A transliation plane of order 25 with small translation complement

M. L. Narayana Rao, K. Kuppu Swamy Rao and Vinod Josifi
Department of Mathematics, Osmania University, Hyderahad 500 007, India.

Received on May 5, 1986

Abstract

Various translation plames of order 25 have so far been constructed and their translation complements determined. All these planes except the two flag transitive planes of order 25 of Foulser and one of the exceptional planes of Walker ate such that at least one of their matrix representation sets admit non-trivial nuclei. In this paper we construct a new translation plane of order 25 , alt of whose matrix representation sets admit only trivial nucleus. Further the transtation complement modulo the subgroup of scalar collineations is a dhedral group of order 24 and is the smatlest when compared with all the planes reported so far. The traslation complement of this plane divides the set of ideal points into 4 orbits of lengths $4,4,6$ and 12 .

Key words: Transiation plane, orbit of ideal points.

i. Introduction

A one spread set \mathscr{B} over GP(5) is a collection of 25 matrices including the zero and the identity matrices such that the difference of any two distinct matrices of " 4 nonsingular'.

The reader is referred to references $1-3$ for the preliminary results on spread sets and the associated collineations in the corresponding translation planes.

For a fixed j and k we define $\Gamma_{j, k}$ by

$$
\Gamma_{j, k}=\left\{\left(M-M_{j}\right)^{-1}-\left(M_{k}-M_{j}\right)^{-1} \mid M \varepsilon \mathscr{B} U\{(\infty)\}\right.
$$

with the usual operations of inverse whenever M_{0} and M_{25} appear in the above expression. It is known ${ }^{3}$ that there exists a collineation of π mapping (25) onto (j) and (0) onto (k) if and only if there are $A, B \varepsilon G L(2,5)$ such that $A^{-1} \Gamma_{j, k} B=\mathscr{C} U\{(\infty)\}$. In particular if $I, 2 I, 3 I, 4 I \varepsilon^{C} \mathscr{C}_{\text {, the }}$ there must be $M \varepsilon \Gamma_{j, k}$ such that $M, 2 M, 3 M, 4 M \varepsilon \Gamma_{j, k}$. Let this property be called 'inherited property'.

Tsthe :
Spread set and wolinarationts

i	$4^{1} \times 1$	a ${ }^{\text {P }}$	1 m ,	Him, 3	${ }^{\prime} \because \cdot \square$	$1 \cdot \mathrm{~m}$	I $2, \cdots$	[5, 11
	(t)		38	4	$3{ }^{7}$	\%	If	33
i)								
	(6		6.	11	3	6	:	31
	44		2.3	3	11	413	31	40
1		2.1						
	0.4		31	i0)	3	4	(6)	01
	20		03	$0!$	41	4.4	11	11
2		1,4						
	02		3	1.5	3	45	2	10,
	30		13	21	(1)	24	3	43
3		4.4						
	03		32	14	3	43	301	32
	10		4.3	(11	31	3.3	10	11
4		3,1						
	11		36	12	3.4	313	12	1.4
	22		(6)	13	43	41	41	
5		2,3						-
	21		(k)	32	14	12	24	
	03		31	44	2.4	1%	32	23
6		2,4						
	23		02	34	(1)	6!	21	43
	21		04	12	42	31	21	13
7		3.4						
	10		44	21	43	13	11	30
	41		24	32	12	2)	33	20
8		3,3						
	43		22	04	21	24	13	22
	43		21	34	14	30	23	21
9		1,1						
	30		14	41	13	04	34	11
	01		34	42	22	43	11	02
10		4,1						
	41		20	02	24	23	43	34

	23		01	14	44	23	22	00
11		2,3						
	31		10	42	14	31	42	00
	02		30	43	23	10	42	24
12		2,4						
	33		12	44	11	11	33	33
	24		02	10	40	12	44	42
13		3,4						
	40		24	01	23	21	12	20
	44		22	30	10	22	14	22
14		3.3						
	13		42	24	41	14	31	02
	42		20	33	13	40	13	34
15		1,1						
	20		04	31	03	02	22	44
	04		32	40	20	42	34	03
15		4,1						
	11		40	22	44	33	44	24
	14		42	00	30		24	10
17		0,3				-		
	44		23	00	22		03	03
	13		41	04	34	04	20	41
18		0,3						
	24		03	30	02	10	23	42
	11		44	02	32	00	40	30
19		0,2						
	14		43	20	42	00	41	04
	12		40	03	33	01	43	44
20		0,3						
	34		13	40	12	40	01	12
	34		12	20	00	32		12
21		0,3					-	
	22		01	33	00	42		41
	33		11	24	04	1.4	03	31
22		0,3						
	12		41	23	40	34	10	23
	31		14	22	02	13	00	32
23		0,3						
	32		11	43	10	44	00	13
	32		10	23	03	34	02	14
4		0,3						
	42		21	03	20	22	40	21
						02	04	04
25	-		-	-	-			
						20	20	40

2.1 Theorem: © is a l-vpread ses over dides

Proof: Since $\%$ has 25 matrices induding the zero and the itentity matrices, it suffices to show that $|X-Y| \neq 1), X, Y$ ' 6 and $X ; Y$. If cither X or Y is the zero matrix then the result follows from the fact that the nonzefo matrices of 4 are nonsingular. This is also true when X and Y are scatar matrices. If X and Y are such that X is a scalar matrix and $Y=M_{i}, 5 \leqslant i \leqslant 24$ then $(X-Y)$ is nonsingular since all the matrices in \mathscr{B} other than the scalar matrices have irreducible characteristic polynomials. Suppose X and Y are nonscalar matrices so that $X=M_{i}, Y=M_{j}, i \neq j$. Then ox $\left(M_{i}\right)=M_{i+1}, \alpha\left(M_{j}\right)=M_{j+i}$ Now $\left|M_{i+1}-M_{i+i}\right|=3\left|\binom{1}{0}\left\|(M+3)^{\prime}\right\|\left(M_{1}-M_{i}\right)\left\|\left(M_{j}+3 I\right)^{-1}\right\|\binom{10}{0}\right|$. Thus $\left(M_{i+1}-M_{j+1}\right)$ is nonsiagular if and only if $\left(M,-M_{i}\right)$ is nonsingular. An inspection of $\Gamma_{25,5} ; \Gamma_{25,17}$ and $\Gamma_{25,22}$ in Table 1 reveals that $M_{5}-M_{1}, j>5 ; M_{17}-M_{j}, j>17$; $M_{21}-M_{j}, j>21$ are honsingular. The theorem now follows from repeated application of the fact that $M_{i+1}-M_{i+1}$ is nonsingular if and only if $M_{1}-M_{1}$ is nonsingular. Hence the theorem.

We observe that the spread set G is not closed under matrix addition and therefore coordinatizes a non-desargusian translation plane π. Furher \& has 6 matrices with determinant 1,12 matrices with determinant 3 and 6 matrices with determinant 4. That is the determinant structure of $\&$ is $1-6,2-0,3-12,4-6$. No matrix M in ' 6 other than F such that $M, 2 M, 3 M$ and $4 M \varepsilon 6$.

3. Some collineations of π

3.1 The mapping α defined in Section 2 induces a collineation on π whose action on the set of ideal points is seen to be
$\alpha=(0,1,2,25,3,4)(5, \ldots 16)(17, \ldots 20)(21, \ldots 24)$. Let β be the mapping defined by $\beta: M \rightarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)^{-1} M\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$. Then β maps the matrix $\left(\begin{array}{ll}a & b \\ 0 & i\end{array}\right)$ onto $\left(\begin{array}{ll}a & 4 \\ 4 & 4 \\ d\end{array}\right)$. An examination of Table I reveals that for each $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \varepsilon\left(\begin{array}{c}b \\ b\end{array}, \beta\left(\begin{array}{ll}a & b \\ d\end{array}\right) \varepsilon \ell_{6}\right.$. Thus β induces a collineation on π whose action on the ideal points is given by $\beta:(0)(25)(1)(2)(3)(4)(5,11)(6,12)$ $(7,13),(8,14)(9,15)(10,16)(17,19)(18,20)(21,23)(22,24)$.

Let r be the mapping defined by $r: M \rightarrow\left(\begin{array}{ll}0 \\ 3 & \frac{1}{0}\end{array}\right)^{-1} 4 M\binom{0}{3}$. Then for each $\binom{a b}{c} \varepsilon$, $r\left(\begin{array}{ll}a & b \\ d\end{array}\right)=\left(\begin{array}{ll}4 d & 3 \\ 2 b & 4 a\end{array}\right) \in \mathbb{C}$. Hence r induces a collination whose action is given by

```
r=(0)(25)(1,4)(2,3)(5,8)(6;7)(9,16)(10,15) (11,14) (12,13)(17,20)(18,19)(21,23) (22) (24).
```

Let δ be the mapping defined by $\delta: M \rightarrow\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)^{-1} 4 M\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)$. Then for $\left(\begin{array}{ll}a & b \\ c \\ c\end{array}\right) \varepsilon \mathscr{G}$, $\delta\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}4 d & 2 c \\ 3 b & 4 d\end{array}\right) \varepsilon \mathscr{B}$. Hence δ induces a collineation whose action on the set of ideal points is given by
$\delta: \quad(0)(25)$
$(2,3)(5,14)(6,13)$
$(7,12)(8,17)$
$(9,10)(15,16)$
6) $(17,18)$
$(19,20)(21)$
$(22,24)(23)$.

32 Conjugation collineations

A mapping of the form $M \rightarrow A^{-1} M A ; A \varepsilon G L(2,5)$ such that for each $M \varepsilon \varepsilon^{\prime} b$, $A^{-1} M A \varepsilon$ E induces a collineation on π called a conjugation collineation. Since there are only two matrices in $C, P=\left(\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right)$ and $Q=\binom{2}{3}$ in ' 6 , with the same characteristic polynomial $\lambda^{2}+2 \lambda+3$, the group of conjugation collineations must leave $\{P, Q\}$ invariant. But β is a conjugation collincation mapping P onto Q. Thus the group of conjugation collineations is actually transitive on $\{P, Q\}$.
We now determine all the conjugation collineations that fix P. But any conjugation collineation fixing P must also fix Q. Thus the group of all conjugation collineations fixing P consists of the common elements of the nomalizer of P and the normalizer of Q. Since the characteristic polynomials of P and Q are irreducible over $G F(5)$, their normalizers are the non-zero elements of the fields of matrices generated by $\{l, P\}$ and $\{1, Q\}$, but these fields, though isomorphic, have distinct matrix representations having only $I, 2 I, 3 I$ and $4 I$ as common element. Conjugation of matrices in ' 6 by $I, 21,3 I$ and $4 I$ obviously induce collineation. These collineations are also called scalar collineations. Let the group of scalar collineations be denoted by S. Then S is of order 4 .
Thus the group of conjugation collineation fixing P is the group S. Then G_{1} is transitive on $\{P, Q\}$ and the subgroup consisting of all conjugation collineations fixing P is S. A coset decomposition of G_{1} by S gives $G_{1}=S U S \beta$ and $\left|G_{1}\right|=4 \times 2=8$.

33 Collineations fixing (0) and (25)

Any collineation fixing (0) and (25) is induced by a mapping of the type $\phi: M \rightarrow A^{-1} M B, A, B \varepsilon G L(2,5)$ such that for each $M \varepsilon \mathscr{C}, A^{-1} M B \varepsilon \mathscr{C}$. Since \mathscr{C} has no matrix M other than $I, 21,31,4 l$ such that $M, 2 M, 3 M, 4 M \varepsilon G, . \phi$ must map $I, 21,31$ and $4 I$ among themselves. This implies that $\left|A^{-1} B\right|=k I, k=1,2,3,4$. The mapping then takes the form $\phi: M \rightarrow A^{-1}(k M) A, k=1,2,3,4$. If $k=2$ the characteristic polynomial structures of $\mathscr{6}$ and $2 \mathscr{C}$ do not tally. Therefore $M \rightarrow A^{-1}(2 M) A$ does not induce a collineation on π. A similar argument shows that $M \rightarrow A^{-1}(3 M) A$ also does not induce a collineation on π.

Thus the set of all collineations that fix (0) and (25) are given by mapping of the type $M \rightarrow A^{-1} M A$ or $M \rightarrow A^{-1}(4 M) A$. An inspection of Table I reveals that $M_{5}, M_{11}, 4 M_{14}$ and $4 M_{8}$ are the only matrices with the same characteristic polynomial $\lambda^{2}+2 \lambda+3$, and $4 M_{5}, 4 M_{11}, M_{14}$ and M_{8} are the only matrices with the same characteristic polynomial $\lambda^{2}+3 \lambda+3$. This implies that the group of collineation fixing (0) and (25) is invariant on the set of ideal point consisting of $\{(5),(11),(8),(14)\}$. But $\langle\beta, r, \delta\rangle$ which is a subgroup of G_{2} is actually transitive on this set. Therefore G_{2} is transitive on $\{(5)$, (8), (11), (14) \}.

We now determine all collineations of G_{2} that fix M_{5}. Obviously a mapping of the type $M \rightarrow A^{-1}(4 M) A$ cannot fix M_{5}. Thus the subgroup of all collineations of G_{2} that fix M_{5} must be generated by the mappings of the form $M \rightarrow A^{-1} M A$. Since a conjugation collineation fixing M_{5} fixes M_{11} also, the subgroup of G_{2} fixing M_{5} is S. A coset decomposition of G_{2} by S gives $G_{2}=U S . \theta x$, where θx are chosen such that M_{5} is mapped onte each of M_{5}, M_{11}, M_{8} and M_{14}. Further θx may be taken from $<\beta, r, \delta>$. Thus $G_{2}=<\beta, r, \delta$, $S>$ and $\left|\dot{G}_{2}\right|=16$.

Let $C=<\alpha, \beta, r, \delta, S>$, Then δi divites the sel of theal point imo 4 orbits $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ and O_{4} of lengths 6, 12. 4.4 given hy

$$
\begin{aligned}
& O_{1}=\{(0),(1),(2),(3),(4),(25)\} ;(9,-\{(5),(6), \ldots(16)\} \\
& O_{4}=\{(17),(18),(19),(20)\} ; \quad O_{4}:\{(21),(22),(23),(24)\} .
\end{aligned}
$$

4. Transiation complemene of π

In this section we show that (is in fact the trambation complement of π. The scarcity of collincations in π makes it extremely diffreult to prove the non-existence of certain types of collineations m π.
4. 1 Definition: Two ideal points (i) and (i) ate said to be companions under a collineation group H, if every colimeation from $H /$ that fixes ($)$) bixes (j) and vice versa. That is a collineation from H either fixes both (i) and (i) or moves both (i) and (j).

The significance of companions is that any collineation must map companions onto companions. Companion of an ideal point under a collineation group may fail to be companion under a different collineation group. But a companion under a subgroup H is a possible companion under a bigger group of which H is a subgroup.
4.2 Lemma: The ideal points (0) and (25) are companions under the translation complement.

Proof: It suffices to prove that there is no collineation of π fixing one of (0) or (25) and moving the other. Since α^{3} is a collineation flipping (0) and (25) it is enough if we consider the situation when (25) is fixed and (4) is moved onto an ideal point other than (25). Since the orbit structure of G_{2} on the set of ideal points is $\{(0)\},\{(25)\}\{(1),(4)\}$ $\{(2),(3)\},\{(5),(11),(14),(8)\},\{(6),(7),(12),(13)\},\{(15),(9),(16),(10)\}$ $\{(17),(20),(18),(19)\},\{(21),(23)\},\{(24),(22)\}$, we consider the possibilities of a collineation of π fixing (25) and moving (0) onto one ideal point in each of the orbits. The 'inherited property' condition requires that $\Gamma_{25, i}$, where (i) is one ideal point in each of the orbits, camot have matrices whose determinants are $1,2,3$ and 4 . This is because C_{6} has natrices with determinants 1,3 and 4 only. Further $\Gamma_{25, i}$ should have a matrix M such that $M, 2 M, 3 M, 4 M \varepsilon \Gamma_{25, i}$. When $i=5,17,21$ an inspection of Table I reveals that there are matrices in $\Gamma_{25,5}, \Gamma_{25,17}$ and $\Gamma_{25,21}$ with determinants $1,2,3$ and 4 contradicting the 'inherited property' condition. When $i=1, \Gamma_{25,1}$ has 4 matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right),\binom{1}{2}$, $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ corresponding to $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 2\end{array}\right),\left(\begin{array}{ll}0 & 3 \\ 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in $\Gamma_{25,0}$, , whose determinants are $1,2,3$ and 4 , contradicting the 'inhetited property' condition. For $i=2,9,12$ and 22 a similar computation shows that $\Gamma_{25,2}, \Gamma_{25,9}, \Gamma_{25,12}$ and $\Gamma_{25,22}$ have matrices with determinants 1 , 2, 3 and 4 which contradicts the inherited property condition. The working in each case is straightforward and is omitted to save space. Hence the lemma.

Table II
Fixed points

Collineation	Fixed points	Collincation	Fixed poinis
α^{4}, α^{8}	$(17)(18)(19)(20)(21)(22)$	$\alpha^{5} r$	$(10)(16)(18)(20)$
α^{6}	$(23)(24)$		
σ^{12}	$(0)(1)(2)(3)(4)(25)$	$a^{6} r$	$(0)(25)(21)(23)$
r	all ideal points	$\alpha^{7} r$	$(15)(17)(19)(9)$
αr	$(0)(25)(22)(24)$	$\alpha^{8} r$	$(2)(4)(22)(24)$
$a^{2} r$	$(6)(12)(20)(18)$	$\alpha^{9} r$	$(8)(14)(18)(20)$
$a^{3} r$	$(2)(4)(21)(23)$	$\alpha^{11} r$	$(1)(3)(21)(23)$
$a^{4} r$	$(5)(11)(17)(19)$	$\alpha^{11} r$	$(7)(13)(17)(19)$

4.3 Lemma: There is no collineation of π which maps (0) and (25) outside orbit O_{1}.

Proof: Since a collineation maps companions onto companions only, we have to determine companions in orbits $\mathrm{O}_{2}, \mathrm{O}_{3}$ and O_{4} under the collineation group G, so that they are possible companions under the translation complement.

We list in Table II the fixed points under collineation group G.
An examination of Table II reveals that companions of (0), (5), (17), (21) under G are (25), (11), (19), (23) respectively. Since (0) and (25) are companions under the translation complement, the possible companions of (5), (17) and (21) under the translation complement are (11), (19) and (23) respectively. A reference to Table I once again reveals that in $\Gamma_{5,17}, \Gamma_{17,19}$ and $\Gamma_{21,23}$ there is no matrix M such that $M, 2 M, 3 M$ and $4 M \varepsilon \Gamma_{5,17}, \Gamma_{17,19}, \Gamma_{21,23}$. Hence there is no collineation that maps (0) and (25) onto ideal points outside O_{1}.
4.4 Theorem: The group $G:<\alpha, \beta, r, \delta, S>$ is the translation complement of π. $|G|=96$ and the quotient group G / S is a dihedral group of order 24 . Further G divides the set of ideal points into four orbits of lengths $6,12,4$ and 4.

Proof: From the fact that G accounts for all collineations that fix (0) and (25) and all the collineations that flip (0) and (25) it follows that the translation complement of π is G. There are no collineations of π which fixes either (0) or (25) and move the other. There are no collineations that move (0) and (25) simultaneously outside orbit O_{1}. The group G is transitive on O_{1}, containing the six ideal points (0), (1), (2), (3), (4) and (25). Since any collineation that fixes (25) fixes (0), the group of all collineations that fixes (25) is G_{2} itself. A coset decomposition of G by G_{2} gives $G=U G_{2} x_{i}$, where x_{i} s are those collineations that map (25) onto each of the six ideal points in O_{1}. Further $x_{i} \mathrm{~s}$ may be taken from $\langle x\rangle$. Thus $|G|=16 \times 6=96$. Other parts of the theorem are obvious.
Lemma: Every matrix representation set of π has a trivial nucleus.
Proof: It is known that if every colineation of π either fixes more than two ideal points or fixes two ideat points and divides the remaining ideal points into orbits, at least two of
which have unequal lengths, then every matix representation set has only trivial nucleus. An examination of Table If reveals that on has either no fixed points or has four or more fixed points under any collincation of the translation complement. Hence the lemma.

5. Conclusion

The known translation planes of order 25 that have been reported so far are the following.
a) The fifteen planes reported by Davis ${ }^{4}$
b) The planc reported by Rao and Rao ${ }^{\text {s }}$
c) The plane reported by Rao and Satyanarayana ${ }^{\text {a }}$
d) The two exceptional planes reported by Walker ${ }^{\text {? }}$
e) The two flag transitive planes reported by Fopiser ${ }^{8}$.

The fifteen planes reported by Davis are such that at least one of the matrix representation sets admit nontrivial nuclei. One of the matrix representation sets of Rao and Rao and the plane of Rao and Satyanarayana admit nontrivial nuclei. It has been shown by Rao and Satyanarayana ${ }^{6}$ that one of Walker's planes is indeed a C-plane, one of whose matrix representation sets admit nontrivial nucleus. Thus the translation plane π, now under consideration is distinct from the 18 planes reported so far.

However the two flag transitive planes of Foulser and one of the exceptional planes of Walker are such that all the matrix representation sets admit a trivial nucleus. But the orbit structure of Walker's plane is 1,25 and the flag transitive planes have only one orbit of length 26 . Thus π is a new translation plane of order 25 with the smallest translation complement.

Acknowledgernent

It has been brought to the notice of the authors by a referee that this spread set finds a place in the unpublished thesis of Oakden ${ }^{10}$. The authors have arrived at the spread set independently and the exposition of this paper is in a different spirit altogether. However, the authors thank the referee for the information.

References

1. Dembowski, P.
2. Andre, J.
3. Maduram, D.M.
4. Davis, E.H.

Finite geometries, Springer-Verlag, New York, 1968, p. 220.
Uber nicht Desargussche Ebenen mit transitiver translation gruppe, Math. $Z ., 1954,60,156-186$.
Matrix representation of translation planes, Geom. Dedicata, 1975, 4, 485-492.
Translation planes of order 25 with nontrivial X-OY perspectivities. Prec. 10th S.E. Conference on Combinatorics, Graph Theory and Computing Fiorida Aulantic University, Beta Raton, Apnil 2-6, 1979, 341-348.
 and Kuppu Swamy Racs, K. Muath. Soc, 1978, 19, 351-362.
6. Narayana Rao, M.L. On a C'phate of order 25, Bull. Aust. Math. Soc, 1984, 30, 27-36. and Satyanarayana, K.
7. Walker, M.
8. Foulser, D.A.
4. Satyanarayana, K.
10. Omiden, D.I.

Some new tramsation nets, Geom. Dedicuta, 1973, 2, 205-211,
Solvable thag transitive alfine groups, Math. Z., 1964. 86, 191-204.
On some Iranslation plasies of square and cube orders and their translation complements, Ph.D. Dissertation. Osmania University, 1982.
Regulus-contatising sprads of PG(3,5), Ph.D. Thesis, University of Toronto, 1973.

