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Abstract

Various translation planes of order 25 have so far been constructed and their translation complements
determined. All these plancs except the two flug transitive planes of order 25 of Foulser and one of the
exceptional planes of Walker are such that at least one of their matrix representation sets admit non-trivial
nuelei. In this paper we construct a new ‘translation plane of order 25, all of whose matrix representation sets
admit only trivial nucleus. Further the transiation complement modulo the subgroup of scalar collineations is a
dihedral group of order 24 and is the smallest when compared with all the planes reporied so far. The
wranslation complement of this plane divides the set of ideal points into 4 orbits of lengihs 4, 4, 6 and 12

Key words: Translation plane, orbit of ideal points.

1. Imtroductien

A one spread set € over GF(5) is a collection of 25 matrices including the zero and the
identity matrices such that the difference of any two distinct matrices of “€ is
nonsingular'.

The reader is referred to references 1-3 for the preliminary results on spread sets and
the associated collineations in the corresponding translation planes.

For a fixed j and k we define [}, by

Pow= {(M-4)"" — (M=M))"" | M eBGU {(=)}

with the usual operations of inverse whenever M, and Mas appear in thg above
expression. It is known?® that there exists a collineation of w mapping (25) onto (j) and ©)
onto (k) if and only if there are A, B & GL (2,5) such that A™ I, B=%¢U {(«)}. In
particular if 1, 21, 37, 41 £, then there must be M & [} . such thatM, 2M, M AM €T 4.
Let this property be called ‘inherited property’.
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I Usustruction of & fvanslation pluge w oof order 258
[ECIRT (TR YN i oy Ay {,"\ ,:') aned 3 !‘f Y ronsider the mapping a ; Moy
(Y {(Mr Uy L E T The matnees M0 0 25 are detined recursively
(r%[,, s My ey My WM M e Ml e UL M= aM 0< l'<11
Sy, MmO, M s be observed that D‘mMs—Ms,
@My = My amd @M o A We list in Table T these 25 matrices along with their
churacteristic pobromials. 1 entey w, b uwmler the heading CPindicates that
AN ke A4 d s the characteristic polvnomid of the corresponding matrix,
Table §

Spread set and collineations
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10 43 o1 il X 10 01
4 31

0] 30 i2 £ 30 uz 14

2 (1] 13 43 41 a1
5 2,3 -

2% [t4] k) ua 12 o4
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23 02 34 5] 1 21 43
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7 3,4

10 44 21 43 3 i 30
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01 34 42 22 43 1 02
0 4,1

41 20 02 24 23 43 34



2

23

3
24

40
44
13
2

20
04

34
34
2
3

&)
S

3.4

4,1

0,3

0,3

0,2

0,3

0,3

0,3

0,3

TRANSLATION PLANE OF ORDER 25

0

42
20

04
32

40
42

23
41

03

43
40

13
12

4
43

44
10

01
30

24
33

31
40

22

04

30
02

20
03

40
20

33
24

23
22

43
23

03

03
20

44
30

2
34

0z
32

42
33

12

00
o

02

10
03

20

23

14
40

02
42

33

04

10

42
42

33
4

22
34

24

03
20

23
40

41
43

01

03

10

40
04

20

24

42

20
2

34

44
03

41
31

23
32

21

40

535



53 M. L. NARAYANA RAO o af
2.1 Theorem: € i a I-spread set vver (F(S)

Proof: Since 6 has 25 matrices including the zero and the identity matrices, it suffices to
show that | X~V | # 0, X, ¥ ¢ '€ and X » Y. If either X or Y is the zevo matrix then the
result follows from the fact that the nonzero matrices of 6 are nonsingular. This i also
tree when X and Y are scatar matrices. If A and ¥ are such that X is a scalar matrix and
Y= M, 5 << 24 then (X-Y) is nonsingular since all the mattices in G other than the

scalar matrices have irreducible characteristic polynomials. Suppose X and Y gre
nonscalar matrices so that X =M, Y=M, [ ¥ [ Then «{M)=M,,,, a(Mi)=M/+i-
Now | M =M | =3 | G0 11 (M+30 2|1 (M- M) 1 (443071 ] (49 |,

Thus (M; .1 — M; 1) is nonsingular if and only if (M, - M) is nonsingular. An inspection
of Tass; Tas 17 and Ios py in Table I reveals that Ms-M;, [> 5, My-M;, j>17;
My —M;, j > 21 are honsingular. The theorem now fullows from repeated application of
the fact that M, ., ~ M; .. is nonsingnlar if and only if M, —~ M, is nonsingular. Hence the
theorem.

We observe that the spread set ‘6 is not closed under matrix addition and therefore
coordinatizes a non-desargusian translation plane =. Further ‘€ has 6 mathices with
determinant §, 12 matrices with determinant 3 and 6 matrices with determinant 4. Thatis
the detérminant structure of 4 is L-6, 20, 3-12, 4-6. No matrix M in € other than Iis
such that M, 2M, 3M and 4M ¢ 6.

3. Some collineations of =

3.1 The mapping a defined in Section 2 induces a collineation on 7 whose action on the
set of ideal points is seen to be

a=(0,1,2,25,3.4) (5, ... 16) (17, ... 20) (21, ... 24). Let 8 be the mapping defined by
B:iM— (3D M (D). Then 8 maps the matrix (¢ 5) onto (& *%). An examination of
‘Table I reveals that for each (¢ §) £ 4, B (* ) ¢ 6. Thus 8 induces-a collineation on
whose action on the ideal points is given by 8 : (0) (25) (1) (2) (3) (4) (5.11) (6.12)
(7.13), (8,14) (9.15) (10,16) (17,19) (18,20) (21,23) (22.24).

Let r be the mapping defined by r= M ~» (§ 51 4M(9 }). Then for each (¢z ¢
r@5= (439 e % Hence r induces a collination whose action is given by

r = (0)(25) (1.4) (2.3) (5,8) (6:7) (9,16) (10,15) (11.14) (12,13) (17.20) (18,19) (21.23)
) 8.

Let 5 be the mapping defined by 6: M — (§ [)~' 4m(@ }). Then for (¢ 5)_5%
8¢ 5= (3 ¥ £ . Hence 5 induces a collineation whose action on the set of ideal
points is given by

81 (0) (25) (1,4) (2,3) (5,14) (6, , A7) (9. 5,16) (17,18) (19,20) (21)
(22,24)(23))_( ) (2,3) (5.14) (6,13) (7,12) (8,17) (9.10) (15,16) (17,18) (
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32 Conjugation collineations

A mapping of the form M — A”'MA; A e GL(2,5) such that for each M e €,
A7'MA £ €induces a co]lincanonﬂon w called a conjugation collineation. Since there are
only two matrices in €4, P= G 71) and Q?(% ) in € with the same characteristic
polynomial A +21+3, the group of conjugation collineations must leave {P,Q}
iwariant. But 8 is a conjugation collincation mapping P onto Q. Thus the group of
conjugation collineations is actually transitive on {P,Q}.

We now determine all the conjugation collineations that fix P. But any conjugation
collineation fixing £ must also fix Q. Thus the group of all conjugation collineations
fixing P consists of the common elements of the normalizer of P and the normalizer of Q.
Since the characteristic polynomials of P and @ are irreducible over GF(5), their
normalizers are the non-zero elements of the fields of matrices gencrated by {/, P} and
(1,0}, but these fields, though isomorphic, have distinct matrix representations having
only 1, 2, 31 and 41 as common element. Conjugation of matrices in € by 1, 24, 3/ and 4/
obviously induce collineation. These collineations are also called scalar collineations. Let
the group of scalar collincations be denoted by S. Then § is of order 4.

Thus the group of conjugation collineation fixing P is the group S. Then G, is
transitive on { £, 2} and the subgroup consisting of all conjugation collineations fixing P
is §. A coset decomposition of G; by S gives G, = SUSB and | Gy | = 4x2=38.

33 Collineations fixing (0) and (25)

Any collineation fixing (0) and (25) is induced by a mapping of the type
6:M-—> AT'MB, A, B ¢ GL{(2,5) such that for each M ¢ 6, A~! MB = %. Since € has
1o matrix M other than I, 2{, 34, 41 such that M, 2M,3M, 4M £%€,.¢ must map [, 21, 3/
and 4 among themselves. This implies that | A7'B| = kI, k=1, 2, 3, 4. The mapping
then takes the form ¢ : M — A“'(kM)A, k =1, 2, 3, 4. If k = 2 the characteristic
polynomial structures of ¢ and 2 ¢ do not tally. Therefore M — A"H2M)A does not
induce a collineation on . A similar argument shows that M — 4~ '(3M)A also does not
induce a collineation on .

Thus the set of all collineations that fix (0) and (25) are given by mapping of the type
M— A7'MA or M — A™(4M)A. An inspection of Table I reveals that Ms, My, 4My,
and 4My are the only matrices with the same characteristic polynomial A?+2X +3,and
4Ms, 4My), M4 and My are the only matrices with the same characteristic polynomial
243X + 3. This implies that the group of collineation fixing (0) and (25) is invariant on
the set of ideal point consisting of {(5),(11), (8), (14)}. But <, r, § > which is a
subgroup of G, is actually transitive on this set. Therefore G, is transitive on {(5), (8),
1), 4.

We now determine all collineations of G, that fix Ms. Obviously a mapping of the type
M— A™Y(4M)A cannot fix Ms. Thus the subgroup of all collineations of G that fix Ms
mst be generated by the mappings of the form M — A~ 'MA. Since a conjugation collineation
fixing M; fixes My, also, the subgroup of G, fixing Msis S. A coset decomposition of Go
by § gives G, = U S. ©x, where Oxs are chosen such that Ms is mapped onte each of
M5, My;, Mg and M,,. Further Oxs may be taken from <B,r, 8 >. Thus G, = <B,r, 5,
§> and [G, | = 16.
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34 Orbir spructure of idval poings ander G <ln e 8 S>
Let & ==o, B 8, 8%, Then ¢ divides the set of ideal points into 4 orbigs 0,.0,,0
and Oy of lengths 6, 12, 4, 4 given by e

O = {(0).(1)

DL OGLEL SO, ~ {516, . (16))
O = {(IN. (811

:‘i). 1), 203} O DL EDL23).02).

4. Transiation complement of o

In this section we show that ¢ is in fact ¢he transtation complement of . The scarcity of
collineations in 7 makes it extremely difficult to prove the non-existence of certain types
of collincations m .

4.1 Definition: Two ideal points (/) and (j) are said to bhe companions under a
collineation group H. if every collineation from 4 that fixes () fixes () and vice versa,
That is a collineation from # cither fixes both (i) and (/) or moves both (i) and (j).

The significance of companions is that any collincation must map companions onto
companions. Companion of an ideal point under a collineation group may fail to be
companion under a different collineation group. But u companion under a subgroup His
a possible companion under a bigger group of which H is a subgroup.

4.2 Lemma: The ideal points (0) and (25) are companions under the translation
complement.

Proof: Tt suffices to prove that there is no collineation of w fixing one of (0) or (25) and
moving the other. Since o is a collineation flipping (0) and (25) it is enough if we
consider the situation when (25) is fixed and (0} is moved onto an ideal point other than
(25). Since the orbit structure of G, on the set of ideat points is {(0)}, {(25)} {(1), )}
(@, O}, {(9), (1), 04, ®)}, {6). (7, (12). (13}, {(15). (9), (16). (1)}
{(17).(20),(18),(19)}, {(21),(23)}, {(24),(22)}, we consider the possibilities of‘ a
collineation of w fixing (25) and moving (0) onto one ideal point in each of the'orblls-
The ‘inherited property’ condition requires that I, ,. where (i) is one ideal point in each
of the orbits, cannot have matrices whose determinants are 1, 2, 3 and 4. This is bccguse
6 has matrices with determinants 1, 3 and 4 only. Further [ ; should have a matrix M
such that M, 2M, 3M, 4M e Tos ;. When i=5,17, 21 an inspection of Table 1 reveal§ tl}at
there are matrices in I'ys 5, I's 17 and Dy 5, with determinants 1, 2, 3 and 4 Conmdlcltl?g
the ‘inherited property’ condition. When i = 1, I's5 , has 4 matrices ((ly 9, (% %)7 (G
(G %) comesponding to (§ §), G 2), @ 2), (3 9) in Ias.o, whose determinants are 1,23
and 4, contradicting the ‘inbetited property’ condition. For i= 2,9, 12 and 22 'flsnm]ar
computation shows that a5 5, Tas g, Tas, 12 and T'gs. 5, have matrices with determinants 1
2, 3 and 4 which contradicts the ‘inherited property” condition. The working in each case
Is straightforward and is omitted to save space. Hence the lemma.
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Table 1L

Fixed poinis

Collineation ~ Fixed points Collincation  Fixed points

T namnEnEney o (10)(16)(18) (20)
(23)(24)

& @D ES) a’r () (25)(21)(23)

o2 all ideal points a’r IS (19)(9)

, (0)(25)(22)(24) a®r @234

o (6)(12)(20)(18) a’r (8)(14){18) (20)

o 22023 a'% 13 EH3)

o G A7) a'lr @a30709)

o'r 13224

4.3 Lemma: There is no collineation of = which maps (0) and (25) outside orbit O,.

Proof: Since a collineation maps companions onto companions only, we have to
determine companions in orbits O,, O3 and Og4 under the collineation group G, so that
they are possible companions under the translation complement.

We list in Table IT the fixed points under collineation group G.

An examination of Table I reveals that companions of (0), (5), (17), (21) under G are
(25), (11), (19), (23) respectively. Since (0) and (25) are companions under the
translation complement, the possible companions of (5), (17) and (21) under the
translation complement are (11), (19) and (23) respectively. A reference to Table I once
again reveals that in I's 15, I'j7 10 and [y 25 there is no matrix M such that M, 2M, 3M
and 4M € s 17, T\, 19, T2y 23. Hence there is no collineation that maps (0) and (25) onto
ideal points outside Q.

{.4 Theorem: The group G : <ec, B, r, 8, §> is the translation complement of .
[ G | = 96 and the quotient group G/S is a dihedral group of order 24. Further G divides
the set of ideal points into four orbits of lengths 6, 12, 4 and 4.

Proof: From the fact that GG accounts for all collineations that fix (0) and (25) and ali the colli-
neations that flip (0) and (25) it follows that the translation complement of 7 is G. There are
10 collineations of « which fixes either (0) or (25) and move the other. There are no
collineations that move (0) and (25) simultaneously outside orbit O,. The group G is
transitive on O, containing the six ideal points (0), (1), (2), (3), (4) and (25). Since any
collineation that fixes (25) fixes (0), the group of all collineations that fixes (25) is G
itself. A coset decomposition of G by G, gives G =U Gyx;, where x;s are those
collineations that map (25) onto each of the six ideal points in O,. Further x;s may be
taken from < o>, Thus | G | = 16x6 = 96. Other parts of the theorem are obvious.

Lemma: Every matrix representation set of ar has a trivial nucleus.

Proof: 1t is &nown that if every collineation of  either fixes more than two ideal points or
fixes two ideat points and divides the remaining ideal points into orbits, at feast two of
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which have upequal lengths, then every matrix representation set has only trivig)
nucleus. An examination of Table I reveals that o has either no fixed points or has foy

or more fixed points under any collincation of the translation complement. Hepce the
lemma.

5. Conclusion

The known transiation planes of order 25 that have been reported so far are the
following.

a) The fifteen planes reported by Davis*

b) The plane reported by Rao and Rao’

¢) The plane reported by Rao and Satyanarayana®

d) The two exceptional planes reported by Walker’

e} The two flag transitive planes reported by Fopiser®.

The fifteen planes reported by Davis are such that at least one :of the matrix
representation sets admit nontrivial nuclei. One of the matrix representation sets of Rao
and Rao and the plane of Rao and Satyanarayana admit nontrivial nuclei®, Tt has been
shown by Rao and Satyanarayana® that one of Walker’s planes is indeed a C-plane, one
of whose matrix representation sets admit nontrivial nucleus. Thus the translation plane
w, now under consideration is distinct from the 18 planes reported so far.

However the two flag transitive planes of Foulser and one of the exceptional planes of
Walker are such that all the matrix representation sets admit a trivial nucleus. But the
orbit structure of Walker’s plane is 1, 25 and the flag transitive planes have only one orbit

of length 26. Thus = is a new transtation plane of order 25 with the smallest translation
complement.
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