J. Indian Inst. Sci., 66, Miay 1986, pp, 331-336
a Indian Institute of Science, Printed in Inda.

Short Communication

## A tractable pair of the Cauchy singular integral equations

## A. Chakrabarm


Recenved on November 20, 1985.
Abseract
 Cauchytype kemels.

Key words: Cauchy-type kernol, Carleman eduation, batrier ecaution, inverse operator.

## 1. Tetroduction

A special pair of singular integral equations as given by

$$
\begin{equation*}
a f+T(b g)=f_{2} \tag{l}
\end{equation*}
$$

and

$$
\begin{equation*}
g+T(d(c f+g))=f_{2} \tag{2}
\end{equation*}
$$

where $T \phi=\frac{1}{\pi} \int_{-1}^{t} \phi(t) \mathrm{d} t /(t-x)$,
and $a, b, c, d, f_{1}$ and $f_{2}$ are differentiabie functions, in $-1<x<1$ is considered for their solution in closed form when $c=k_{1} a$ and $d=k_{2} b, k_{1}, k_{2}$ being constants.
While the pair of equations (1) and (2) can be cast into the form

$$
\sum_{j=1}^{2}\left[a_{i j} \phi_{j}+b_{i j} T \phi_{j}\right]=F_{i}(i=1,2)
$$

with suitable choice of the functions $a_{i j}, b_{i j}, b_{j}$ and $F_{i}$, for which a general theory has been worked out by Peters ${ }^{1}$ involving the reduction of the problem to a non-linear barrier equation, it is hard to obtain tractabie solution of these equations even in the special case when $c=k_{1} a$ and $d=k_{2} b$ with $k_{1}, k_{2}$ as constants. With this as the background we are motivated to study the above pair of equations for the special case mentioned.

By using an analysis similar to that described in the earlier work ${ }^{2-4}$ involving the utility of the inverse operator $T^{-1}$ we have reduced the above pair of equations, in the case when $c=k_{1} a$ and $d=k_{2} b$, to a pair of independent Carleman equations from which the solution can be derived relatively easily by using standard results. The present analysis thus avoids the occurrence of a non-linear barkier equation as described by Peters

The following basic questions about the structure of the problem at hand then arise:

1. Can the manipulations be made still simpler?
2. Does there exist a gereral class of such pairs of singlanar integral equacions as given by (1) and (2), for which reduction to independent Carleman equations is possible?

A study of these two questions is taken up at the emd.

## 2. The analysis

By using equation (1), equation (2) can be expressed in the case when $c=k_{1} a$ and $d=k_{2} b$, as

$$
\begin{equation*}
g+k_{2} T(b g)-k_{2} k_{1} T(b T(b g))=f_{2}-k_{1} k_{2} T\left(b f_{1}\right) \tag{3}
\end{equation*}
$$

which can be rewritten, by using the inverse operator $T^{-1}$ (ci. ref. 3), as

$$
\begin{align*}
& g\left(1-x^{2}\right)^{-1 / 2}-k_{2} T^{-1}\left(b g\left(1-x^{2}\right)^{-1 / 2}\right) \\
& +k_{1} k_{2} T^{-1}\left(b T(b g)\left(1-x^{2}\right)^{-1 / 2}\right) \\
& =-T^{-1} \psi_{2}+k_{1} k_{2} T^{-1}\left(b f_{1}\left(1-x^{2}\right)^{-1 / 2}\right)+\frac{\lambda}{\left(1-x^{2}\right)^{1 / 2}},  \tag{4}\\
& \text { is an arbitrary constant. with }
\end{align*}
$$

where $A$ is an arbitrary constam, with

$$
\begin{equation*}
f_{2}=T\left(\left(1-x^{2}\right)^{1 / 2} \psi_{2}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{-1} f=\frac{\lambda_{0}}{\left(1-x^{2}\right)^{1 / 2}}-\frac{1}{\left(1-x^{2}\right)^{1 / 2}} T\left(f\left(1-x^{2}\right)^{1 / 2}\right) \tag{6}
\end{equation*}
$$

$\lambda_{0}$ being another arbitrary constant.
Operating both sides of equation (4) by the operator $T$ we obtain the following integral equation for the function $g$ :

$$
\begin{align*}
& T\left(g\left(1-x^{2}\right)^{-1 / 2}\right)-k_{2} g b\left(1-x^{2}\right)^{-1 / 2}+k_{1} k_{2} b\left(1-x^{2}\right)^{-1 / 2} T(b g) \\
& =-\psi_{2}+k_{1} k_{2} b f_{1}\left(1-x^{2}\right)^{-1 / 2} \tag{7}
\end{align*}
$$

Setting

$$
\begin{equation*}
\phi=g\left(1-x^{2}\right)^{-1 / 2} \tag{8}
\end{equation*}
$$

equation (7) can be cast into the form

$$
\begin{align*}
& \left(1-x^{2}\right)^{1 / 2} b^{-1} T \phi+k_{1} k_{2} T\left(b \phi\left(1-x^{2}\right)^{1 / 2}\right)-k_{2} \phi\left(1-x^{2}\right)^{1 / 2} \\
& =k_{1} k_{2} f_{1}-\left(1-x^{2}\right)^{1 / 2} b^{-1} \psi_{2} \tag{9}
\end{align*}
$$

which has the structure

$$
\begin{equation*}
A T \phi+T(B \phi) \div C \phi=\theta(x) \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& A=b^{-1}\left(1-x^{2}\right)^{1 / 2}, B=k_{1} k_{2} b\left(1-x^{2}\right)^{1 / 2}, \\
& C=-k_{2}\left(1-x^{2}\right)^{1 / 2}, \theta=k_{1} k_{2} f_{1}-\left(1-x^{2}\right)^{1 / 2} b^{-1} \psi_{2} \tag{11}
\end{align*}
$$

 $A T \phi+T(B \phi)$ with $A B=k_{i} k_{2}\left(1-h^{\prime}\right)$ is the wame operator studice $d^{3}$ for its inverse through an operator $L$, where

$$
\begin{equation*}
L=A\left(1-x^{2}\right)^{12} T \phi=b^{1} \gamma \phi \tag{12}
\end{equation*}
$$

Using this operator $L$ we find that the Thpart of the operator in equation (10) can be expressed as

$$
\begin{equation*}
A T \phi+T(B \phi)=-T\left[\frac{1-x^{2}}{A}\left(L^{2}-A B\left(1-x^{2}\right)^{-1} \phi\right]\right. \tag{13}
\end{equation*}
$$

so that, by using equations (11) and (13), we can rewrite equation (10) as

$$
\begin{equation*}
\left(1-x^{2}\right)^{1 / 2} T-1\left[\frac{\left(1-x^{2}\right)^{1 / 2}}{A}\left(L^{2}-k_{1} k_{2}\right) \phi\right]-\left(1-x^{2}\right)^{1 / 2} k_{2} \phi=\theta(x)+\mu_{0} \tag{14}
\end{equation*}
$$

with $\mu_{0}$ as an ambitrary constant, if equation (6) is also utilised. Dividing both sides of equation (14) by $\left(1-x^{2}\right)^{1 / 2}$ and operating by $T$ once again, we ultimately arrive at the equation for $\phi$ as given by

$$
\left(L^{2}-k_{1} k_{2}\right) \phi-A\left(1 \cdots x^{2}\right)^{-1 / 2} T\left(k_{2} \phi\right)=A\left(1-x^{2}\right)^{-1 / 2} T\left(\theta\left(1-x^{2}\right)^{-1 / 2}\right),
$$

which, by using equation (12), twins out to be the same as

$$
\begin{equation*}
\left(L^{2}-k_{2} L-k_{1} k_{2}\right) \phi=\mu(x), \tag{15}
\end{equation*}
$$

where, using equation(11), we have that

$$
\begin{equation*}
\mu(x)=b^{-1} T\left(k_{1} k_{2} f_{1}\left(1-x^{2}\right)^{-1 / 2}-b^{-1} \psi_{2}\right) . \tag{16}
\end{equation*}
$$

Equation (15) can finally be reduced to two independent Carleman type singular integral equations, if the operator $L^{2}-k_{2} L-k_{1} k_{2}$ is factorized as $\left(L-\alpha_{1}\right)$ ( $L-\alpha_{2}$ ), where

$$
\begin{equation*}
\alpha_{1,2}=\frac{k_{2} \pm\left(k_{2}^{2}+4 k_{1} k_{2}\right)^{1 / 2}}{2} \tag{17}
\end{equation*}
$$

and if we write

$$
\begin{equation*}
\left(L-\alpha_{2}\right) \phi=\phi_{1},\left(L-\alpha_{1}\right) \phi=\phi_{2}, \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(L-\alpha_{1}\right) \phi_{1}=\mu=\left(L-\alpha_{2}\right) \phi_{2}, \tag{19}
\end{equation*}
$$

the function $\phi$ being given by

$$
\begin{equation*}
\phi=\frac{1}{\alpha_{2}-\alpha_{1}}\left(\phi_{2}-\phi_{1}\right) . \tag{20}
\end{equation*}
$$

## A. CHAKRABARTH

The two equations (19) simplify, on using the operaw $T^{-1}$, to the equations

$$
\begin{equation*}
\bar{\phi}_{1}+\alpha_{1} T\left(b \bar{\phi}_{1}\right)=\bar{\theta}(x) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\phi}_{2}+\alpha_{2} T\left(b \bar{\phi}_{2}\right)=\bar{\theta}(x) \tag{22}
\end{equation*}
$$

with

$$
\begin{align*}
& \bar{\phi}_{j}=\phi_{j}\left(1-x^{2}\right)^{-1 / 2}, \text { and } \\
& \bar{\theta}(x)=-T\left(\mu b\left(1-x^{2}\right)^{-1 / 2}\right) . \tag{23}
\end{align*}
$$

The solution of the two Carleman equations, (21) and (22), can be expressed by using standard results ${ }^{5}$, and we find that
$\bar{\phi}_{j}=-\frac{\bar{\theta}}{1+\alpha_{j}^{2} b^{2}}+\frac{e^{\omega_{j}}}{\left(1+\alpha_{j}^{2} b^{2}\right)^{1 / 2}} T\left[\alpha_{j} b\left(1+\alpha_{j}^{2} b^{2}\right)^{-1 / 2} e^{-\omega_{j}} \bar{\theta}\right]+\frac{\nu_{j} e^{\alpha_{j}}}{\left(1+\alpha_{j}^{2} b^{2}\right)^{1 / 2}},(j=1,2)$
where $u s$ are arbitrary constants, and

$$
\begin{equation*}
\omega_{j}=\omega_{j}(x)=T x_{j}, x_{j}=\frac{1}{2 i} \ln \frac{1-i x_{j} b}{1+i \alpha_{j} b} . \tag{25}
\end{equation*}
$$

The function $\phi$ can be determined by using equation (20) and the main unknown functions $f$ and $g$ are easily obtainable if the equations (8) and (1) are made use of.

## 3. Some basic questions and their answers

Looking at the simple analysis presented, we now answer the questions posed:
Q.1. Does there exist a more simpler approach than what is presented above, to arrive at the decoupling of the two equations (1) and (2), in the special case when $c=k_{1} a$ and $a=k_{2} b$ ?
Answer: The main result used in the above analysis is the relationship

$$
\begin{equation*}
T\left[\left(1-x^{2}\right)^{-1 / 2} T\left(f\left(1-x^{2}\right)^{1 / 2}\right)\right]=-f \tag{26}
\end{equation*}
$$

obtainable from equation (6).
Then multiplying equation (3) by $\left(1-x^{2}\right)^{-1 / 2}$ and applying the operator $T$ gives

$$
\begin{equation*}
T \phi-k_{2} b \phi+\frac{k_{2} k_{1}}{\left(1-x^{2}\right)^{1 / 2}} b T\left[b\left(1-x^{2}\right)^{1 / 2} \phi\right]=-\psi_{2}+\frac{k_{2} k_{1} b f_{1}}{\left(1-x^{2}\right)^{1 / 2}} . \tag{27}
\end{equation*}
$$

Multiplying equation (27) by ( $b^{-1}$ ) and applying $T$ oned again gives another equation, atter utilizing (26), which can be cast into the form of equation (15) by a further multiplication by $b^{-1}$.
The route of arriving at equation (15) thus becomes a very simple one and can be realised only when an analysis similar to the one arready presented has been shown to exist first.
The importance of the man andysis lies mon jus in the fact that equation (15) is obtainable but that the pair of equations (i) and ( 2 ) can he cast into the form of equation (10) which has two busic parts: (i) A 3 -part and (ii) a 7 -free part, of which the T-part can be handed for its inversion by using our carlier analysis' or a variant of that.
Q.2. Does there exist a general class of the pair of equations (1) ant (2) which can be reduced to two independent (arloman type equations whose inversions are simple and straightforward?
Answer: Assume that we can find at suitable constant $m$ and a stitable function $p(x)$ such that

$$
\begin{equation*}
m a f+g=p\left[m b g+d\left(c f^{\prime}+g\right)\right] \tag{28}
\end{equation*}
$$

Then, equating the cocfficiens of $f$ and $g$ from both the sides of (28) yield

$$
\begin{equation*}
m a=p d c \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
1=p(m b+d) \tag{30}
\end{equation*}
$$

Eliminating $p$ from (29) and (30) gives rise to the equation

$$
\begin{equation*}
m^{2}+\frac{d}{b} m-\frac{d c}{a b}=0 \tag{31}
\end{equation*}
$$

and this represents a quadratic equation for the determination of the constant $m$, for a variety of choices of the functions $a, b, c$, and $d$ in equations (1) and (2).
The choice of the function $p$ is then provided by equation (29).
For the special case under consideration we have that

$$
c=k_{1} a \text { and } d=k_{2} b
$$

and equation (31) simplifies to

$$
\begin{equation*}
m^{2}+k_{2} m-k_{1} k_{2}=0 . \tag{32}
\end{equation*}
$$

The two toots $m_{1}$ and $m_{2}$ of equation (32) and the two corresponding functions $p_{1}$ and $p_{2}$ given by (29) finally help in obtaining from equations (1) and (2) the following two independent Carleman type equations

$$
\begin{equation*}
p_{j \chi_{j}}+T_{\not Y j}=m_{j} f_{1}+f_{2},(j=1,2) \tag{33}
\end{equation*}
$$

with

$$
\begin{equation*}
p_{j}=m_{j} a / d c, \text { and } \chi_{j}=m_{j} b g+d(c f+g),(j=1,2) \tag{34}
\end{equation*}
$$

## Refernmes

1. Petters, A. S. Pairs of Cauchy singubar bategat equations and the kernel $[b(z)+a(g)]$ ( $二-\zeta$ ), Commun. Pure Appl. Math., 1972, 25, 364-402.
2. Chakrabarti, A. and WRLIAMS, W. E.

A note on a singular integral cquation, J. Fnst. Math. Applic., 1980, 26 321-323.
3. Chakrabarti, A. Derivation of the somation of certain simgular integeal equations, I. Indian Inst. Sci., 1986), 82(B), 147-157.
4. Chakrabarti, A. Derivation of the solution of a special singular integral equation, J. Indian Insi. Sci. 1984, 6(B), 179-183.
5. Mokhlin, S. G. Integral equations, Pergamon Press, Oxford, 1964, p. 126.

