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Abstract 

Vanous trmslalion plancr of order 25 have so far been con\iiocted and rhek translation complemenrs 
delermmed. All thcsc planes except the two flag tramitive plancr of order 25 of Fodsrr and one d the 
exceptional planer of Walker arc such that at least one ot tbcir rnatrix >cprcsenlation sets admit "on-trivial 
nuclca In this paper we construcl a ncw'translatton plane af order 25, all of whosc matrm repicsentatton sets 
admlt only trivial nucleus. Further thc triln\latmn complement rnndulo the subgroup ot scalar collineations is a 
dihedral group of order 24 and is the smallc$t whcn compared wllh all the plane\ reported ro far. The 
translat~on complcmcnt of this plaoc divrdes thc Eet of ideal pomt5 into 4 orbits of lengths 4, 4, h and 12 

Key words: Translation plane, orbit of ideal punts.  

A one spread set % over GF(5) is a collection of 25 matrices including the zero and the 
identity matrices such that the difference of any !wo distinct matrices of '% is 
nonsingdarl. 

Thc reader is referr& to references 1-3 for the preliminary results on spread sers and 
the associated collineations in the corresponding translation plane>. 

For a fixed j and k we define b j  

with the usual operations of inverse whenever M(, and Mz5 appear in the above 
expression. It is known3 that there exists a collineation of n mapping (25) onto ( j )  and (0) 
onto (k )  if and only if there are A,  17 E GL (2,s) such that A-' r,.k = % [J { ( w )  1.  In 
Particular if I ,  21, 31, 4I&, then there must be M E TI,, such that.M, 2 M ,  31M, 4M 6 T,.A- 
Let this property be called 'inherited property'. 
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proof: Since % has 25  matrices including thc z t w  ;urd rlrc identity matrices, it suffices to 
show that / .t-Y / F (1. .Y, 1' r. '6 m d  X / 1'. I f  eithcr .Y or Yis the zero matrixthen the 
result follows from the i x r  th:ir the ~wnzero matrices of %, i1rc noirsingular.   hi^ is also 
true when X and Yare scalar matrices. I f  A' irnd 1':ir-e such t h a t  Xis  a scalar matrixand 
Y =  M,, 5 s i S 24 then (,Y--I.') is nonsin~u1:lr since all thc: matrices in '8, other than the 
scalar ~natrices have irreducible characteristic poignoiniiiis. Suppose X and y are 
nonscalar matrices so that X = &I,, Y .= M,. i f j .  'l'hvn c u ( h f , )  = M, .. , ,  a(M,) = M,,,, 
Now 1 Mi+, - M ~ . , ~  I = 3 I (a :i; I I W:W I I w,- lw ! I  (M,+31)-' 1 1  (A:) 1. 
~ h u s  ( M ,  , , - M, + I )  is rnonsingul;kr if and only if (:MI -. M,) is nonsinpular. An inspection 
of l',,,i; 17 2nd 1'25,,, it1 l'nhle B rcvcals that Ms--?+I,, ] > 5 ;  MI,-Mi: j >  17; 
&-M,.  j > 21 are honsiilguiar. Thc theorem now l'<illows fro% repeated appl~cationof 
the fact that M , ,  - M, ,  , is nonsingillar if and only if MI -- M ,  is nonsingular. Hence the 
theorem. 

We observe that the spread set 'C is not closed unifer matrix addition and therefore 
coordinatizes a non-desargusian translation plane n. h r t h c r  %' has 6 matfices.with 
determinant 1. 12, matrices with determinant 3 and h matrices with determinant 4. That is 
the determinant structure of% is L-6, 2-0. 3-12, 44). No matrix M i n  '% other than !is 
such that M. 2M. 3 M  and 4 M  r '6. 

3. Some cdlineatiuns of .ir 

3.1 The mapping a defined in Section 7 induces :I colli~~cution on rr whose action on the 
set of ideal points is seen to be 

a =  (0.1. 2,25.3.4) (5, .... 16) (17, ... 20) (21,  .. . 24). Let P he the mapping definedby 
P : M --L (d !)-' M (A :). Then ,8 maps the matrix ( y  :;) onto (2 "2). An examinationof 
Table I reveals that for each C 2) 6 % , ~3 (:( I;) t 'f:. Thus p induces. a collineation on s 
whose action on the ideal points is given by p : (o) (25) ( I )  (2)-(3) (4) ( 5 3 )  (6,121 
(7.13). (8-14) (9.15) (10,16) (17,19) (18.20) (21,23) (22.24). 

Let r be the mapping defined by r: M -+ (1: :,)-' 4&f(: :,). Then for each (: 2 ) ~  (6 
r (? b,) )= (% 23 :n 42. Hence r induces a collination whose action is given by 

Let f i  be the mapping defined by S : M 4 (g A)-.' 4M(; :,). Then for (", 2) E U 3  

6  (", f;) = (:,d 3 E %. Hence 8 induces a collineaticn whose action on the set of idea' 
points is given by 

6 :  (0) (25) (1,4) (2,3) (5,14) (6.13) (7.12) (8,l.T) (9.10) (15,16) (17,18) (19$20) 
(22,24) (23). 
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A mapping of the form M +  A - ' M A ;  A E C L ( 2 , S )  such that for each M E  'e, 
A-IMA q induces a coilineation on  n called a conjugation collineation. Since there are 
only two matrices in y4, P =  (I :) and L?= ( j  7) in 'C, with the same characterirtic 

A* + 2 h  + 3 ,  the group of  conjugation coliineations must !eavc { p, Q )  
But p is 3 conjugation collincation mapping P onto Q. Thus the group O( 

mllineations is actually transitive o n  { ? , a ) .  
We now determine all the conjugation collineations that fix P. But any conjugation 

collineation fixing P must aiso fix Q. Thus the group of all conjugation coiiineations 
fixing P consists of the common elements of  thc normaiizcr of P and the normalizer of Q. 
Since the characteristic polynomials o l  P and Q are irl-educible over GF(5).  their 
normalizers are the non-zcl-o elements of the fields of tnatrices generated by {I ,  ?) and 
( / , Q ) ,  buf these fields, though isomorphic, have distinct matrix representations having 
only I, 21,3l and 41 as common element. Conjugation ot matrices in % by 1, 21, 31 and 41 
obviously induce collineation. These coilineations are also called scalar collineations. Let 
the group of scalar coliincations be denoted by S. Then S is of order 4 .  

Thus the group of conjugation collineation fixing P is the group S. Then GI  is 
transitive on { P ,  Q }  and the subgroup consisting of all conjugation collineations fixing P 
is S. A coset decomposition of G I  by S gives G I  = SUSp  and ( G I  I = 4 X 2 = 8 .  

3.3 Collineations fixing (0) and (25) 

Any coilineation fixing (0) and (25) is induced by a mapping of the type 
d : M -. A - ' M B ,  A , B  E GL(2 ,S )  such that for each M E %, A-' M B  F %. Since % has 
no matrix M other than 1, 21, 31, 41 such that M, 2M,  3 M ,  4M e K . 4  must map 1. 21, 31 
and 41 among themselves. This implies that / A-'B I = k i .  k  = 1 ,  2 ,  3, 4. The mapping 
then takes the form q5 : M + A - ' ( k M ) A ,  k = 1 ,  2 ,  3, 4.  If k = 2 the characteristic 
polynomial structures of % and 2 % d o  not tally. Therefore M  4 K 1 ( 2 M ) A  does not 
Induce a collineation on  n. A similar argument shows that M + A - ' (3M)A also does not 
induce a collineation on  n. 

Thus the set of all collineations that fix (0) and (25) are given by mapping of the type 
M - i  A-'MA or  M -t A - ' ( 4 M ) A .  An inspection of Table I reveals that Ms, MI , ,  4M14 
and 4M8 are the only matrices with the same characteristic polynomial h2+2h +3,and 
4M5, 4M,,, M14 and M8 are the only matrices with the same characteristic-polynomial 

3h + 3. This implies that the group of collineation f i ing  (0) and (25) is invariant on 
the set of ideal point consisting of { (5 ) , (11) ,  ( 8 ) ,  (14) ) .  But <P, r ,  8 > which is a 
subgroup of G 2  is actually transitive on  this set. Therefore Gz is transitive on {(5), (81, 
(1% (14)). 

We now determine all collineations of G2 that fix Ms. Obviously a mapping of the type 
M +  A - ' ( ~ M ) A  cannot fix MS.  Thus the subgroup of ali collineations of GZ that fix Ms 
must be generated by the mapping of ijle M -, A -  'MA. Since a conjugation collineation 
fixing Ms fixes M , ,  also, the subgroup of G2 fixing M s  is S. A coset decomposition of G2 
by gives C, = U S. ex, where &s are chosen such that Mi, is mapped onto each of 
M,, MI,, M,  and M,,. Further &s may be taken from <p, r, 8 >. Thus 6 2  = <P, l. 6, 
$1 and I C2 / = 16. 



4.1 Lkfilirion: Two i~ical points (i) iind ( 1 )  are stlid to bc companions under a 
collincntion group I ! ,  it' every co~~i l lc :~l i~w 110111 !l (hill fixes (:) fixes (j) and vice ver,so, 
That is a collincation from I I  cithcr fixeb hot11 ( i )  :ind ( 1 )  r11- inovcs both ( I )  and (j). 

The significance of con~panions is  that ~ n y  collincatio~~ must mirp companions onto 
companions. Companion o f  an ideai point undcr i l  cr)l!ineation group may fail to be 
companion under a diffcrcnl collincatioir group. But i i  cr~n~panioli under asubgrouptiis 
a possible companion ondcr a higgcr g ~ o u p  id attic!> If is a subgroup. 

4.2 Lemma: The ideal points (0) and (74) :m comp:~nions under the translation 
complement. 

Proof: It suffices to prove that there is no collineation of n fixing one of (0) or (25) and 
moving the other. Since aJ is a collinc3tion flipping (0 )  :~nd (25)  it is enough if we 
consider the situation when (25)  L-, fixed and (Oj  is moved onto an ideal point other than 
(25) .  Since the orbit structure of C2 on the sct of ideal polnts is {(O)}. {(25)]  {(I), (4)) 
{ (2 )>  ( 3 ) } 9  { ( 5 ) ,  (111, (14). (811, { ( 6 ) ,  (7). (12), (13)k, (y),, (16), (lo)) 
((17). (20), (18). (lg)}, { (21) , (23)} ,  { ( 2 4 ) ,  ( 2 2 ) ) ,  we consider the possibilities of a 
collineation of m fixing (25)  and moving (0)  onto one icieiil point in each of the orbits. 
The 'inherited property' condition requires that where (i) is one ideal point in each 
of the orbits, cannot have matrices whose determinants :Ire 1, 2 ,  3 and 4. This is because 
% has matrices with determinants 1, 3 and 4 only. Fttrthcr 1;?,, should have a matrixM 
such that M ,  2 M ,  3 M ,  4M E rZ5,,. When i = 5 ,  17.2 1 ;in inspection oTTable I reveals that 
there are matrices in r,,,,, T,,,,, and r,,,,, with determinants 1.2. 3 and 4 contradicting 
the 'inherited property' condition. When i = 1, 1-25, has 4 matrices (:I ';), (q a), (: 
(5 4) corresponding to (g e), ( Z  :), (q 21, (6 y )  in I;,.~, whose determinants are 
and 4, contradicting the 'inhet~ted property' condition. For i = 2.9, 12 and 22 a similar 
computation shows that l?25,2, l?25,9r r2, 12 and r2s,22 have matrices with determinants 
2 ,  3 and 4 which contradicts the 'inherited propertyq condition. The working in each care 
is straightforward and is omitted to save space. I-lence the lemma. 
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Table 11 

Fid pin56 
_II_- - 
Colllneation Rxcd pulnts Collincat~un Fmcd pointr 

---- 
.i, mi (17)(18) (19)(20)(2!)(22) u5r (10)(16)(!8)(20) 

(23) (241 

4.3 Lemma: Therc is no collineation of which maps (0) and (25) outside orbit 0,. 

Proof: Since a collineation maps companions onto companions only, we have to 
determine companions in orbits 0 2 ,  0 3  and 0 4  undcr the coliineation group C, so that 
they are possible companions under the translation complement. 

We list in Table Ii the fixed points under coilineation group G. 

An examination of Table I1 reveals that companions of (0 ) ,  (5). (17), (21) under G a r e  
(25). (I l) ,  (19). (23) respectively. Since ( 0 )  and (25) are companions under the 
translation complement, the possible companions of (S) ,  (17) and (21) under the 
translation complement are (1 l), (19) and (23) respect~vely. A reference to Table I once 
again reveals that in T5,17, r17,19 and r21,23 there is no matrix M such that M ,  2M, 3M 
and 4M e T,,,,, TI,, ,,, 1;,,Z3. Hence there is no collineation that map? (0) and (25) onto 
ideal points outside 0,. 

4.4 Tt~eorem: The group C : <a, P ,  r, 8, S> is the translation complement of n. 

i G / = 96 and the quotient group CIS is a dihedral group of order 24. Further C; divides 
the set of ideal points into four orbits ot lengths 6, 12, 4 and 4.  

Proo) From the fact that G account.; for all witineations that fix (0) and (25) and all the colli- 
neations that flip (0) and (25) it follows that the translation complement of 71- is G. Therc are 
no colliueations of T which fixes either ( 0 )  or (25) and move the other. There are no 
collineations that move ( 0 )  and (25) simultaneously outside orbit Ol. The group G is 
transitive on O,, containing the six ideal points (0), ( I ) ,  f2), (3 ) ,  (4) and (25). Since any 
Coilineation that fixes (25) fixes ((I), the group of ail collineations that fixes (25) is G2 
itself. A coset decomposition of G by G2 gives G = U G2xi, where x,s are those 
coilineations that map (25) onto each of the six ideal points in 0,. Further x,s may he 
taken from <a>. ~ h ~ s  1 G ( = 1 6 x 6  = 96. Other parts of the theorem are obvious. 

Lemmu: Every matrix representation set of n has a trivial nucleus. 

Proof It is known that if every cotlineation o t  .rr either fixes more than two idcal points or 
fixes two ideal points and div~des the remaining ideal points into orbits, at lea71 two of 
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5. Conclusion 

The known translation planes of oniet 2.5 that have been reported so far are the 

following. 
a) The fifteen planes reportad by Drrvis" 
b) The plane reported by Rao and RaoS 
c) The plane reported by Rao and Satymarayanah 
d) The two exceptional planes reported by Walker7 
e) The two flag transitive planes reported by FopiserH 

The fifteen planes reported by Davis are such that at least one :of the matrix 
representation sets admit nontrivial nuclei. One of the matrix representation setsof Rao 
and Rao and the plane of Rao and Satyanarayana admit nontrivial nuclei" It has been 
shown by Rao and Satyanarayana" that one of Walker's planes is indeed a C-plane, one 
of whose matrix representation sets admit nontrivial nucleus. Thus the translation plane 
r, now under consideration is distinct from the 18 planes reported so far. 

However the two flag transitive planes of Foulser and one of the exceptional planesof 
Walker arc such that all the matrix representation sets admit a trivial nucleus. But the 
orbit structure of Walker's plane is 1, 25 and the flag transitive planes have only one orbit 
of length 26. Thus -rr is a new translation plane of order '75 with the smallest translation 
complement. 
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