domain 
Optical-Coherence Tomographic Imaging

Chandra Sekhar Seelamantula a and Theo Lasser b

Abstract | Interferometric imaging techniques typically embed the object 
phase information in the magnitude during the measurement process. During 
reconstruction, the phase is recovered from the magnitude by making cer-
tain assumptions on the measured magnitude and underlying phase. In this 
paper, we review some of our recent contributions on exact recovery of phase 
from Fourier transform magnitude measurements. We show that, under cer-
tain conditions, which are easily ensured during acquisition, the phase can 
be reconstructed accurately from the magnitude. More specifically, we show 
that there exist Hilbert transform relations between the logarithm of the magni-
tude and phase spectra, and between real and imaginary parts of the Fourier 
spectrum. The new set of results constitute a generalization of the minimum-
phase property to a larger class of signals than previously known in the lit-
erature. The theoretical claims are validated using the specific example of 
frequency-domain optical-coherence tomographic imaging.
Keywords:  phase retrieval, Hilbert transform relations, frequency-domain optical-coherence tomography 

(FDOCT). 

1 Introduction
In many imaging modalities such as electron 
microscopy, X-ray crystallography, astronomy, 
coherent imaging, and wavefront sensing, com-
plex-valued functions are measured using sensors 
that are capable of capturing only the intensity 
of the complex field and not the phase directly. 
In coherent imaging, using the coherence prop-
erties of light, the hidden phase becomes acces-
sible. In modalities such as diffraction imaging, 
the diffraction pattern of the object is a good 
approximation to the Fourier transform of the 
object. In X-ray crystallography, the diffraction 
pattern is approximately the Fourier transform of 
the electron density function of the specimen. In 
coherent imaging modalities such as frequency-
domain optical-coherence tomography (FDOCT), 
the measured spectrum is related to the back-
scattered signal (inverse scattering theorem) by 
means of the Fourier transform.1 The phase of the 
backscattered wave gives structural information 
about the object. Since phase cannot be measured 
directly, it is embedded into the measurement of 

the so-called interference contribution and has 
to be retrieved during reconstruction. In general, 
the problem falls within the purview of phase 
retrieval. In general, the phase retrieval problem 
is ill-posed since magnitude is only part of the 
spectral information of the object and numerous 
phase spectrum choices are possible, which give 
rise to non-unique objects. However, under certain 
conditions, the phase can be exactly reconstructed 
from the magnitude spectrum—an exposition of 
the exact relations that we developed recently in 
the context of FDOCT forms the subject of this 
paper. Before we proceed with further details, we 
shall review relevant literature on phase retrieval.

1.1 Literature review
The phase retrieval problem has a long history 
in optical imaging. Some early landmark con-
tributions in this area of research were made by 
Gerchberg and Saxton,2 and Fienup3,4 who pro-
posed iterative, error-reduction algorithms to 
retrieve the phase from the Fourier magnitude 
spectrum. Typically, an all-zero phase is chosen as 
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the initialization although random initializations 
are also permissible. In every iteration, typically 
two constraints are imposed—one, that of causal-
ity in the object domain, and the other, that of con-
sistency with the measured magnitude spectrum. 
In some cases, a non-negativity constraint is also 
imposed on the object. The projections alternate 
between the object domain and the measurement 
domain. Upon convergence, the reconstructed 
object turns out to be a reasonable compromise 
between the spectral and object-domain con-
straints. These algorithms work for a wide range of 
problems in optics and constitute the most popu-
lar class of algorithms. Bauschke et al. provided a 
detailed overview of various iterative algorithms 
and interpreted them as convex optimization 
problems.5 The new perspective offers a robust 
and broader framework to analyze phase retrieval 
algorithms. While Gerchberg-Saxton and Fienup 
algorithms and their numerous variants are well 
known in the optics community, the problem 
was formally introduced to the signal process-
ing community by Quatieri et al., who specifi-
cally addressed the phase retrieval problem with 
causality constraints in the object domain.6 They 
considered the particular case of signals that are 
impulse responses of minimum-phase systems. 
Such systems have their poles and zeros inside the 
unit circle. In the digital signal processing com-
munity, rational transfer functions are a popular 
choice for system building/design because they 
can be readily associated with difference equa-
tions, which are practically realizable, subject to 
some stability constraints. Among them, min-
imum-phase systems are preferred because of 
their stability and invertibility properties. Yegnan-
arayana et al. devised a non-iterative technique 
for reconstructing a minimum-phase signal from 
the Fourier magnitude spectrum.7 Their method 
relies on a Hilbert transform relationship between 
the logarithm of the magnitude spectrum and 
the phase, specifically for minimum-phase sig-
nals. Such Hilbert transform relations go by the 
name of Hilbert integral equations, Kramers-
Kronig relations, or dispersion relations in the 
optics community.8–10 Kramers-Kronig relations 
are bidirectional relations between the real and 
imaginary parts of any complex function that is 
analytic in the upper-half complex plane. In the 
mathematics community, the Hilbert transform 
relation between the real and imaginary parts of 
the Fourier spectrum of causal signals is given by 
the Titchmarsh theorem.11

In the context of FDOCT, Ozcan et al. modeled 
the backscattered wave as a minimum-phase signal 

and applied Fienup-type iterative algorithms for phase 
retrieval.12 Seelamantula et al. proposed certain exact 
recovery results for signal reconstruction from Fourier 
magnitude spectrum.13 Mecozzi gave a sufficient con-
dition to ensure that the full linear response of an 
optical system can be retrieved from amplitude meas-
urements using the Hilbert transform.14 The condi-
tions and results of Mecozzi are quite similar to those 
given by Seelamantula et al. More recently, the prob-
lem of phase retrieval is being investigated by signal 
processing researchers within the framework of com-
pressive sensing. Moravec et al. considered magni-
tude-only compressed sensing and derived sufficient 
conditions for exact recovery of the signal.15 The basic 
idea is to rely on the signal’s compressibility rather than 
compact support (which is a standard assumption) to 
perform phase retrieval. Schechtman et al. addressed 
the phase retrieval problem for sub-wavelength imag-
ing with partially incoherent light.16 Their approach 
relies on log-determinant relaxation and sparsity con-
ditions are imposed on the object. Szameit et al. pro-
posed similar algorithms for sub-wavelength coherent 
diffractive imaging and presented connections with 
Fienup-type algorithms.17 Recently, we proposed a 
sparse counterpart of the classical Fienup algorithm 
for phase retrieval, where the object is known to be 
sparse in some basis. We showed applications to 
FDOCT reconstruction.18

1.2 This paper
In this paper, we shall show how the artifact-
free reconstruction results developed recently in 
the context of FDOCT13, 19, 20 can all be viewed in 
the light of the Hilbert transform. We shall first 
provide some Hilbert-transform-centric math-
ematical preliminaries and then provide a link 
to the FDOCT reconstruction problem. We shall 
consider three cases: (i) the scenario in which the 
autocorrelation terms are not significant; (ii) the 
scenario in which the autocorrelation terms are 
significant; and (iii) the configuration in which 
the complex-conjugate artifacts are present. We 
shall highlight the role of the Hilbert transform in 
all three cases.

2 Mathematical Preliminaries
The Hilbert transform action is specified by means 
of the associated convolutional kernel:

h z
z

z( ) { }.= , ∈ −
1

0
π

R  (1)

The corresponding frequency-domain descrip-
tion is given as
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ˆ( ) ( ),h ω ω= −j sign  (2)

where the hat denotes the Fourier transform. In 
Figure 1, a pictorial representation of the Hilbert 
transform is shown. Hilbert transformation H  is 
a unitary operation. This behavior is understood 
from the magnitude response | | = 1, .ˆ( )h ω ∀ω  
Consequently, it is an energy-preserving trans-
formation. More importantly, H : →L L2 2( ) ( )R R  
(space of all finite-energy functions). The Hilbert 
transform applied twice results in the (skew) 
identity operator: H I2 = − . Therefore, H  is a 
skew-adjoint operator.

The Hilbert transform was used by Gabor in the 
construction of the analytic signal.21 Starting from 
a real-valued, finite-energy function f, Gabor con-
structed the analytic signal a z f z f zf ( ) ( ) { }( )= + jH , 
which has a one-sided spectrum. The notion of ana-
lyticity is the dual of causality. Causal functions 
vanish on the semi-infinite strip z < 0, and analytic 
functions have a spectrum that vanishes for ω < 0. 
Viewing Gabor’s analytic signal construction from 
the dual perspective of causality, we infer that if a 
finite-energy function is causal, then the real and 
imaginary parts of its Fourier transform form a 
Hilbert transform pair.9 This result is the Titch-
marsh theorem that we alluded to in the introduc-
tion. Stated formally, if f z L( ) ( )∈ 2 R  vanishes for 
z < 0, then Real Imag{ ( )} { ( )}f f ω ωH←→ .  This 
result indicates that the notions of causality and 
Hilbert association are inseparable concepts. This 
theorem is central to the subsequent developments 
in this paper.

3  Frequency-Domain Optical-Coherence 
Tomography

FDOCT imaging relies on interferometric princi-
ples and is ideally suited for non-invasive imaging 
of biological specimens. Typically, it offers millim-
eter penetration depths with micrometer-range 

axial resolution. The major applications of FDOCT 
are in the field of medical science, namely, tissue 
imaging, dermatology, and ophthalmology.1, 22–26 
The first medical images taken with FDOCT for 
measuring intraocular distances were obtained 
in 1995 and the first in vivo measurements of the 
retina of the human eye were reported in 2002.27

We shall briefly review the signal acquisition 
process and develop the corresponding signal 
processing model that will subsequently enable us 
to develop the Hilbert transform relations.
In Figure 2, a Michelson FDOCT setup is shown. 
A broadband light source is used for illumination. 
The source field is split into two components—
the reference field (obtained by using a refer-
ence mirror) and the illumination field, which 
is directed towards the object to be imaged. The 
object is typically multilayered and nonhomoge-
neous, and refractive index changes in the object/
specimen scatter back the incident light. The 
backscattered object field interferes with the ref-
erence field reflected by the mirror. The recorded 
intensity contains direct components (DC) as well 
as alternating/oscillating components (AC), corre-
sponding to the interference between the reference 
and backscattered object fields. It is the AC com-
ponent that carries the “hidden” phase contribu-
tion. The resulting interference pattern is recorded 
by a spectrometer. One scan of the FDOCT results 
in an axial profile. For 3-D imaging, the object has 
to be scanned laterally.

Let f (z) denote the amplitude of the light field 
due to scattering by the object, as a function of 
depth z. The spectrometer measures incident light 
intensity as a function of the wavelength λ. The 
measured spectrum is subsequently mapped in 
the k space via the formula k = 2π

λ . In terms of the 

Figure 1: (a) Hilbert kernel, (b) Magnitude 
response, and (c) Phase response.

Figure 2: Schematic of the FDOCT setup.
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frequency variable ω = −2kn, the measurements 
take the form

ˆ( ) ˆ( ) ( ) ,i s f z e zzω ω ω= +
−∞

+∞ −∫
2

1 j d  (3)

where ˆ( )s ω  is the source power spectrum. Strictly 
speaking, the refractive index n is a function of the 
axial location z. However, to simplify the model, 
we replace n(z) with its average value n, with the 
understanding that the reconstructed tomogram 
will be a function of the optical path length, which 
is the product of the geometric length and the 
index of refraction. Otherwise, the model formu-
lation becomes unwieldy, because both n(z) and 
f(z) are unknown.

The inverse problem of FDOCT is the task of 
reconstructing f (z) starting from ˆ( )i ω  and ˆ( ).s ω  
Implicitly, this problem is equivalent to retriev-
ing the phase of δ (z) + f (z) from the square of its 
Fourier magnitude spectrum. Note that although 
in the formulation, ω is continuous, in practice, it 
is discrete, since the measurements are taken only 
at a discrete set of wavelengths. We shall proceed 
with the continuous-domain formalism for the 
theoretical calculations, and for computer imple-
mentation, we use the discrete version.

The term 
−∞

+∞ −∫ f z e zz( ) j dω  in (3) is actually 
the Fourier transform of f(z), denoted by ˆ( )f ω . 
Expressing (3) as follows,

ˆ( ) ˆ( )( ˆ( ) ˆ ( ) ˆ( ) ),i s f f fω ω ω ω ω= + + ∗ + | |1 2
 (4)

we obtain the corresponding spatial-domain 
expressions as

i z s z f s z f s z f f s z( ) ( ) ( )( ) ( )( ) ( )( ),= + ∗ + ∗ + ∗ ∗− −

 (5)

where f_(z) = f(−z). The effect of multiplication 
by ˆ( )s ω  is to smoothen the corresponding spatial-
domain functions (action of the optical point 
spread function in the z direction). The term 
f f s∗ ∗−  is usually referred to as the autocorre-

lation artifact; and s(z) as the background, which 
can be separately measured and subtracted. Alter-
natively, we can consider the normalized spec-
trum si i sˆ ( ) ˆ( ) ˆ( )ω ω ω= / . Correspondingly, we have 
the spatial-domain function

i z z f z f z f f zs( ) ( ) ( ) ( ) ( )( ).= + + + ∗− −δ  (6)

4 Modes of Reconstruction
In the following, we shall consider reconstruction 
of f(z) under various conditions on it, and show 

that in every case, the Hilbert transform emerges 
naturally, either implicitly or explicitly.

4.1  Causal f(z), negligible 
autocorrelation artifacts

Let us assume that f(z) is causal, that is, f(z) = 0 for 
z < 0. This amounts to having the reference mirror 
placed at a location such that the corresponding 
path delay is smaller than that associated with the 
first reflection from the object. Stated simply, the 
zero-phase-delay plane (or the reference plane) is 
outside the object. This is indeed the setup shown 
in Figure 2. Further, if we assume that the inten-
sity of the backscattered signal is weak compared 
with that reflected from the mirror, | |ˆ( )f ω 2  can 
be neglected in comparison with the other terms. 
Effectively,

si f f

f z z z

ˆ ( ) ˆ( ) ˆ ( )

( )cos( )

ω ω ω
ω

= + + ∗

= + ,
−∞

+∞
∫

1

1 2 d  (7)

which is the cosine transform of f(z) up to an 
additive constant. Since f(z) is causal, the cosine 
transform and sine transform of f form Hilbert 
transform pairs. Alternatively, one can take the 
inverse Fourier transform of sî ( )ω -1  and sup-
press the anti-causal part. This is the standard 
approach to FDOCT reconstruction. If the 
zero-phase-delay plane is inside the object, this 
approach yields f (z) + f (−z) as the reconstruc-
tion, which is not useful because the object f (z) 
and its mirror image f (−z) overlap. To overcome 
the problem, a solution that requires some modi-
fication to the experimental setup is discussed in 
Section 4.3.

To validate the reconstruction method, some 
experimental results on the retina of a human eye 
are shown in Figure 3.

4.2  Causal f(z), significant 
autocorrelation artifacts

In case of certain specimens, where the primary 
and subsequent reflections are strong, the auto-
correlation terms cannot be neglected, because 

Figure 3: FDOCT reconstruction for the retina of 
the human eye. The image is depicted on a loga-
rithmic scale with 40 dB dynamic range (red: 40 dB; 
blue: 0 dB). The details of the experimental setup are 
available in the article by Chandra Sekhar et al.28
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they manifest as distinct artifacts in the recon-
structed tomograms. Stated symbolically, | |ˆ( )f ω 2  
cannot be neglected in comparison with | |ˆ( )f ω . In 
this scenario, we proposed a technique13 for exact 
recovery under certain conditions, and the key 
results are recalled below:

Theorem 4.1: If f (z) ∈ (L1 ∩ L2)(R) vanishes 
for z < 0 ≤ z

0
 and f z f( ) ( )F← →  ω  such that 

| ( )| ,f ω ε ω≤ < ∀1 , then | |1 2+ ˆ( )f ω  completely 
specifies f (z) almost everywhere.

The proof of the above theorem was given in a 
constructive fashion, first by considering an auxil-
iary result concerning the causality of the inverse 
Fourier transform of log(1+ f ̂(ω)). The auxiliary 
result is also recalled in the following.

Lemma 4.2: If f (z) ∈ (L1 ∩ L2)(R) vanishes 
for z < 0 ≤ z

0
 and f z f( ) ( )F←→  ω  such that 

| ( )| ,f ω ε ω≤ < ∀1 , then the inverse Fourier trans-
form of log(1+ f ̂(ω)) vanishes over z < 0 ≤ z

0
 

almost everywhere.

A key element of the proof of the lemma is the 
Taylor-series development of log( ( ))1+ f ω  under 
the assumption that | ( )| ,f ω ε ω≤ < ∀1 :

log( ( ))
( )

( ).1
1

1

1

+ = −

=

+∞ −

∑f
n

f
n

n
n ω ω  (8)

Each term on the right-hand side of (8) corre-
sponds to the Fourier transform of a causal func-
tion. Therefore, we conclude that log( ( ))1+ f ω  is 
the Fourier transform of a causal function.

By conjugate symmetry property, another 
lemma, which can be directly obtained from the 
previous one, was also provided:

Lemma 4.3: If f (z) ∈ (L1 ∩ L2)(R) vanishes 
for z ≥ z

0
 ≥ 0 and f z f( ) ( )

F←→  ω  such that 
| ( )| ,f ω ε ω≤ < ∀1 , then the inverse Fourier trans-
form of log( ( ))1+ ∗f ω  vanishes over z ≥ z

0
 ≥ 0 

almost everywhere.

By a combination of the two lemmas, it was 
shown that | |1 2+ ˆ( )f ω  completely specifies f (z) 
almost everywhere by considering its logarithm. To 
summarize, the two main conditions that facilitate 
exact reconstruction are (i) causality of f (z) and 
(ii) | ( )| ,f ω ε ω≤ < ∀1 . Both conditions are easy to 
satisfy experimentally. The first condition is satis-
fied by ensuring that the reference arm optical path 
length is smaller than that of the object arm, and 
the second condition amounts to requiring that the 
object arm intensity be weaker than the reference 

arm intensity, which is always true in practice, since 
the specimen scatters part of the incident light, 
absorbs part of it, and transmits the rest.

We next interpret this result from the Hilbert 
transform perspective.

Since the inverse Fourier transform of 
log( ( ))1+ f ω  vanishes over z < 0 ≤ z

0
 almost eve-

rywhere, that is, it is causal, applying Titchmarsh 
theorem, we have the following Hilbert transform 
relation:

log | ( )| ( ( )),1 1+ ← → ∠ +f f ω ωH  (9)

that is, the desired phase can be directly com-
puted by taking the Hilbert transform of the 
log-magnitude spectrum. Since the measure-
ments are typically magnitude-squared quanti-
ties (that is, intensities), a square-root operation 
should be applied for computing the magni-
tude. Having obtained the phase thus, we then 
compute the inverse Fourier transform of 
| ( )| exp( ( ( )))1 1+ ∠ +f f ω ωj , which is δ (z) + f (z). 
The desired f (z) is thus obtained by ignoring the 
impulse at z = 0. Note that this approach ensures 
exact recovery of f (z) under the stated conditions.

Such Hilbert transform relations between log-
magnitude spectrum and phase spectrum exist in 
the literature for a specific class of functions referred 
to as minimum-phase functions (cf. Section 1.1), 
and have been derived assuming a rational function 
form for the Fourier transform, be it discrete or 
continuous signals. In contrast, the Hilbert trans-
form relation derived in this paper did not require 
such assumptions.

In the case where the autocorrelation artifacts 
are not prominent, as in the case of the retina 
example shown in Figure 3, the logarithmic trans-
formation approach gives nearly identical results 
as the standard reconstruction technique. This is 
in spite of the fact that the reconstruction involves 
nonlinear operations, which are prone to enhanc-
ing noise. The results on the retina data, with 
reconstruction obtained using the logarithmic 
approach are shown in Figure 4.

Figure 4: FDOCT reconstruction on the retina data 
using the logarithmic transformation approach. 
The image is depicted on a logarithmic scale with 
40 dB dynamic range (red: 40 dB; blue: 0 dB).
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In specimens where the autocorrelation arti-
facts are prominent (which often happens if there 
is a strong top surface reflection), the logarithmic 
transformation technique gives rise to robust recon-
struction, as demonstrated with the help of a mouse 
pancreas tissue specimen data in Figures 5 and 6. 
The reconstructions show a Langerhans islet, which 
is crucial for the secretion of insulin and plays an 
important role in diabetology. In Figures 7 and 8, we 
show a 3-D rendering (using OsiriX software29 on a 
Macintosh) of a small section of the mouse pancreas. 
Comparing the two reconstructions, we observe 
that the reconstruction with the logarithmic trans-
formation approach suppresses the autocorrelation 
artifacts to a significant extent. This is a direct con-
sequence of the ability of the proposed technique to 
retrieve the phase. In terms of computational load, 
the extra steps in the logarithmic transformation 

technique are the logarithmic nonlinearity and 
Hilbert transform computation. This was found to 
add an overhead of about 75% in computational 
time. The details of the experimental setup used 
to acquire the data are available in the article by 
Seelamantula et al.13

Figure 5: FDOCT reconstruction of a slice of a 
mouse pancreas using the standard reconstruc-
tion technique. Note the autocorrelation artifacts 
at the top.

Figure 6: FDOCT reconstruction of a slice of a 
mouse pancreas using the logarithmic transfor-
mation technique. Comparing this image with that 
shown in Figure 5, we infer that the autocorrelation 
artifacts are suppressed to a significant extent.

Figure 7: Three-dimensional rendering of a 
mouse pancreas specimen using the standard 
Fourier reconstruction. Note the presence of the 
autocorrelation artifacts. The image is depicted on 
a logarithmic scale with 40 dB dynamic range (red: 
40 dB; blue: 0 dB).

Figure 8: Three-dimensional rendering of the 
mouse pancreas specimen using the logarithmic 
transformation technique. The autocorrelation arti-
facts are suppressed to a significant extent. The 
image is depicted on a logarithmic scale with 
40 dB dynamic range (red: 40 dB; blue: 0 dB).
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4.3 Noncausal f(z)
Consider the setup shown in Figure 9, where the 
zero-phase-delay plane (or the reference plane) 
is inside the object to be imaged. Let us assume 
that the autocorrelation artifacts are negligible. 
In this configuration, the object and its mirror 
image overlap as illustrated in Figure 10. The mir-
ror image is also referred to as the complex con-
jugate ambiguity artifact. The artifact cannot be 
suppressed unless certain experimental changes 
are carried out. In this context, Wang19 proposed 
a new acquisition method based on the principle 
of phase-shifting interferometry, however, with-
out the need to acquire multiple measurements. 
He demonstrated some applications for real-time 
in vivo imaging. The phase shift is introduced by 
moving the reference mirror at a constant speed 
with the help of a piezo-electric stage, and the 
movement is synchronized with the B scanning. 
Leitgeb et al.20 employed a common path configu-
ration wherein the reference arm is included in a 

fiber-coupled handheld applicator. They do not 
require a piezo-electric stage, and instead introduce 
the desired phase shift by incorporating a small 
offset at the beam-scanning mirror. They reported 
results on in vivo measurements in a spectrometer-
based FDOCT system employing a handheld scan-
ner. The reconstruction techniques of Wang and 
Leitgeb et al. comprise a combination of Hilbert 
and Fourier transformations. The success of these 
approaches lies in the fact that they exploit the lat-
eral correlation of the object, whereas most meth-
ods prior to these were analyzing each depth scan 
separately, independent of neighboring ones.

In the phase-shifting scenarios of Wang and 
Leitgeb et al., the effect of the phase offset is best 
described as phase modulation φ(x). Up to a first-
order approximation, the phase modulation is 
assumed to be linear, that is, φ ω( ) .x xc=  In order 
to bring out the explicit dependence along the lat-
eral direction, we also include the variable x in the 
governing equation:

s z zi x f x z z x zˆ ( ) ( )cos( ( )) ,, = , +
−∞

+∞
∫ω ω φ2 d  (10)

where the subscript z in ω
z
 indicates that it is the fre-

quency variable associated with the z direction, and 
the additive constant unity has been neglected.

Consider the one-dimensional Fourier 
trans form of s zi xˆ ( ),ω , taken along x (indicated 
by Fx):

J F i
F F

x z x s x z

x c z x c z

( ) { }( )
( ) ( ),

ω ω ω ω
ω ω ω ω ω ω

, = ,
= − , + + ,∗


 
 (11)

where F fx z z x x z z( , ) { }( , ),ω ω ω ω= F F F  denot-
ing the Fourier transform along z. Therefore, 
J(ω

x
, ω

z
) is the sum of a function and its conju-

gate, displaced by ω
c
 to the right and left of the 

axis ω
x
 = 0, respectively. The overlap between these 

Figure 9: FDOCT setup showing the zero-phase-
delay plane inside the object.

Figure 11: (Color online) Support of J(ωx, ωz) for 
(a) 2ωc > Bx, and for (b) 2ωc < Bx. The phase modu-
lation is given as φ(x) = ωcx.

Figure 10: Illustration of complex-conjugate 
artifacts in FDOCT reconstruction when the zero-
phase-delay plane is situated inside the object.
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Figure 12: (Color online) Spectrum of the ana-
lytic signal of as zi xˆ ( ),ω , computed along the x 
direction.

Figure 13: Illustration of complex-conjugate arti-
fact suppression in FDOCT reconstruction using 
the Hilbert-Fourier combination approach.

Figure 14: (a) Standard Fourier reconstruction (observe the complex conjugate ambiguity artifacts); (b) Hilbert-
Fourier reconstruction with optimal modulation (observe that the artifacts are suppressed to a large extent); and 
(c) reappearance of the artifacts from neighboring periods of the spectrum due to overmodulation. The details 
of the experimental setup used to acquire the data are available in the article by Chandra Sekhar et al.30

components depends on the spread of F(ω
x
, ω

z
) 

and the value of ω
c
. If 2ω

c
 < B

x
, where B

x
 is the sup-

port of F along ω
x
, then the two components do 

not overlap as shown in Figure 11(a). If 2ω
c
 < B

x
, 

then F(ω
x
 − ω

c
, ω

z
) and F*(ω

x
 + ω

c
, ω

z
) overlap as 

illustrated in Figure 11(b); in this case, only partial 
conjugate suppression can be achieved. As 2ω

c
 − B

x
 

goes from negative to positive, the overlap reduces 
and finally ceases, provided that f (x, z) is band-
limited along x.

The reconstruction in this case proceeds 
rather interestingly by a careful combination of 
the Hilbert and inverse Fourier transformations. 
First, one combines s zi xˆ ( ),ω  in quadrature with 
its Hilbert transform computed along x. In other 
words, this gives rise to the analytic signal along 
the x direction. The negative-frequency spectrum 
of the analytic signal is zero. Stated mathemati-
cally, the analytic signal is

as z s z x s zi x i x j i xˆ ( ) ˆ ( ) {ˆ ( )},, = , + ,ω ω ωH  (12)

where Hx  denotes that the Hilbert transform 
computation is carried out along the x axis. 
With reference to Figure 11(a), the analytic sig-
nal would only have the right-hand part of the 
spectrum (Figure 12). Thus, the conjugate-sym-
metric part of the spectrum is suppressed by 
phase-modulation along the x axis. Now, recon-
struction can proceed as usual, by taking the 
inverse Fourier transform along the z axis, that 
is, we have Fz as z

xi x e f x z− , = ,1{ ( )} ( )( )ω φj . Typi-
cally, since the magnitude of the reconstruction 
is used for the purposes of tomogram display, the 
phase modulation factor e jφ(x) has no effect. With 
reference to the synthesized specimen and the ref-
erence plane positions considered in Figure 10, 
the reconstructions corresponding to the new 
Hilbert-Fourier combination approach are shown 
in Figure 13. The key advantages of this approach 
are that the depth of imaging is increased directly 
by a factor of two, and the sensitivity is high about 
the zero-phase-delay plane.

In principle, larger the carrier frequency ω
c
, bet-

ter is the reconstruction. However, in practice, since 
one works with sampled data, which gives rise to a 
periodic spectrum, the maximum carrier frequency 
is limited to less than half the Nyquist frequency 

ˆ
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along the x direction. Beyond this optimal value, 
the complex-conjugate artifacts will show up, this 
time, from the neighboring periods of the spec-
trum. A theoretical analysis of the approach with 
a statement of explicit conditions under which 
artifact-free reconstruction is achieved is given the 
article by Chandra Sekhar et al.30 

To validate the combination Hilbert-Fourier 
approach, we show some results in Figure 14 cor-
responding to a finger nail of a human subject.

5 Conclusions
We reviewed some techniques for artifact-free 
frequency-domain optical-coherence tomographic 
reconstruction and showed that the Hilbert trans-
form plays a dominant role in the reconstruction 
methods operating under various experimental 
conditions. In some cases, the role of the Hilbert 
transform is explicit, whereas in some others, it is 
implicitly present. The key aspect is that, in order 
to achieve satisfactory and good quality recon-
struction, one has to incorporate either causality 
or analyticity into the acquisition and reconstruc-
tion methodology. In either case, the Hilbert 
transform becomes inevitable. We have shown 
some real-world experimental results to validate 
the various reconstruction algorithms.

On the pedagogy front, we hope that this arti-
cle will help young electrical engineers appreciate 
how the signal processing skills that they routinely 
acquire in the undergraduate curriculum turn out 
to be quite powerful and useful for solving real-
world bio-imaging problems.
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