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Abstract

Two examples have been presented which show that there exist some p, ¢ for which M{y] = ~ (py') + gy is
separated and M[y] is in the limit-2 case at infinity and there exist some p, ¢ for which M[y] is separated but
My s in the Himit-3 case at infinity.

Key words: Separation, fourth-order differential expression.

1. Def. 1. The differential expression Mf] = — (pf @)D+ gf, where both p and ¢ are
realvalued and p" is absolutely continuous on {0, X] for all X>0, is said to be in the
limii-point case at infinity if only one solution of M[f] = Af belongs to L*0, ) for all A
with imA # 0[L%(0, %) denotes the set of all complex-valued functions f such that [f7 is

Lebesque integrable on (0, =)},

Def. 2. Let A(p, q) C L0, ©) be defined as follows: £ € A(p, ) if (i) f € L*(0, ), (ii) Fo
is absolutely continuous focally on [0, »0) and (i) M[f] € LX(0, =) is said to be separated
if

FEA P @y == (pf )" and gf € LX0,0)*". an

Itis known [Ch. L1} that if M[-] is separated then M[’] is in.the limii-point case at
infinity but not vice versa. That is, there exists M{-] which is in the limit-point case at
infinity but which is not separated [vide §7,5].

We further know™® that if M[-] is in the limit-point case, then M%-], where, with
suitable p, g,

Mf] = D) ~ (2pg —pp O + (g = (0a™) V)
may be in the limit-2 or in the limit-3 case at infinity i.e., Mf) = ,Af has exactly wo or
three linearly independent solutions respectively belonging to L*(0, ) for any A with
imA#q.
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Asto be separated” is a stronger condition on M-, than “toibe in the limit-point caee
one may hope that a separated Mf-] will generate an M~‘H which can be defi
qualified as to be m the limit-2 or in the limie-3 case at infinity. The idea of this Present
note s to exhibit that the ’xuu\ui situation is different. That is there exist SOME p, ¢ for
which M{-] is seprrated ;‘md M) s i the Hmit-2 case at miinity and some p. g for whigy
M{-Fisseparated but A Lis in the limit-3 case at infinity. The examples presented here
are the following
Bx. 1. plx)= X g{x) = 3x, v {h ey

Lx. 20 pla) = 21 qlay = ux" S for niad for x x"fl."t—},

itely

In both the examples, M[-]is separated while in Example 1, M- is in the limit-2 case
at infinity but in Example 20 M7[-] is the limie3 case at infinity. We diccuss the above
examples in the following section.

2. The fact that in both the above exiriples M{-]is separated follows' from separation
theorem 1, since the coctlicients poand ¢ of M{] satisfv the conditions of the said
theorem.

In Example 1, the solutions of M[y] = 0 are v and 1/v" which show that M[1is in the
limit-point case at infinity since x 4 £3(1. %) and Ix' ¢ L1, =) while the solutions of
M y] = O for the same p, g are 1, x, 1%, Hx' which show that M=[-] is in the limit-2 case
atinfinity since the solutions 1 and x are not in £7(1, =) but /v and 1/x* are in LY(1,%).

In Example 2, the solutions of M[y] = 0 are x and x""(n & 4) which show that M[-Jisinthe
limit-point case ar infinity since x ¢ L31i.%) and x "¢ L*(1,%) for n = 4 while the
solution: of M*[y] =0 for the same p, ¢ are x, /4", x™"*% and x> of which the
solutionsx¢ Lz(l,OO) but the rest of the solutions are in L1, %) for 7 2 4 showing M2[~]
is in the hmit-3 case at infinity.
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