J. Indian Inst. Sci., 66, Aug. 1986, pp 543-545 Oludian Institute of Science, Printed in India.

Short communication

Note on pulsatile viscous flow in a tube of elliptical cross-section

A. RAMACHANDRA RAO

Department of Applied Mathematics, Indian Institute of Science, Bangalore 560 012.

Received on May 15, 1986; Revised on July 9, 1986.

Abstract

Exact solution of the Navier-Stokes equations is obtained for a pulsatile flow of an incompressible viscous fluid in a tube of elliptical cross-section when the pressure gradient is prescribed by Fourier series in time.

Key words: Pulsatile flow, Mathieu functions.

1. Mathematical formulation

The importance of the study of pulsatile flows in channels and pipes is well known. Uchida¹ has obtained the exact solution of pulsating laminar flow superposed on the steady motion in a circular pipe. The flow is assumed to be undirectional and has a non-vanishing mean. Here, we consider the same flow conditions as in Uchida¹ but in a pipe of elliptical cross section given by $x^2/a^2 + y^2/b^2 = 1$ in Cartesian coordinate system. For this flow Navier-Stokes equations reduce to a single equation

$$u_{t} = -p_{z}/\rho + \nu(u_{xx} + u_{yy}), \qquad (1)$$

where u(x,y,t) is the velocity z-direction, ρ is the density, p is the pressure, ν is the kinematic viscosity and subscripts denote partial differentiation with respect to that variable. Following Uchida¹, we take

$$-p_{2}/\rho \approx p_{0} + \sum_{n=1}^{\infty} p_{n} \exp(int), \ u = u_{0} + \sum_{n=1}^{\infty} u_{n} \exp(int),$$
(2)

and substituting (2) in (1), we get

$$u_{nxx} + u_{nyy} + \alpha_n^2 u_n = p_n / \nu, \ \alpha_n^2 = -\ln/\nu, \ n \ge 0.$$
 (3)

The boundary conditions for the flow are given by

$$u_n = 0 \text{ on } x^2/a^2 + y^2/b^2 = 1, \ n \ge 0,$$
 (4)

as the velocity is zero on the boundary of the tube.

543

2. Exact solution

By introducing elliptic cylindrical coordinates (ξ , η , z) defined by

$$x = c \cosh \xi \cos \eta, y = c \sinh \xi \sin \eta, z = z;$$
 (5)

the equation (3) transforms into

$$u_{n,\xi} + u_{n\eta\eta} + \alpha_n^2 (c^2/2) \quad (\cosh 2\xi - \cos 2\eta) \ (u_n - p_n/\nu \alpha_n^2) = 0, \quad n \ge 0.$$
(6)

The corresponding boundary condition is

$$u_n = 0$$
 on $\xi = \xi_0, n \ge 0$. (7)

The solution of (6) satisfying (7) is given in terms of Mathieu functions as $MeLachlan^2$ and the final solution is

$$u = \frac{p_0 c^2}{8\nu \cosh 2\xi_0} \quad (\cosh 2\xi - \cosh 2\xi_0) \ (\cosh 2\xi_0 - \cos 2\eta)$$

$$+\sum_{n=1}^{\infty} \frac{p_n \exp(int)}{p \alpha_n^2} \left[1 - 2\pi \sum_{m=0}^{\infty} \frac{A_0^{(2m)} C e_{2m}(\xi, -\theta_n) c e_{2m}(\eta, \theta_n)}{L_{2m} C e_{2m}(\xi_0 - \theta_n)} \right]$$
(8)

٦

where Ce_{2m} and ce_{2m} are modified Mathieu and Mathieu functions respectively, $A_0^{(2m)}$ is a known constant, $\theta_n = \alpha_n^2 c^2/4$ and $L_{2m} = \int_0^{\pi} ce_{2m}^2 (\eta, \theta_n) d\eta$. The orthogonal property of Mathieu functions ce_{2m} which are complete in interval $(0, 2\pi)$ is used to obtain the above result. The approximate series solution for the special case of (7) with n = 1 which is not complete has been presented recently by Mehrotra *et al*³. The complete exact solution for a pulsatile flow in an elliptic cylinder is given by (8).

The results corresponding to a circular cylinder are obtained by taking the eccentricity of the ellipse as zero (a = b or $c \rightarrow 0$). As $c \rightarrow 0$, the systems of confocal ellipses become system of concentric circles. In this limit, we have from Mclachlan²,

$$Ce_{2m}(\xi,\theta_n) \to J_{2m}(\alpha_n r), \quad Ce_{2m}(\xi_0, \theta_n) \to J_{2m}(\alpha_n a_0)$$

$$Ce_{2m}(\eta,\theta_n) \to \cos_{2m}\theta, \quad c_{c0}(\eta,\theta_n) \to A_0^{(0)} = (2)^{-1/2},$$

$$A_0^{(2m)} \to 0, \quad m \ge 1, \quad L_{2m} \to \int_0^{2\pi} \cos^2 2m\theta \, \mathrm{d}\theta = \pi$$
(9)

where $r^2 = x^2 + \dot{y}^2$ and a_0 is the radius of the cylinder. Using (9) in (8), we obtain

$$u = -p_0(a_0^2 - r^2)/4 + \sum_{n=1}^{\infty} (p_n/\nu \alpha_n^2) \exp(int) [1 - J_0(\alpha_n r)/J_0(\alpha_n a_0)], \quad (10)$$

which coincides with the result given by Uchida¹.

544

Acknowledgement

The author is thankful to the Editor for his suggestions.

References

L. UCHIDA, S.

2. McLachlan, N. W.

3. MEHROTRA, R., JAYARAMAN, G. AND PADMANADHAN, N. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe, ZAMP, 1956, 7, 403-422. Theory and application of Mathieu functions, Oxford, 1947.

Pulsatile blood flow in a stenosed arterv-a mathematical model, Med. Biol. Engng. Comput., 1985, 23, 55-62.