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Abstract 

Velocity potentials due [0 the presence of a line source of variable strength in one of the fluids of a two-fluid 
medium that arc separated by an inertial surface composed of uniformly dj~tributed dissonnecteu materials, are 
obtained. The study of internal waves at the surface separating the two fluids requires the consideration of such 
a source in either of the two fluids. If the density of the upper fluid is made zero, known results for a fluid with 
an inertial surface are recovered. 
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1. Introduction 

When bodies are present in an one (or two)-fluid medium, surface waves (or internal waves 
at the surface separating two fluids) may be either generated by the movement of the 
bodies or ret1eeted from them. The two cases are essentially equivalent and the motion 
can be described by a suitable distribution of singularities of different types on and/or 
within the bodies. Thus the study of the generation of waves due to singularities of 
different types present in fluids is of basic importance. For the case of one-t1uid medium 
with a free surface, Thorne I surveyed in some detail the different types of singularities 
and Rhodes-Robinson2 modified the corresponding results by taking into account the 
effect of surface tension at the free surface which was neglected earlier by Tborne l 

For a two-fluid medium with upper fluid being extended infinitely upwards and the 
lower fluid being of finite uniform depth, Gorgui and Kassem3 studied different types of 
Singularities present in either of the two fluids neglecting the effect of surface tension at 
the surface of separation. In all these cases the motion is assumed to be small and 
time-harmonic with any given angular frequency. 

The study of generation of waves in an ideal liquid (e.g. water) with an inertial surface 
composed of a thin uniform distribution of t10ating material (e.g. broken ice) on the 
surface of the liquid is of considerable interest to mathematicians as time-harmonic 
gravity waves of a given angular frequency cannot exist if the inertial surface is too 
heavy. This necessitates the study of the problems of generation of waves due to 
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we choose the origin 43 of a rec tanguk Cartesian coordinate system in the mean 
surhce of separation and axis oy pointing vertically downwards into the lower fluid, 
,-plane bang horizontal. The velocity potentials then satisfy 

except at a point of singularity, where the subscripts 1 and 2 denote the lower and upper 
fui& respectively. As discussed by Rhodes-Rohinson4 for an onc-fluid medium with an 
inertial surface, rp, ( x ,  y,  z ;  t )  ( i  = 1,2) can he shown to satisfy the initial conditions 

"rp 
@ = - = O  on y = O a t  r = O  

dr 
where 

a91 
= p, - E -- s((P* - E *), 

dY b 

the linearized surhce of sepvation conditions 

-=- d p ,  a"> on = 0, 
Y dY 

where g is the gravity, the bottom condition in the lower fluid 

ft  may he noted that for a time-harmonic motion of circular frequency a the condition 
(2.4) becomes 

KpZ + ( I - K E )  *}on y = 0, 
JY 

(2.6) 

where K = . For 0 =z KE < 1 the form of (2.6) is 



This is mcrcly a niodilica~ioii of the usti;d coiiditir~n :it the surface of separationfor a 

two-fluid r ~ ~ e d i t i ~ n  ctw ~cywndii~!: to , 0'. F!rt Ki. -. I .  propagalion of time-~larmonlc 
pgrcss ivc  w:ivc is pousihlp. fI0\+cvcr. !<)I' .yr ? 1 .  thc I'ornl of (2.6) is different 
docs not ellow p:-ogi-rvti\i. waves. AS I I O ~ ~ ~  h!' Kl~trtles-li~ihil~s~~n~~~', these factsensuie 
th;lt prolx~g:stion o f  tiinc.h:~rmonic w:ivcr is poh\ihlc i!' and only if K c  < 1. 

Then 6, (i - 1 ,  2 )  sutistie\ the bouriilary value pr i~blcn~ described by 

except at a point of singularity, thc incrti;~l wr.f;~cc ot separation conditions 

and the conditions 

@, (i = 1,2) can be obtained by a technique, somcwhat similar to that used by Gor@i 
and Kassem? Laplace inversion will then give pi's. 

3. Line singularities 

We choose the y-axis passing through a singularity submerged in any one of the lwo 
fluids and is situated at either of the points ( o , ~ )  or (o,-~) (T,  > 0 )  accordlngasths 
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i) Wave source submerged in lower fluid 

H~~~ ip, and ( p 2  are the soiutlons of the boundary-value problem stated by (2.7) to ~ 2 . 1 ~ )  
with 

(al - m  ( p )  in r as r - =  { x 2 f  (y -q )2}1n i~ .  

+ Rl(k) sinh 1c.y } cos kx dk, 

We ctioose C1. C2, A L ( k ) .  A z ( k ) ,  and B l ( k )  such that the conditions (2.8), (2.9) and 
(2.10) are satisfied and the integrals converge. Using the representations 

-1 exp{-k(?-y)} cor !a d k  y i n. 
0 - 

cxp{- k ( y  +q)} cos kx dk ,  y > --7, 

the above stated condit~ons are satisfied if 

kA, sinh kh + A& = 1% [(C1+C2-1) exp(-kn) - exp(-kh) { e x p ( b )  

1 + C, - s c 2  = 0, (3.2) 

A, { pZ C O S ~  kh + (g + q ? ) k  smh kh) - A2 { s p 2  - s(g + fp2)k) 

- ( g + ~ p ~ ) k R ~ = 2 m ( g + ~ p ~ ) ~ , e x p ( - k q ) .  (3.3) 



k B ,  ( k )  :: --7rir e x ? ( - k h )  (sinh k v  -1. r csp( - h q ) )  scch kh, (3.8) 

whcre 

1 
A ( k ,  p )  = {p'(atsh kh - t . r  sinh k h )  j i. (S .i- sp2)k sinh kh. (3.9) l -s 

Thus + I .  +, are uhtained after rearranEcnlcnt a s  

e x p ( k y )  cosh k ( h -  7 ) )  . = X, (x , , )  + j k D ( k )  
whcre 

0 

exp(-kh) sinh ky - 2 (sinh k q  + r exp(-kq)) - - COS h dk,  
cosh k h  

n 



E ( k )  = cosh klr + s sinh kh. 

Laplace inversion then gives 

i cosh k ( h - q )  cosh k(11-v) 
pi = m(r )  XI -- 2 p 

k  D ( k )  sin11 kh 
i; 

m(7) sin ~ ( f - T )  d r  dk. (3.10) 

(3.10) is the general result for the potential functions due to a line source of 
lime-dependent strength m(r) submerged In the lower fluid. To obtain some qualitative 
aspects of these results we consider the foliowing three particular forms of the source 
strength m ( r ) :  

(a) For an impulsive source. m ( r )  -- 6 ( r )  so that the correqponding potentials arc 

cosh k ( h T )  cos kx sin pt dk (3.11) 

We note that both pj"' ( I )  and p!"' ( t )  d ~ e  out as r -  m. This result is only expected, 
hecause. as the source acts onif instantaneously at t = 0, its effect will not be felt 
mywhere in the fluid region after  a long lapse of time. The same conclusion can be 
arrived at for the shape of the surface as well as the nonhydrostatic pal? of the 
Pressure distribution at any point of the two fluids. 

(b) For the classical wave source of constant strength we take m ( t )  = 1, so that the 
Pokntlals become 



(c )  For it tirnc-ha~mcinic wave soiircc <>1' circui;ir f~~qirency ( r ,  we take %(:) = sin u:. 
Then the potonii:~l~ hccr>~nc 

p S ~ J I  i ~ t  IT sin p t  -- 
CL2 .. ' 

d k  
(I- 

To study Lhe hehsviours of qj" (; = 1 ,  :) ;IS t -- r- we fiillow the techni~e of 
Rhodes-Robinson". Two different situati(x1s arise according as the integiai~d vanishes01 
not in the range of integration k > 0. 11% Fact p,' - 6' or equivalently 
6 ( k )  = { k( l  -$) ( I  -Kc)  - K.7 } sinh k h  - K cod1 k h  lrils a positive zero when 
0 < KE < I and none when KF 3 I 

Following Rhodes-Robinson, for 0 s KE < 1 .  we obtain as 1 + 



cosh k h ( h - r p )  cosh k ; , ( k y )  sinh k;,h 
+ 4 7 1 7  

smh 2- 'OS k"x 'Os rrt' 

where 

6(k)  = { k ( 1 - s ) ( l - K c ) - K s )  sinh k h - K  cosh kh (3.15) 

and k;,is the only positive real zero of S ( k ) .  it can be shown that the forms given in (3.14) 
represent the outgoing wave as I x / -+ m (rf. Mandal and ~undu'). All these results 
coincide with those obtained by Gorgui and Kassem" by putting E = 0, for an ordinary 
two-fluid medium. 

When K E  2 1,therc is no real zero of 6 ( k )  for k > 0. Then by Ricmann-Lebesgue 
lemma the integrals involving sin pr in (3.13) are wholly transient and after simplification 
we obtain 

- K cosh k ( h - n )  ] m kx d k ]  
{ k ( 1 - ~ ) ( K E - 1 ) i K s )  sinh k h + K  C O S ~  kh 

in this case thcre i~ no outgomg progressive wave as 1x1 + 

Since the interface is horizontal initially, its form at any time t  is y = <(x , t )  where 

From (3 14) it follows that for 0 6 KF ( 1, {(x,t )  assumes the form ot an outgolng Wave 
for large Ix ( and r .  Agam from (3.16) it follows that for K E  3 I ,  &x,t) becomes small tor 



Thehehavi:)ur of the nonhytlrostatic p l r t  ( > f  lhc pressure :I( :illy point of the twoflulds 
a n  he srudiect frorn r i ~ , ! i ? v  or dp2/3y according ah  Ihc point rs in  the lower orupperfiuid 
respectively. 

Tllc boundary value prohiem for thih c w c  ih \iniil;lr 10 tiw prcvious one except that, now 
the singularity is at ( 0 . - P I )  in the uppci fluid m d  we have @, - rii In r' as r ' i  0, 
We can s~rnilarly obtain 

where 

Y,(x,y) = 2s In r - 2s cxp { - k ( h  + 7 ) )  sinh ky cos kxdk. ,/ 

and D(k) i s  the same as in casc (i). 

Similar types of results as in ( i )  regarding the potentials, interface shape, eW.3 can be 
obtained for three different types of source strengths in this case also. 

4. Conclusion 

Potential functions due to a line source of time-dependent strength submerged in either 
of the fluids of a two-fluid medium have been obtdned. The upper flnid is of infinite 
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