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Abstract

Velocity potentials doe to the presence of a line source of variable strength in one of the fluids of a two-fluid
medium that are separated by an inertial surface composed of uniformly distributed disconnected materials, are
obtained. The study of internal waves at the surface separating the two fluids requires the consideration of such
asource in either of the two fluids. If the density of the upper fluid is made zero, known results for a fluid with
an inertial surface are recovered.
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1, Introduction

When bodies are present in an one (or two)-fluid medivm, surface waves (or internal waves
at the surface separating two fluids) may be either generated by the movement of the
bodies or reflected from them. The two cases are essentially equivalent and the motion
can be described by a suitable distribution of singularities of different types on and/or
within the bodies. Thus the study of the generation of waves due to singularities of
different types present in fluids is of basic importance. For the case of one-fluid medium
with a free surface, Thorne! surveyed in some detail the different types of singularities
and Rhodes-Robinson® modified the corresponding results by taking into account the
effect of surface tension at the free surface which was neglected earlier by Thorne'.

For a two-fluid medium with upper fluid being extended infinitely upwards and the
fower fluid being of finite uniform depth, Gorgui and Kassem® studied different types of
singularities present in either of the two fluids neglecting the effect of surface tension at
the surface of separation. In all these cases the motion is assumed to be small and
time-harmonic with any given angular frequency.

The study of generation of waves in an ideal liquid (e.g. water) with an inertial surface
composed of a thin uniform distribution of floating material (e.g. broken ice) on the
surface of the liquid is of considerable interest to mathematicians as time-harmonic
gravity waves of a given angular frequency cannot exist if the inertial surface is too
heavy. This necessitates the study of the problems of generation of waves due to
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submerged singularities of different types which begin to operate in a time-dependey
manner &t a given instant, Recently, Rhodes-Robinson” studied the generation of waye
due to a two-dimensional wave source of time-dependent strength submerged in afiguid
of infinite depth with an inertial surface and Mandal and Kuudu® extended thisto a liquid
of finite depth and also studied other types of singularities. Rhodes-Robinson® ig g
earlier paper has meationed the case of two superposed liguids that are separated bya
inertial surface while discussing the possibility of existence of time-harmonic Progressive
waves at the interface. This has led us to study the generation of internal waves at the
interface of two superposed fluids that are separated by an inertial surface due to
singularities of different types submerged in either of the fluids which begin to operatein
a time-dependent manner at a given instant.

In the present paper we consider a two-dimensional wave source of time-dependent
strength submerged in either of the fluids of a two-fluid medium where the upper fluid
extends infinitely upwards while the lower fluid is of finite uniform depth. Explicit
expressions for the velocity potentials and the shape of the inertial surface due to the
wave source are obtained and analysed to some extent when the source strength is
impulsive at the initial instant but zero otherwise, is constant for all time and is harmonic
in time with a given angular frequency.

This problem is a generalisation of the problem considered by Mandal and Kundu for
an one-fluid medium. It may also be viewed (0 some extent as a generatisation of the work
of Gorgui and Kassem® for two ordinary superposced fluids to two superposed fluids
separated by an inertial surface.

The above discussion gives the background that motivated the work presented here.
Again, potentials due to two-dimensional multipoles submerged in either of the fluids
can be derived from line source potentials by elementary differentiation, and due to
point sources can be obtained by extending the mathod used for one-fluid medium a5
given in Mandal and Kundu®.

The practical relevance of the work presented in the paper lies in the fact that when
one wants to consider problems of generation of internal waves at the interface of a
two-fluid medium separated by an inertial surface due to small movement of bodies
submerged in either or both the fluids, the resulting motion as mentioned earlier for an

ordinary two-fluid medium can be described by the use of these singularities ina suitable
way.

2. Statement of the problem

We are concerned with the irrotational motion under the action of gravity of (¥0
non-viscous incompressible fluids separated by an inertial surface, composed of a thin
uniformly distributed disconnected materials of area density {p — @2) & Wher
s =pa/p (0< 5 <1) and p, p, are the densities of the tower and upper ﬂu}ds
respectively. The motion is generated by a line source submerged in either of the ﬂl{lds
which starts operating in a time-dependent manner from time ¢ = 0 so that the moton
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sants from test at time ¢ = 0. The souxce strength m (s} is assumed to be summable over
Al finite time intervals and to be exponentially bounded. This ensures the existence of its
Laplace transform (Note that this is only a sufficient condition).

We choose the origin 0 of a rectangular Cartesian coordinate system in the mean
qurface of separation and axis Oy pointing vertically downwards into the lower fluid,
zr-plane being horizontal. The velocity potentials then satisfy

V2 =0,y>0,
Vg, =0, y<0, @0

except at a point of singularity, where the subscripts 1 and 2 denote the lower and upper
fluids respectively. As discussed by Rhodes-Robinson® for an one-fluid medium with an
inertial surface, ¢; (x, y, z; t) (i = 1,2) can be shown to satisfy the init‘al conditions

o]
d>=%[~=00ny=0utt=0 2.2)
where

P2
=),

depy J
D=~ e——s5(gs—
1 Y s(e2 — & o

the linearized surface of separation conditions

p
icp. - ;2 on y =0, (2.3)
iy

7 dp . dp & épy

(o — gy ) T — = ony=0 2.4
52 E(;y) 7 s{ = (@2 ) g y} y 24

where g is the gravity, the bottom condition in the lower fluid

P1
e = 2.5
i Oony=nh, (2.52)
and in the upper fluid

(2.5b)

Vg~ 0as y—» —w,

It may be noted that for a time-harmonic motion of circular frequency o the condition
(2.4) becomes

Koy + (1— Ks)——-—~s{K<p2+(1 Ke) ————}ony—() (2.6)

where K = o?lg - For 0 < Ke < 1 the form of (2.6) is
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i -
Ky + ”';CJ:S (K
L

where K* = K{1-Ke) L

This is merely a maodification of the usual condition at the surface of separation for 5
two-fluid medium corresponding to v =2 0°. For Ke =2 1, propagation of time-harmonic
progressive wave is possible. However, for Ke = 1, the form of (2.6) is different ayg
does not allow progressive waves. As noted by Rhodes-Robinson™®, these facts ensure
that propagation of time-harmonic waves is possible if and only if Ke <1,

Let f(p) denote the Laplace transform of f{¢) defined as

';

fip) = J‘cxp(m‘m) fley df (Re p= 0y,

it
Then ¢ (¢ = 1, 2) satisties the boundary value problem deseribed by
Vo =0, y >0,
V2 =0y <0, @

except at a point of singularity, the inertial surface of separation conditions

. ). 4G 2 - ), AP

Po- g taph) Pe x{ﬁ“ é2 - (g reph) P oony =0, 23

dy v |

31 _ Iy L 29)

oy y on y = (), {
and the conditions

e

§= Dony=h,

V go—> 0 as y-—» —oo, @10)

& (i = 1,2) can be obtained by a technique, somewhat similar to that used by Gorgi
and Kassem?. Laplace inversion will then give ¢;'s.

3. Line singularities

ch. choose the y-axis passing through a singularity submerged in any one of the t0
fluids and is situated at either of the points (0,1) or (0,—7) (n > 0) according 3 te
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singularity is in the lower or upper fluid respectively. We consider singularities which are

gymmetric in ¥ only.
i} Wave source submerged in lower fluid

Here ¢; and ¢, are the solutions of the boundary-valuc problem stated by (2.7) to (2.10)
with

~mp)inras r={xr+ (-2}
Let

og=mlnr+C o]+ J{Al(k) cosh k(h—y)

i}
+ By(k) sinh ky } cos kx dk,
or=mC Inr+ J'Az(k) exp (ky) cos kx dk
[}

where 7 = {x* + (y + 5)?}"2.

We choose Cy, Co, Ay(k). Ax(k}, and By(k) such that the conditions (2.8), (2.9) and
(2.10) are satisfied and the integrals converge. Using the representations

Jexp{—-k(y~n)} cos kx dk, y > m,

a
— (1 =¢ 0
507 .

~J exp{—k(n—y)} cos kx dk, y <,

4]

and ?% Gnr)= JGXP{‘/C(%L"/))} cos kx dk, y > -,
0
the above stated conditions are satisfied if
kAy sinh kb + Aok = m [(Cy+Co—1) exp(—kn) — exp(—kh) {exp(kn)

+ Cy exp {(—km)} sech k] = m F(k), say, (€RY)

1+ ¢ —sCy =0, (6.2

AL{p® cosh kh + (g + epP)k sinh kh} — A, {sp? — s{g + ep”)k}
~ (g +epHk By =2m (g + ep?)Co exp(~kn).  (3.3)
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Bik =~ exp(—khY {explhn) + C; expl—kn)isech kh.

34
The integrals will be convergent if F{ky = 0 at k = 0 which gives (,7 2 50 that
Ci= 28— 1 63

hence
pA = ﬁx[(x +ep) {2 exp(-km) + FUOF+ §f§k5>] 64
NAAs = m[ 2(g + ep7) exp(-—kx) sinh kh + k(X)P) cosh kh], 37
kB, (k) = --2m exp(—~kh) (sinh kn -+ s exp(~kn)) sech kh, (3.8

where

Ak, p) = = {p (cosh kh+s sinh kh)} + (g + ep)k sinh kb (3.9)

Thus &, &, are obtained after rearrangement as
%

@ = m [ Xi(xy) + ‘{ ~2E(k) exp(~kmn) + F(k) cosh kh}

[

cosh k(h~y) e
e 08 Ax s dk |,
K D(R) sinb ki 8 My # }
_ - R exp(ky) cosh k(h~m) W l
s = 00| Xa(xy) + 2 ' s k _dk |,
. m["“” J kD) ATy
where °
Xty =Inr + @2s—1) tnr 4 [0 o (=2 exp(—kn) + FO)
(xy)=1Inr+ (2s—1) Inr JD(k) [b{ exp(—kn)
F(k
+l~j——(~?] cosh k(h—y) cos kx dk
fexp(~ hk
2 JQ‘E(_I(.@ (sinh k7 + s exp(—kn)) S—H}— E)i cos k dk,
0
Xa(xy) =21 r + J' ——(E) exp(ky) { 2¢ exp(—kn) sinh kh
o
F(k
4 (k) cosh kh } cos kx dk,

k(1-~s)
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E(k) = cosh &/t + 5 sinh k4,
D(k) = cosh kh + {s(1—ke) + ke } sinh kh,
2 _ gk(l—s) sinh kh
TS
Laplace inversion then give
cosh k(h-—-n} cosh k{(h—y)
=m(t) Xy~ 2|p ———m e
g1 = m(n) Xy l“ % D(k) sinh kh
o ,
cos kx er(r) sin u(r—7) dr dk,
N o
ky
ey =m(ty X5+ 2(/.1. t—‘g«-(v——ztoih k(h-mn)
) D(k)
i P
cos kr J;n(f) sin u(r—r) dr dk. (3.10)

o

(3.10) is the general result for the potential functions due to a line source of
time-dependent strength m(r) submerged in the lower fluid. To obtain some qualitative
aspects of these results we consider the following three particular forms of the source
strength m(r):

{a) For an impulsive source, m(r) = 8(r) so that the corresponding potentials are

@) o5 _ cosh k(h—mn) cosh k(h—y)
al = ek 2]” % Dk) sinh kh

4

cos kx sin pt dk,

13 i )
o = 50 + 2w SPE) ok k(hm) cos kx sin pr dk. (301)
k D(k)
]
We note that both ¢‘°’ (¢) and qo(“) (1) die out as — . This result is only expected,
because, as the source acts only instantaneously at ¢ = 0, its effect will not be felt
anywhere in the fluid region after a long lapse of time. The same conclusion can be
arrived at for the shape of the inertial surface as well as the nonhydrostatic part of the
Pressure distribution at any point of the two fluids.

(b) For the classical wave source of constant strength we take m(z) = 1, so that the
potentials become
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= -2 P —
¢l at B(EY sinh Kk o kr (T=cos ) dk,

wg;' Lmh k{ft—m) cosh A(h

) i kv)
$ = X, b 3[ %‘K%(’"‘[‘ cosh k{h - m) cos kx (1-cos ut) dk. (3.9

These poumi.llu exist for finite time only. As £ -» 2 @l (1) does not possess a finite
timit although V @' has a finite lmit. This was also observed by Mandal and Kunde® for
agone-flutd nu.dmm.

(c) For  time-harmonic wave source of cirewlar frequency o, we take m(t) = sin o1,
Then the poteatials beconwe

cash &(h ~-n) cosh k(h—y)

A2 g X .
@ sin ot Xy -~ ] RN

cos kx

I

@osin or - o sinoud
/,t' n"'

die,

&P = sin ot Xy + 2[ m

4

To study the behaviours of o (i =1, 2) as t— % we follow the technique of
Rhodes-Robinson’. Two different situations arisc according as the mtegiand vanishes or
not in the range of integration & > 0. In fact u?~ o* or equivalently
8(ky = { k(1-s)(1-Ke)~Ks } Smh kh — K cosh kh has a positive zero when
0 < Ke < | and none when Ke =

Following Rhodes-Robinson, for 0 < Ke < |, we obtain as 11— ®.

o2 = sin ot [ lnr+ @s—1) Inr + 2]( s exp(—km)

1
k cosh kh {
QO

_ {k(1-s)(1—Ke)—Ks} cosh k(h—n)

} cosh k(h—y) cos ke di

8(k)
sinh &
- 2J exp( U’) (sinh kv + s exp(—kn)) c‘ons B cos kx dx}
0
N cosh ky(h—n) cosh ko(h—y) cos kix cos ot (3.14)

sinh 2kph + 5 cosh 2koh + 2 koh—s
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‘ » X
<sz) =2 sin rrrl In r + j( ﬁ)z_(_l){ exp(~kn)
0
K cosh k(h—n)
8(k)

J cos kx dk}

cosh ko(h—m) cosh ky(h—y) sinh kit
sinh 2koh + 5 cosh 2koh + 2 kgh—s

.
cos kox cos ot,

where
8(k) = { k(1-s)(1—Ke)—Ks} sinh kh—K cosh kh (3.15)

and ky is the only positive real zero of 8(k). it can be shown that the forms given in (3.14)
represent the outgoing wave as | x| — o (¢f. Mandal and Kundu’). All these results
coincide with those obtained by Gorgui and Kassem® by putting & = 0, for an ordinary
two-fluid medium.

When Ke = 1,therc is no real zero of §(k) for k >0. Then by Riemann-Lebesgue
lemma the integrals involving sin pus in (3.13) are wholly transient and after simplification
we obtain

5

1 -
() + - 4 PR S —_
o sin ort[ln r+ (2s=1y In r + Jk TR {s exp{—kn)
1)

L k(=s)(Ke—1)+Ks} cosh k(h—m) o
=5y (Ke—13+ Ks} sinh kh+ K cosh kh }“’Sh ki ”COS’“‘”‘}

(3.16)

o) ~ 2sin (rt[ In r + jEXPlEﬁ)'— {exp(—-k'r;)
0

- K cosh k(h—n) cos kx dk |.
{k(1~s)(Ke—1)+Ks} sinh kh+K cosh kh

In this case there is no outgoing progressive wave as Jx| = o,

Since the interface is horizontal initially, its form at any time ¢ is y = {(x,£) where
I3 !

_ doi élpg
L(x,n)y = J (—E;) - dt or J-( Sy) =0 dt.
0 0

From (3.14) it follows that for 0 << Ke < 1, £(x,¢) assumes the form of an outgoing wave
forlarge | x| and r. Again from (3.16) it follows that for K& = 1, Z(x,t) becomes small for
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large |v} and 1 so that the interface remains almost undisturbed at a large distance from
the source after a large time since the wuave source starts operating.

The behaviour of the nonhydrostatic part of the pressure at any point of the two fhuids
can be studied from dg/dy or dox/dy according as the potnt is in the lower or upper fluid
respectively.

i)y Wave source submerged in upper fluid

The boundary value probiem for this casc is similar to the previous one except that, now
the singularity is at (0,—n) in the upper fluid and we have @ ~ i In 7 as ¥ - (),
We can similarly obtain

*

m(t) ¥, + ZA‘J,LL el‘l(c D(—;(/)”)cmh k(h—mn)

i’
cos kx Iﬂl(T) sin plr~1) dr dk,

J
1t}

[

(4]

0

™ /' -
0= m(t) Vs~ szu Sy =M}

Tk Dk
1] R

cos kx Jm(-r) sin u(t=7) dr dk,
;

;
where

=

Yi(x,y) = 2s In r — 2s|exp { —k(h+n)} sinh ky cos kxdk,

0

—

P

k(y— .
Yalx,y) = In(rr') + 2sJ %{L’i sinh kh cos kx dk,
o
and D(k) is the same as in case (i).
Similar types of results as in (i) regarding the potentials, interface shape, etc., can be
obtained for three different types of source strengths in this case also.

4. Conclusion

Potential functions due to a line source of time-dependent strepgth submerged in Ci,th.er
of the fluids of a two-fluid medium have been obtained. The upper flaid is of infinite
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extent while the lower tluid is of finite dupth Known resclts in the absence of upper fluid
can be deduced (ef. Mandal and Kundu®) by puttings = 0in¢,. Againifweputz = 0in
fhe results corresponding (o time-harmonic source strength, we recover the results for an
ordinary two-fluid medium given by Gorgui and Kassem?®.
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