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Abstract | Recent interest in the field of quantum information processing has given rise to a

flurry of theoretical as well as experimental activity, on entanglement, a purely quantum

mechanical phenomenon. We briefly review quantification of entanglement and its use in

carrying out quantum tasks like teleportation. The measures are primarily concerned with

bipartite entanglement. Systems such as spin chains and quantum dots have been identified

to execute some of these quantum protocols. Experimental realization of quantum

networks, especially in the form of spin chains, has been dealt here, along with methods to

extract the content of entanglement from experimental data. We explicate the effect of

environment on quantum networks and how to extract quantum information before the

system decoheres.

1. Introduction
Correlations, peculiar to the quantum world, have
led to prolonged debates about the nature of many
particle quantum systems. The fact, two systems
together can, in some precise sense, represent
more than the independent subsystems, is at the
root of this debate. Schrödinger1, realized the
physical importance of non-separability of multi-
particle quantum systems and coined the word,
“entanglement”. Einstein, Podolsky and Rosen (EPR)
then utilized this property of wave-functions to
highlight the possibility of “spooky action at a
distance”, in the quantum world2. Quantitative
understanding of quantum correlation arose from
Bell’s work3, which led to a precise difference
between quantum mechanics and deterministic
hidden variable theories. It is, hence, quite satisfying
that this correlation, in recent times, has led to many
profound developments in quantum computation
and information theory4,5. Entanglement has played
a significant role in many practical applications, like

quantum teleportation, dense coding, information
splitting, quantum key distribution and quantum
games, to name a few.

In the realization of these protocols, finite
dimensional Hilbert spaces have played a significant
role. The measure of entanglement, for multipartite
systems in finite dimensional Hilbert spaces, is still
an area of active research. For continuous variable
systems, apart from the two particle Gaussian states,
not much is known. It is interesting to note that in
the area of quantum information theory, the well
studied physical systems, like harmonic oscillator
and hydrogen atom, are yet to make a significant
impact.

In the subsequent sections, we briefly review
certain topics, where our own research interests
lie. First we give a brief exposition of entanglement
and its measure in section 2. Then we introduce
teleportation through entangled channels, where
we also include teleportation in non-maximally
entangled states. In section 3, we discuss the
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experimental realization of entangled channels and
how to induce an entangling gate in spin chains,
by controlling the sign of the exchange interaction
in a low spin, low dimensional system. We also
support our results with density functional theory
calculations, which match with the experimental
results to a great extent. In the following section
(4), we deal with entanglement witnesses in spin
chains and how to extract the entanglement content
from experimental data. Here we illustrate magnetic
susceptibility as an ideal entanglement witness in
the case of spin chains and fit experimental data to
demonstrate this claim. We then cover teleportation
in the presence of environmental effects, leading to
decoherence, in section 5. An interesting feature
here is bath induced entanglement. In the following
section (6), we analyze state characterization of three
particle states and their utility in teleportation. This
is followed in section 7, by physical realization of a
three particle entangled state, from a product state,
by switching on Heisenberg interaction. Here, we
also extend our methodology to a N-qubit channel.
It is followed by a brief conclusion and future
directions in the final section.

2. Role of entanglement in teleportation
Physical realization of entangled bipartite systems
are quite common. The fact that fermions and
bosons possess symmetric and antisymmetric wave-
functions, respectively, naturally leads to entangled
states. For example, a two particle fermionic system,
where, the space part is symmetric under exchange
of particles, has the spin part in the singlet form:
|ψ〉singlet =

1
√

2
[| ↑〉1| ↓〉2−| ↓〉1| ↑〉2], where | ↑〉

= |0〉 =

(
1
0

)
and | ↓〉 = |1〉 =

(
0
1

)
are the two

orthogonal states, known as qubits. This is a member
of the well known Bell states:

|ψ±〉 =
1
√

2
[| ↑〉1| ↓〉2±|↓〉1| ↑〉2], (1)

|φ±〉 =
1
√

2
[| ↑〉1| ↑〉2±|↓〉1| ↓〉2], (2)

which has been extensively used in quantum
computation. Before proceeding further, it is
instructive to study the nature of entanglement,
in these so called maximally entangled states. For
this purpose, the density matrix approach is well
suited, where the density matrix, ρ= |ψ〉〈ψ|, for a
pure state. Working it out explicitly for one of the
cases, e.g., the singlet state, |ψ−〉=

1
√

2
[| ↑〉1| ↓〉2−

|↓〉1| ↑〉2], we obtain,

ρ= |ψ−〉〈ψ−| = ρ12=
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 (3)

To quantify entanglement, one computes the
reduced density matrix of this state by tracing out
one of the particles, say particle 2, which leads to,

ρred
1 =

1

2

(
1 0
0 1

)
. (4)

where ρred
1 represents a maximally mixed state,

containing two diagonal elements of equal value.
For a mixed state, Tr(ρ2

red) < 1. For pure states, the
reduced density matrix will have only one diagonal
element.

Given a density matrix, ρ, the von-Neumann
entropy, which is a measure of entanglement, is
given as, S(ρ) = -Tr(ρ ln(ρ). It can be expressed in
terms of the eigen values of ρ: S(ρ)=−6ili log(li),
where the logarithm is taken with base 2. For pure
states, as expected, S(ρ) is zero. In the above case
for ρred

1 , representing a mixed state,

S(ρred
1 )=−Tr(ρred

1 · ln(ρred
1 ))= log(2)= 1. (5)

Thus for this maximally entangled bipartite state,
the entanglement measure is “1”; the two particles
share ”1” e-bit of entanglement. It is worth noting
that, if the system is a product state like |0〉|1〉,
then tracing out one particle will not affect the
other particle of the state, leading to a pure reduced
density matrix. The purity of a density matrix is
checked by the idempotent nature of the matrix;
since as mentioned earlier, a pure state has only one
diagonal element.

In a seminal paper, Bennett et al.6, demonstrated
teleportation of a single qubit state, using the Bell
state as an entangled channel. In their protocol, there
are two parties, Alice and Bob, sharing the entangled
state and Alice has the state, |ψ1〉= α|01〉+β|11〉

(|α|2+ |β|2 = 1), which needs to be teleported.
Alice wishes to transfer this quantum state to Bob
without directly sending the particle to him. Any
quantum measurement performed by Alice on |ψ1〉

will destroy the quantum state at hand, without
revealing all the necessary information to Bob for
reconstructing the quantum state. However, this
problem can be circumvented by using an ancillary
pair of entangled particles 2 and 3 (an EPR pair),
where particle 2 is given to Alice and particle 3 to
Bob, such that, |ψ−〉=

1
√

2
[|0〉2|1〉3−|1〉2|0〉3]. The

important property of this entangled state is that, as
soon as a measurement on one of the particles
is performed projecting it onto a certain state,
which can be any normalized linear superposition
of |0〉 and |1〉, the other particle has to be in the
orthogonal state. Although, the particles 1 and
2 are not entangled, their combined state can
always be expressed as a superposition of the four
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maximally entangled Bell states, since these states
form a complete orthonormal basis in 4 dimensional
Hilbert space. The full state of the 3 particles can be
written as:

|ψ123〉=
1
√

2
[|ψ−12〉(−α|03〉−β|13〉)+|ψ

+

12〉

(−α|03〉+β|13〉)+|φ
−

12〉(α|13〉+β|03〉)

+|φ+12〉(α|13〉−β|03〉)]. (6)

Alice now performs a Bell measurement on particles
1 and 2, i.e., she projects her two particles onto one
of the 4 Bell states. As a result, Bob’s particle will
be in a state that is directly related to the initial
state, |ψ1〉. For example, if the result of Alice’s
measurement is |ψ+12〉, then particle 3, which is
with Bob, has to be in the state (−α|03〉+β|13〉).
Hence, all that Alice has to do after her measurement,
is to inform Bob via a classical channel the
final state of her measurement and Bob can
perform an appropriate local unitary transformation

(U =

(
−1 0
0 1

)
for the above case), on his particle

3 in order to obtain the initial state of particle 1,
since, U (−α|0〉3+β|1〉3)= α|0〉3+β|1〉3.

Note that, during the teleportation process,
the values of α and β remain unknown. By
her measurement, Alice does not obtain any
information, whatsoever, about the teleported
state. All that is achieved by a Bell measurement
is a transfer of the quantum state. Thus in
Bennett et al.’s protocol, Alice first combines the
unknown qubit with her state and performs a
Bell measurement and communicates the result
of her measurement to Bob via two cbits of
information corresponding to four Bell states.
Bob, then performs an appropriate local unitary
operation and obtains the unknown qubit.

The importance of maximally entangled states
can be appreciated from the following teleportation
protocol. One starts with a minimal deformation
for the maximally entangled state7, which form a
mutually orthogonal basis,

|φ+l 〉 =
1√

1+|`|2
(|00〉+ l |11〉),|φ−l 〉

=
1√

1+|`|2
(l∗|00〉− |11〉), (7)

and

|ψ+p 〉 =
1√

1+|p|2
(|01〉+ p |10〉),|ψ−p 〉

=
1√

1+|p|2
(p∗|01〉− |10〉). (8)

Here l and p are complex numbers in
general. When l= p= 0, this basis reduces to the
computational basis [{|00〉,|01〉,|10〉,|11〉}], which
is not entangled. For l= p= 1, it reduces to the
maximally entangled Bell basis. One can verify
that the von-Neumann entropies of the above non-
maximally entangled states are not the same, unlike
the Bell states, where they are all same (1 ebit of
entanglement).

Following the teleportation protocol, one has to
combine Alice’s qubit (|ψ1〉= α|01〉+β|11〉) with
the resource state,

|φ〉23=
1√

1+|n|2
(|00〉23+n|11〉23), (9)

which is a non-maximally entangled state. The
combined state can be written as,

|ψ〉1|φ〉23=N (α|0〉1+ β|1〉1) (|00〉23+ n|11〉23)

=N (α|00〉12|0〉3+ α n|01〉12|1〉3+ β|10〉12|0〉3

+ β n|11〉12|1〉3)

=N[ |φ+l 〉12 (L α|0〉3+ L n β l∗|1〉3)

+ |φ−l 〉12(L l α|0〉3− n L β|1〉3)

+ |ψ+p 〉12(P β p∗|0〉3+ P α n|1〉3)+ |ψ
−
p 〉12

(−P β|0〉3+ P α n p|1〉3)]. (10)

Here N = 1√
1+|n|2

, L = 1√
1+|`|2

and P =

1√
1+|p|2

are real numbers. Above expression is

the most general way of rewriting an unknown
state and two qubit non-maximally entangled
state. Agrawal and Pati7 considered the case
l = n = p∗, for which, the basis used for joint
measurements (Eq. 7–8) and the resource state
(Eq. 9) have the same amount of quantum
entanglement (von-Neumann entropy), S(|φ〉)=

(−N2log2N2
− N2

|n|2 log2N2
|n|2). Supposing,

the outcome is |φ−l=n〉, then the state at Bob’s end
will be (α|0〉− β|1〉) and when the outcome is
|ψ+p=n〉, then the state at Bob’s end is (β|0〉+α|1〉).
Therefore, after Alice communicates with Bob, he
will apply σz in the former and σx in the later case
to recover the unknown state with unit fidelity.
For the other two states, the teleportation protocol
fails. The net probability of successful teleportation,
considering both the events would be,

Psucc=
2|n|2

(1+|n|2)2
. (11)

Thus, using S(|φ〉) = (−N2log2N2
−

N2
|n|2 log2N2

|n|2) amount of entanglement and
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one c-bit Alice can teleport an unknown state with
a probability given in Eq. 11. This probability goes
from zero for seperable (l= n= p= 0) to one-half
for the maximally entangled resource state. The
other half comes from the other two maximally
entangled states, or from the other two events, i.e.,
when the outcome of Alice’s measurement is either
|φ+〉 or |ψ−〉.

Thus we see that teleportation is deterministic
only for a maximally entangled channel, whereas it is
probabilistic for non-maximally entangled channels.
We will return to this feature in a later section,
when we deal with decoherence in an entangled
channel and how it affects teleportation. In physical
systems, there will always be some interaction
with the environment, which will lead to gradual
reduction in entanglement. However, in some cases,
the interaction of two qubits with a common bath
can lead to bath induced entanglement, which
results in an enhancement in entanglement. We
will see the consequence of teleportation in such a
channel in section 5.

3. Experimental realization – spin chains
In this section, we briefly describe magnetic systems
with exchange interaction and show their relevance
to quantum computation, in particular, the possible
sign change of the exchange interaction with
structure in thin films8,9. The importance of such a
feature is that, if one can induce antiferromagnetism
in a ferromagnetic system, then it is akin to
a control NOT (CNOT) gate, provided it is
a quantum mechanical system. It is necessary
that the system be a low dimensional, low spin
system. Magnetic systems, where this feature can
be explored, are spin chains of low spin value
(spin 1/2 or spin 3/2). It is also imperative to
have materials that can be integrated with existing
technology, i.e., semiconductor devices. Many
magnetic semiconductors are quite promising in
this regard. However, the design and fabrication
of materials that exhibit both semiconducting
and magnetic properties for spintronics10 and
quantum computing has proven difficult. Important
starting points are high-purity thin films, as
well as fundamental theoretical understanding
of magnetism in these systems. Here, we show
that small molecules have great potential in
this area because of the ease of insertion of
localized spins in organic frameworks and also
because of both chemical and structural purity.
In particular, we demonstrate that archetypal
molecular semiconductors, namely the metal
phthalocyanines, can be readily fabricated as thin
film quantum antiferromagnets and represent an
important precursor to a solid state quantum

computer. These materials behave like a spin chain,
since they have a strong anisotropic magnetic
exchange; z-component of the exchange is an
order of magnitude higher than the x and y
components. Their magnetic state can be switched
via fabrication steps that modify the film structure,
offering practical routes to information processing.
Theoretical calculations show that a new mechanism,
which is the molecular analogue of the interactions
between magnetic ions in metals, is responsible for
the observed magnetic states. This combination of
theory and experiments opens the field of organic
thin film magnetic engineering.

Phthalocyanines (abbreviated Pc for the
phthalocyanato ion C32H16N2−

8 ) are polyaromatic
molecules which can accommodate a range of
atoms or groups of atoms (in the 2+ oxidation
state) in their central cavity11. They have now
become archetypal organic semiconductors, and
their attractive optoelectronic properties are already
being extensively exploited in solar cells12, field effect
transistors, and light emitting diodes13. Magnetic
studies have been comparatively sparse, and have
mainly focused on MnPc single crystals, which
exhibit ferromagnetism below about 10 K14. The
influence of crystal structure on magnetic properties
has recently become apparent via pressure-
dependent investigations15, dopant-induced crystal
modification16, and film studies17.

One of the experimental challenges leading up
to a workable quantum computer, is fabrication
of quantum gates, which needs useful spin
entanglement. Entanglement in ordered solids is
most easily achieved for low dimensional, low
spin ions, with antiferromagnetic coupling. These
conditions are fulfilled by CuPc, where molecules
form chain-like stacks and are each in the S= 1/2
state due to the Cu2+ ion. We have therefore, chosen
to fabricate and characterize CuPc thin films, and
have extended our studies to CuPc crystals to
estimate the influence of structure and spin state on
magnetic coupling8.

Organic molecular beam deposition (OMBD)
in an ultrahigh-vacuum (UHV) chamber enables
the formation of Pc thin films with a high degree
of control and versatility. Various flexible films,
optimized for magnetic measurements, were grown
on thermally stable polyimide substrates (Kapton)
by this method. The thickness of all films studied
is typically 60 nm, and the morphology of a CuPc
film deposited on Kapton at room temperature,
shows that it forms small spherical crystallites.
This is characteristic of planar phthalocyanines
evaporated onto an amorphous substrate and is
usually attributed to the so-called α-phase17. The
polymorphic phase is confirmed by powder X-
ray diffraction. The molecules are arranged in a
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Table 1: Magnetic correlations of different materials

– β-CuPc crystal β-CuPc film α-CuPc film
θp(K) −0.40 0.0 −2.6

JexBF (K) 0.15 0.0 −1.4
JexDFT (K) −0.25 −0.25 −1.75

herringbone fashion, with their molecular planes
parallel to each other within a column and forming
an angle φ = 65◦ with respect to the stacking
direction. The films are highly textured with the
(b, c) plane parallel to the substrate. Post-growth
annealing of the α-CuPc film at 320 ◦C, leads to
a phase transition to the β-polymorph, which is
characterized by elongated crystallites, and a more
compact structure, with φ reduced to 45◦. The intra-
stack intermolecular separation is 3.4 Å, the lateral
shift between successive molecules in the β-phase
is 3.4 Å, which is, more than twice the value of 1.6
Å for the α-phase. Single crystals of CuPc, which
belong to the β-phase, were obtained by gradient
sublimation.

Fig. 1 exhibits the main magnetic measurements
on CuPc films and single crystals. Both the Curie-
Weiss plots and magnetization curves show clearly
the switching of the magnetism between α and β
polymorphs for Pc containing either transition
metal. For the thin film α phase, the Curie-
Weiss plot has negative intercept θp and the
crossover to full saturated magnetization, in the
M-H curve, corresponds to large fields. This implies
strong antiferromagnetic correlations that are only
destroyed at elevated temperatures or high fields.
On the other hand, for both the thin film and bulk
crystalline β-phases, we see that in the case of Cu,
θp is close to zero, and the magnetization curves
are close to those for a Brillouin function for free
S= 1/2 ions having Landé-g factor, g = 2. It can
therefore be concluded that the magnetic couplings
are mainly determined by the intermolecular shifts
within columns, irrespective of physical appearance,
crystal orientation, or inter-column interactions.
These small shifts (< 2 Å) are able to modify the
magnetic characteristics of the material, and the
α→ β phase transition corresponds to a conversion
of the material from antiferro to paramagnetic.
The antiferromagnetic S= 1/2 chains along the
stacks are quantum antiferromagnets with strongly
entangled spins, implying more significantly, that
a very straightforward annealing procedure switches
the interactions of these interesting quantum objects.
This is akin to a C-NOT or entangling gate.

Table 1 shows the results of the Curie-Weiss
analysis of the magnetization for the different films,
and clearly illustrates the polymorphic switching
effects that are possible in the new nanocrystalline

system of transition metal Pc films. For low
dimensional magnets, the observed values for θp

are proportional to, but actually somewhat larger
than, the exchange coupling; this follows because
the Curie-Weiss form does not reproduce the well-
known cusp in the susceptibility of the S= 1/2
Heisenberg antiferromagnetic chain. To extract
values of the coupling constant, JexBF , appearing
in the chain Hamiltonian H =6iJexBF ESi . ESi+1, we
neglect interchain interactions, as well as the effects
of potential dimerizations. We performed a global fit
to the Bonner-Fisher model19 for all field-dependent
and temperature-dependent magnetizations in the
range of 0–7 Tesla and 2–30 K. Values of JexBF

for the different CuPc samples obtained by this fit
are listed in Table 1. The switching behavior seen
in the Curie-Weiss constants is reproduced, and
the antiferromagnetic exchange constants JexBF are
smaller than θp, as expected.

Thus, it can be seen that one can engineer
magnetic couplings using polymorphism in
transition metal Pc films. To understand the
couplings in the different CuPc polymorphs, ab
initio calculations were performed to determine the
values of the exchange interactions from total energy
differences. The details of the calculations can be
found in Ref. 18. Absolute values were computed
as a function of φ by comparing the energies of
the singlet (estimated using the broken-symmetry
approach developed by Noodelman20) and triplet
states in a CuPc dimer, as calculated by density
functional theory (DFT) with the Gaussian code21

and the B3LYP or UB3LYP exchange-correlation
functionals22,23, which give good descriptions of
exchange interactions in organic systems24. For φ
values of 45◦ and 65◦, astonishingly good agreement
between experiment and theory is observed, that
is, the antiferromagnetic interaction is favored in
both cases, with J = 1.75 K in the α phase, while
the coupling is comparably negligible in the β phase
(J = 0.25 K). One interesting finding from the
calculations is the possibility of sign changes, that is,
switching between antiferro- and ferromagnetism,
in the exchange interactions as a function of φ,
which occur between 30◦ and 40◦.

Though the theoretical results match remarkably
well with experiment, it is important to develop
some intuition as to the origin of this effect, and
in particular the possibility of a sign change in J
as a function of φ. This is a very important result,
since this will enable us to change the sign of the
exchange from ferromagnetic to anti-ferromagnetic
by tuning the structure. Since these films could be
grown on Kapton, which is a very flexible material,
it is in principle possible to tune the structure by
bending the films. A sign change of the exchange
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Figure 1: Magnetic properties of phthalocyanine films and crystals. (a) Temperature-dependent
susceptibility of a range of CuPc films and crystals, with corresponding linear fits to the Curie-Weiss
law (dashed line) and Bonner-Fisher fits (solid line). (b) Field dependent magnetisation for the CuPc
films and crystals taken at 2 K with resulting fits to the Bonner-Fisher model.

(a) (b)

constant is nothing but a control NOT (C-NOT)
gate, in a low dimensional, low spin system. The
conventional mechanism for magnetic coupling
between localized transition-metals involves super-
exchange25, where an electron hops on and off the
transition metal via the highest occupied or lowest
unoccupied molecular orbitals (HOMO or LUMO,
respectively). In CuPc, there are no MOs with the
same symmetry as the CuI I ion (b1g ) near the
Fermi edge, thus ruling out super-exchange. Instead,
we have proposed that the magnetic coupling
occurs via indirect exchange25, where the Pc system
is transiently polarized by the direct Coulomb
interaction with the CuI I spin, and this polarization
is then transferred to the neighboring molecule
by the hopping of a polarized electron-hole pair.
This mechanism requires the electron and hole
to occupy orbitals of the same symmetry, and
the two eg levels just below and above the Fermi
level satisfy this criterion. Perturbation theory to
second order in the pair creation amplitude, and
second order in the hopping matrix elements (te

and th for electron and hole, respectively, evaluated
using the Kohn-Sham states obtained from DFT)
leads to an exchange coupling which is directly
proportional to te th. The interactions are weakly
ferromagnetic at small φ, and negligible at φ =
45◦, consistent with the experimentally observed
behaviour in β-CuPc. For increasing φ, the coupling
then becomes anti-ferromagnetic, as observed
in the negative J values obtained in α CuPc. A
qualitative understanding of the trends in te th can
be obtained from looking at the contributions to the
overlap integrals for the orbitals involved, namely eg

(HOMO) and eg (LUMO). The mechanism implied

in the perturbation theory is the molecular analogue
of the Ruderman-Kittel-Kasuya-Yosida (RKKY)26

interaction between localized moments in metals,
and gives a qualitative explanation of the form
of J, including the possibility of sign changes, but
does not fully reproduce all features of the DFT
calculations.

Therefore, polymorphic phthalocyanine films
represent a new system where a molecular
semiconductor is endowed with magnetic properties
that can be switched with slight changes in crystal
structure. In addition to illustrating this process
based on a simple annealing procedure, one can
in principle come up with routes for reversible
switching using, for instance, mechanical stress.
Although the transition temperatures are still low,
our theoretical estimates show that these can
be improved with further crystal modifications,
and DFT will assist us to choose optimized
materials and structures. Further enhancement
in operation temperatures can be expected from
using doping or more complex material systems
combined with our controlled growth methods.
Using local annealing, templating, and isomorphous
substitution of different phthalocyanine derivatives,
it will be possible to create new types of multilayer
heterostructures which will provide a highly versatile
ground for the development of new devices for
quantum computation, without the requirements
of epitaxy and compatibility, which can restrict
inorganic materials.

4. Entanglement in spin chains
In the previous section we have investigated
materials which are manifested in the form of
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spin chains and where quantum gate operations
like CNOT can be performed. Here we investigate
the entanglement properties of states obtained
through temporal evolution of specific seed states.
Experimental detection of entanglement in spins
systems requires a suitable entanglement witness
as well as a means to extract entanglement
quantitatively from experimental data. There has
been significant progress in this area29–32 and
we explore magnetic susceptibility as a possible
entanglement witness in this section. This is
followed by extraction of entanglement from
experimental data. The Hamiltonian of a spin chain
with nearest neighbour interaction, is given by,

H= J
∑

i

ESi · ESi+1+B
∑

i

Sz
i (12)

where, the spins are given by (in the unit of h̄=1),

Si=
σi
2 ;i=1,2,3 and σ1=

(
0 1
1 0

)
; σ2=

(
0 −i
i 0

)
;

σ3=

(
1 0
0 −1

)
are the three Pauli spin matrices.

If the external magnetic field is assumed to be
applied along the ẑ direction, the net magnetization
would be defined as the expectation value of σ3,

the eigenvectors of which are | ↑〉 =

(
1
0

)
and

| ↓〉=

(
0
1

)
.

Since most of the measures of entanglement
currently available are for bipartite systems, it would
be interesting to see if we can extract the bipartite
entanglement from a given magnetization data for
a spin chain. In this section we will concentrate
mostly on qubits, i.e., on spin half systems. The
Hamiltonian for two qubit system can be written
as:

H = J ES1 · ES2+B(Sz
1+Sz

2)

=
J

4
(σx

1 ·σ
x
2+σ

y
1 ·σ

y
2+σ

z
1 ·σ

z
2)

+
B

2
(σz

1+σ
z
2) (13)

=
J

4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

+ B

2


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2



=


J
4+B 0 0 0

0 −
J
4

J
2 0

0 J
2 −

J
4 0

0 0 0 J
4−B

. (14)

The eigenvalues and the corresponding
eigenvectors of this Hamiltonian are: E1=

J
4+B;

| ↑↑〉=


1
0
0
0

, E2=
J
4−B; | ↓↓〉=


0
0
0
1

, E3=
J
4 ;

|ψ+〉 = 1
√

2
(| ↑↓〉+| ↓↑〉)= 1

√
2


0
1
1
0

, E4 =−
3J
4 ;

|ψ−〉 = 1
√

2
(| ↑↓〉 − | ↓↑〉) = 1

√
2


0
1
−1
0

, where

|ψ+〉 and |ψ−〉 are the Bell states.
In the ground state (at low temperatures) the

system is in the lowest eigenvalue state |ψ−〉, which
is a pure state. As we have seen in section I, this is a
maximally entangled state as the reduced density
matrix is maximally mixed. However, at finite
temperatures the system is in a mixed state,

ρ=
1

Z
{|φ−〉〈φ−|e

3J
4 β+|φ+〉〈φ+|e−

J
4 β+|↑↑〉

〈↑↑ |e−( J
4−B)β

+|↓↓〉〈↓↓ |e−( J
4+B)β

}

=
1

Z

 e−( J
4−B)β 0 0 0

0 e−
J
4 β+ e

3J
4 β e−

J
4 β− e

3J
4 β 0

0 e−
J
4 β− e

3J
4 β e−

J
4 β+ e

3J
4 β 0

0 0 0 e−( J
4+B)β

,

(15)

where β = 1
kB T and Z = Tr(ρ) = e

3J
4 β + e

−J
4 β +

e(−J
4 +B)β

+ e(−J
4 −B)β.

Now let us consider the high temperature limit
(β→ 0), the density matrix reduces to,

ρ =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= 1

4


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



+
1

4


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+ 1

4


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



+
1

4


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (16)

A mixed state ρ is separable if it can be expressed
as a convex sum of tensor product states of the two
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subsystems. In this case, there exists pk ≥ 0, such
that ρ=

∑
k pkρ

k
1⊗ρ

k
2 , for

∑
k pk = 1, where {ρk

1}

and {ρk
2}, are pure ensembles of the appropriate

subsystems. Otherwise ρ is called an entangled
state33. ρ in Eq. (16) can be expressed as,

ρ =
1

4

(
1 0
0 0

)
⊗

(
1 0
0 0

)
+

1

4

(
0 0
0 1

)
⊗

(
1 0
0 0

)
+

1

4

(
1 0
0 0

)
⊗

(
0 0
0 1

)
+

1

4

(
0 0
0 1

)
⊗

(
0 0
0 1

)
.

(17)

Hence the system is perfectly separable and the first
term of the Hamiltonian (Eq. 13) becomes,

〈Eσ1 · Eσ2〉 = 〈σ
1
xσ

2
x〉+〈σ

1
yσ

2
y〉+〈σ

1
zσ

2
z 〉

= 〈σ1
x〉〈σ

2
x〉+〈σ

1
y〉〈σ

2
y〉+〈σ

1
z 〉〈σ

2
z 〉.(18)

Since the Pauli spin matrices are traceless,
〈σ1

x〉〈σ
2
x〉+ 〈σ

1
y〉〈σ

2
y〉+ 〈σ

1
z 〉〈σ

2
z 〉 = 0. This can be

easily verified using 〈σ1
x〉 = Tr(ρσ1

x), etc., and using
the separable ρ given in Eq. 16.

To calculate the thermal entanglement (i.e., for
intermediate temperatures), one writes the density
matrix for an N-particle state, in the most general
form,

ρ=
∑

i

piρ
1
i ⊗ρ

2
i ⊗·· ·⊗ρ

N
i (19)

The free energy, U , by definition, is the
expectation value of the Hamiltonian, i.e., U =〈H〉
and the magnetization, M, is defined as the sum
of the expectation values of the ẑ-component of
individual spins, M =

∑N
i=1〈σ

i
z〉. Therefore, from

Eq. 12, one can obtain,

U−BM

N J
=

1

4N

∣∣∣∣ N∑
i=1

(〈σ i
xσ

i+1
x 〉+〈σ

i
yσ

i+1
y 〉

+〈σ i
zσ

i+1
z 〉)|, (20)

since, ES= 1
2 Eσ. If the density matrix is separable,

i.e., if they can be expressed as a convex sum, such
that,

∑
i pi = 1, ∀pk ≥ 0, then the R.H.S of Eq. 20

becomes separable, and for every i one has,

|〈σx
i σ

x
i+1〉+〈σ

y
i σ

y
i+1〉+〈σ

z
i σ

z
i+1〉| = |〈σ

x
i 〉〈σ

x
i+1〉

+〈σ
y
i 〉〈σ

y
i+1〉+〈σ

z
i 〉〈σ

z
i+1〉|

≤

√
〈σx

i 〉
2+〈σ

y
i 〉

2+〈σz
i 〉

2√
〈σx

i+1〉
2+〈σ

y
i+1〉

2+〈σz
i+1〉

2≤ 1. (21)

The upper bound was found by using the Cauchy-
Schwarz inequality and the fact that for any state
〈σx
〉

2
+ 〈σy

〉
2
+ 〈σz

〉
2
≤ 1. If this inequality is

violated, the system is in an entangled state. Thus the
condition for entanglement is |U−BM|

N |J| > 1, which

in absence of magnetic field, reduces to, |U |N |J| > 1.
In a ferromagnetic ground state, in absence

of magnetic field, 〈 Eσi · Eσi+1〉 will always be zero
and hence it is not an entangled state. This
is because the order parameter (magnetization)
commutes with the Hamiltonian and there is
no spin fluctuation at lower temperatures. This
can be easily shown in a two qubit system,
since the Eσi · Eσi+1 term of the Hamiltonian can
be rewritten as σi

+
· σi+1

−
+ σi

−
· σi+1

+
+ 2σ3,

where σ± = σ1± iσ2. One can see by inspection
that 〈σi

+
· σi+1

−
〉 = 〈↑↑| σi

+
· σi+1

−
|↑↑〉 = 0.

Thus the order parameter 〈σ3〉 commutes with
the Hamiltonian. The effect of temperature and
magnetic field on the entanglement of a Heisenberg
ferromagnet has been dealt by Arnesen, Bose
and Vedral34, wherein they consider the effect of
magnons on entanglement.

It has been shown by Wootters35, that
concurrence is a good measure of entanglement,
which is given by,

C=max(
√

l1−
√

l2−
√

l3−
√

l4), (22)

where l1≥ l2≥ l3≥ l4, are the eigenvalues of the
operator,

ρ̃12= σ2⊗σ2ρ
∗
12σ2⊗σ2, (23)

such that, ρ12 is the two particle reduced
density matrix and the asterisk denotes complex
conjugation. It has been shown by O’Connor,
and Wootters36, that for an antiferromagnet, the
concurrence is given by,

C=
1

2
max

[
0,
|U |

N J
−1

]
, (24)

in absence of magnetic field. Now, for a bipartite

system, 〈Eσ1 · Eσ2〉 = 〈σ
1
xσ

2
x〉 + 〈σ

1
yσ

2
y〉 + 〈σ

1
zσ

2
z 〉.

Considering the system to be isotropic, we obtain,
〈σ1

xσ
2
x〉 = 〈σ

1
yσ

2
y〉 = 〈σ

1
zσ

2
z 〉. Condition 21 can

be rewritten as, |〈ES1 · ES2〉| = |〈S1
x S2

x〉 + 〈S
1
y S2

y〉 +

〈S1
z S2

z〉| = |〈S
1
x〉〈S

2
x〉 + 〈S

1
y〉〈S

2
y〉 + 〈S

1
z〉〈S

2
z〉| ≤

|ES1||ES2| ≤ 1/4. Thus, the formula for concurrence,
given in Eq. 24, can be written as,

C= 2 max
[

0,〈ES1
· ES2
〉− (1/4)

]
. (25)
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One can evaluate, from the bipartite Hamiltonian

(Eq. 13), for the B=0 limit, 〈ES1
· ES2
〉= ( 3

4 ) 1−e
−

J
kT

1+3e
−

J
kT

37.

Thus we have,

C= 2max

[
0,

1−3e−
J

kT

1+3e−
J

kT

]
(26)

Recently, magnetic susceptibility has been shown
to be a macroscopic entanglement witness29. To
extract the entanglement from experimental data,
one has to express concurrence in terms of a
measurable quantity, e.g., magnetic susceptibility.
The magnetic susceptibility, χ, can be defined as
the field derivative of magnetization (in the applied
field direction, which here is ẑ) in the limit B→ 0.
Thus,

χ =

(
δM

δB

)
= (g2µ2

B/kT)〈M2
〉B=0= (g2µ2

B/kT)∑
i,j

〈Si
z Sz

i+1〉≈ (g2µ2
BN/kT)[(1/4)

+(〈ES1 · ES2〉)/3]. (27)

Here we have used the isotropy of space,
nearest neighbour interaction, and the identity
ES1 · ES2=

1
2 [(
ES1+ES2)

2
−ES2

1−
ES2

2] and the fact that

(ES1+ES2)=0 for an antiferromagnet. From Eq’s (25)
and (27) one can obtain the concurrence in terms
of susceptibility,

C= max
[

0,1−
(6kBTχ)

g2µ2
BN

]
. (28)

Since one has |〈ES1 · ES2〉|≤1/4 for any separable state
(Eq. (21)), the magnetic susceptibility for such states
will satisfy,

χ≥
g2µ2

BN

kT

1

6
. (29)

Now we consider an archetypal spin chain, a
compound copper nitrate, having spin half and
exhibiting antiferromagnetic interactions, with a
Néel temperature, TN = 5K38. A digitized data was
obtained from Ref. 38, and was fitted to the formulae
for susceptibility given in Eq. 27 (see Fig. 2(a)). The
dotted line shows the entanglement boundary given
by Eq. 29; the entangled region is represented by the
region towards the left of the dotted line. It is evident
that the copper spins exhibit entanglement below the
antiferromagnetic ordering temperature. Fig. 2(b),
shows the extracted value of concurrence and the fit

to Eq. 26, for J = 5 K. Thus entanglement witness is,
not only an entity which is quantifiable, but it also
is something that can be measured experimentally.

We have also extended the above analysis to
the results of CuPC films forming in the α-phase
as studied in the last section. The two point
correlation function calculated for neighbouring
spins, was fitted to the magnetization data. Here we
assumed a singlet-triplet (or dimer) model, so that
nature favours the antiferromagnetic interaction
(only nearest neighbour). We consider the full
Hamiltonian where the magnetic field “H” is also
included to fit the experimental magnetization
vs. field data. In Fig. 3, the variation of energy
with magnetic field is depicted diagrammatically.
In absence of the field, there will be threefold
degenerate triplet states with energy “ J

4 ” and a

singlet state with energy “−3J
4 ”. However in presence

of magnetic field, the energy levels corresponding to
the Bell states |φ±〉 (Eq. 1), fan out as shown in the
Fig. 3(b), their energy eigenvalues given by “ J

4±B”
respectively.

In absence of magnetic field, the
antiferromagnetic interaction forces the system
to be in singlet state (at low temperatures) and
with increase in magnetic field, the system makes
a gradual transition to the triplet state (see Fig.
3(c)). If the magnetic field is applied in the ẑ-
direction, the relevant order parameter would
be the expectation value of the total spin in ẑ-
direction, and the magnetization M, is given by
M =〈STotal

z 〉= 〈S1
z+S2

z〉.
The partition function for this dimer is given by,
Z = Tr[ρ0], where ρ0=exp[- H

kB T ] and the
Hamiltonian H is given by Eq. 13.

The magnetization M, in the dimer model, is
then given by,

M = Tr(ρ ·STotal
z )

=
2sinh(2gµBHkBT)

1+2cosh(2gµBHkBT)+exp(J/kBT)
,

(30)

where “g” is the Landé g factor. We have fitted
the CuPC magnetization data taken at T = 2 K,
to Eq. 30 and it is shown in Fig. 4. We have taken
the value of J = 2 K, consistent with the x-axis
intercept in the χ−1 vs T curve (Fig. 1(a)). We have
also plotted the simulated curves for Brillouin spin
1
2 (unpaired spins) and Brillouin spin 1 (triplet
case) to compare with the data. In the triplet
case (spin 1), we have scaled the values for spin
pairing (two sites of spin half each giving rise to
a spin 1 site). The value of magnetization in our
data is less than the Brillouin spin 1

2 value at low
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Figure 2: (a) Fitting of susceptibility data (solid line) to Eq. 27. The dotted line marks out the
separable regime (Eq. 29) from the entangled regime (see text) (b) Extraction of concurrence from the
susceptibility data of copper nitrate using Eq. 28.

(a) (b)

Figure 3: Dimer model for simulating the result of magnetization data of CuPc (a). Energy level
diagram as a function of field for singlet and triplet states (b). The spin 1

2
pairs can either combine as

singlet (spin 0) or triplet (spin 1) (c).

(a)

(b) (c)

fields (≤ 6 Tesla), which signifies the presence of
antiferromagnetic interaction, and is indicative of
entanglement expected in low spin, low dimensional
systems. To fit the temperature dependence, we need
to go down to lower temperatures, since the θP

in this case is about 1.8 K (see last section). The

magnetization for Brillouin spin 1 (pure triplet case)
is given by,

M =
2sinh(2gµBHkBT)

1+2cosh(2gµBHkBT)
, (31)
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Figure 4: Magnetization data of CuPc fitted to the singlet-triplet model (thick red line). The spin 1
2

Brillouin function and the triplet (spin 1) magnetization is also shown. The data and the fit to
singlet-triplet model show that the interactions are antiferromagnetic, since it is below the Brillouin
spin 1

2
value at low field, merging with the data only at high fields. The Brillouin spin 1 curve has

been halved, since the number of spins forming the triplet is twice that of the total unpaired spin 1
2

electrons.

and that of spin 1
2 is given by,

M = tanh(gµBHkBT), (32)

Eq. 31 can be obtained by setting J→−∞, i.e., in
the presence of a strong ferromagnetic coupling,
where all the spins are rendered parallel and hence
in the triplet state. On the other hand, Eq. 32 can
be obtained by setting J→ 0, where there is no
coupling and all the spins behave like free spins
and get aligned with increasing magnetic field at
a fixed temperature. Both these limits (J→−∞
and J→ 0) are classical limits and hence represent
separable states.

5. Decoherence of two particle
Quantum protocols are mostly designed in the
idealistic situation of a decoherence free system.
In practical implementation of these protocols the
external environment can play a significant role
in reducing the fidelity of the expected outcomes.
In implementing quantum teleportation44, Bob
gets the desired unknown state after a proper
unitary transformation, irrespective of the Bell state
measurement made by Alice. The same may not
be true in presence of environmental interaction,
which can be present both at the transmitting
and the receiving stations. The decoherence at the
transmitting station can be quite different from that
of the receiving station, since Alice is in possession
of two qubits, where as Bob has only one. If the

qubits of Alice see different environments, there
is nothing new to the dynamics as Bob gets the
same decohered state irrespective of the Bell state
shared with Alice. On the other hand if both the
qubits of Alice see a common environment, there
will be bath mediated interaction between the two.
This can lead to the bath induced entanglement
between Alice’s qubits39. The common environment
for Alice’s qubits is a more natural choice to study
the effects of decoherence on teleportation and we
briefly review the same below.

Writing the qubit states in terms of the
polarizations and correlations helps one
understand the underlying physical structure in a
straightforward manner. The density matrix for a
qubit is represented by,

ρ(EP)=
1

2
(Î+ EP.Eσ), (33)

where EP= Tr(ρEσ) and Eσ= îσx+ ĵσy+ k̂σz .
The most general representation of a two-qubit

Bell state is given by

ρAB =
1

4
Î+

∑
k

DkSk
ASk

B, (34)

where Sk
A and Sk

B are the spin operators of
the qubits A and B respectively, with the
correlation vector Dk ≡Tr(ρABSk

ASk
B). For the Bell

states the corresponding correlation vectors are
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given by EDS0 = [−1,−1,−1], EDT0 = [1,1,−1],
EDT+ = [1,−1,1], and EDT− = [−1,1,1]. The Bell
states are represented as |S0〉 =

1
√

2
[| ↑↓ − ↓↑〉],

|T0〉=
1
√

2
[|↑↓+↓↑〉], |T+〉=

1
√

2
[|↑↑+↓↓〉] and

|T−〉=
1
√

2
[| ↑↑−↓↓〉]. |S0〉 is the singlet and the

other three belong to the triplet sector. When
evolving through Hamiltonian dynamics each of
them respond differently to the environmental
interaction and to the applied fields. Note that
we have used new notations for Bell states here for
convenience, as opposed to the notations used in
section 2.

Using the Bell-state representation given above,
the initial state, used in the teleportation protocol,
is given by

ρaAB = ρa⊗ρAB

=
1

2

[
Î+2EPa · ESa

]
⊗

1

4

[
Î+4

∑
k

DkSk
ASk

B

]
, (35)

where EPa =Trρa ESa is the polarization vector of the
unknown state which is to be teleported to Bob.
Now Alice performs a Bell state measurement on
her two qubits a and A, i.e.,

TraA[ρaA⊗ ÎBρaAB], (36)

where ρaA =
1
4 Î+

∑
k MkSk

aSk
A is the Bell state of

qubits a, A. The vector EM has the information of the
Bell measurement made by Alice. After performing
the trace, the state that Bob gets with 1/4 probability
is given by

ρB =
1

2

[
Î+2EPB · ESB

]
. (37)

The polarization of Bob’s qubit is related to the
polarization of the unknown state through the
correlation vectors D and M as

P i
B =DiMiP

i
a . (38)

Now if the vectors ED and EM are equal, Bob needs
to do nothing to this qubit. If ( ED× EM) · n̂ 6= 0,
then Bob has to do a rotation of his qubit along
n̂ direction. Performing the appropriate unitary
transformation is equivalent to multiplying DiMi

to P i
B in Eq. 38. Since D2

i =M2
i = 1, we see that the

final state of Bob is the unknown state that Alice
wishes to teleport. The above representation helps

in dealing with the time-evolution of the qubits
in the presence of environment. The Hamiltonian
describing the interaction between the qubits and
the spin bath is given by

H =KaESa ·EIE a+KAESA ·EIE A+KBESB ·EIE B, (39)

where ESa,ESA, represents the spin operators of the
two qubits at the transmitting site which are in
possession of Alice and ESB is the spin operator of
Bob’s qubit. The total spin of the environmental
particles seen by each qubit is represented by
EIE =

∑
k
EIE ,k . The interaction strengths of the qubits

with their respective baths are denoted by Ka, KA

and KB. Since decoherence at Bob’s site is trivial,
we set KB = 0 and study the effects of a common
bath decoherence of Alice’s qubits on fidelity of the
teleported state. The Hamiltonian given in Eq. 39
reduces to

H = (KaESa+KAESA) ·EIE , (40)

where EIE represents the total bath spin. Note that
eventhough there is no direct interaction between
Alice’s qubits, their interaction with the bath can
result in an indirect coupling between the two.

We shall take the initial state of the bath as
an incoherent superposition of states labelled
by the bath spin IE , with weights lIE , ρE (0) =∑

lIE ρIE (0). In this study all ρIE (0) will be taken
to be unpolarized (multiple of identity), with
weights lIE as free parameters.

We rewrite the initial state of the Alice-Bob
system given in Eq.35 as,

ρaAB(0) =
1

8
Î+

1

2
EPa · ESa+

1

2
EPA · ESA

+

3∑
m,n=1

DmnSm
a Sn

A, (41)

by absorbing Bob’s spin ESB into the polarization
vectors. The components of the new polarization
vectors are Pi

A =DiSi
B, and Dmn

= Pm
a DnSn

B. Since
the time-evolution is only for qubits a and A, the
above form is valid.

The state of the total system before Alice makes
the Bell measurement is time-dependent, given by

ρaAB(t)=TrE
(
UH (t)ρaAB(0)⊗ρE U

y
H (t)

)
,(42)

where TrE represents the summing over the bath
degrees of freedom. Note that the initial state of the
system-bath is uncorrelated. In the above equation
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the unitary operator UH , corresponding to the
Hamiltonian in Eq. 40, is given by

UH =

[
a1(t)+a2(t)(ESa−ESA) ·EIE

]
×

(
1−

Ŝ2
aA

2

)
+

[
a3(t)+a4(t)ESaA ·EIE

+a5(t)(ESaA ·EIE )2a6(t)(ESa−ESA) ·EIE

+a7(t)(ESa×ESA) ·EIE
] Ŝ2

aA

2
,

(43)

where ESaA = ESa+ESA. After performing the trace
over bath degrees of freedom, we obtain the reduced
density matrix of the Alice-Bob system,

ρaAB(t) =
1

8
Î+

1

2
EPa(t) · ESa+

1

2
EPA(t) · ESA

+

3∑
m,n=1

Dmn(t)Sm
a Sn

A .

After Alice makes the Bell measurement on her
qubits, the state that Bob gets with 1/4 probability
is given by

ρB(t)=
1

2
Î+

∑
k

MkDkk(t), (44)

with Dkk(t) given by

Dkk(t)= f (t)Dkk(0)+ g(t)Tr[D(t)],

= f (t)Pk
aDkSk

B+ g(t)
∑

m

Pm
a DmSm

B .(45)

Depending on the two bits of classical information

given by Alice, Bob makes the appropriate unitary
transformation. The final state of Bob is then given
by

ρB(t)=
1

2
Î+ EPB(t) · ESB, (46)

where P i
B= f (t)P i

a+g(t)MiTrMP i
a. As expected, if

system bath interaction is zero i.e., Ka=KA=0 then
f (t)= 1, g(t)= 0, and we get perfect teleportation.
In the presence of the bath Bob’s final state
depends on EM from which he can know about the
measurement made by Alice. Note that there is no
information of M in decoherence free teleportation
after Bob has made his final transformation. One
can show that if the qubits of Alice see separate
environments there will be no such dependence

of Alice measurement. Hence common bath has
introduced a new feature to the protocol, where
Bob’s final state has the information of the Bell
measurement made by Alice.

Let us calculate the fidelity and average fidelity
of teleportation in the presence of decoherence.
Fidelity gives the information of how close is the
teleported state to the unknown state, defined as

F (t)≡
1

2

[
1+ EPa · EPB(t)

]
,

=
1

2

[
1+ f (t)|EPa|

2
+ g(t)TrM

∑
k

(Pk
a)

2Mk

]
.

(47)

By performing an average over all pure states of
qubit a we get the average fidelity,

Fav(t) =
1

4π

∫ 2π

0
dφ

∫ π

0
dθsinθF (t),

=
1

2

[
1+ f (t)+

1

3
g(t)(TrM)2

]
. (48)

We restrict to the leading order time-dependence

of the time-dependent coefficients f (t) and g(t) in
studying the short time behavior, and for long time
behavior we give the appropriate numerical plots.

The leading order time dependence of the
coefficients f (t) and g(t) are

f (t)≈ 1−
1

3
{〈Î2

E 〉(K2
a+K2

A+KaKA)}t2,

g(t)≈
1

3
〈Î2

E 〉KaKA t2. (49)

If Ka=KA then f (t)+3g(t)= 1. Now substituting
these time-dependent coefficients in Eq. 48, we find

Fav(t) = 1−
t2

12
〈Î2

E 〉(K2
a+K2

A)[1

+1(1− (TrM)2/3
]

(50)

where the inhomogeneity parameter 1 =

2KAKa/(K2
A+K2

a ) and 〈Î2
E 〉=

∑
IE

lIE IE (IE+1).

For completely unpolarized baths i.e., ρE =
1

2N Î ,

〈Î2
E 〉= 3N/4, where N is number of bath spins.

For Bell states TrM has only two values,
−3,1. If the state is singlet, then TrM =−3 and
for the remaining Bell states it has the value
one. The average fidelity has an initial Gaussian
decay, Fav(t)= exp(−t2/τ2), with two different
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decoherence time scales depending on the Bell state
measurement made by Alice, given by(

1

τ2

)
S0

=
1

6
〈Î2

E 〉(K2
a+K2

A)(1−1),(
1

τ2

)
T0,T+,T−

=
1

6
〈Î2

E 〉(K2
a+K2

A)

(
1+

1

3

)
.

(51)

The Bell states S0, T0,T+,T− are the ones
mentioned before in this section. When the
couplings are identical i.e., Ka = KA, 1= 1, the
singlet measurement on Alice’s qubits does not harm
the state teleported to Bob. On the other hand if
the sign of 1 becomes negative i.e., if one of Alice’s
qubit is interacting ferromagnetically with the bath
and the other antiferromagnetically, then singlet
measurement would give a highly decohered state to
Bob in comparison to the other Bell measurements.
Hence, the sign of the interaction with the bath can
decide which particular measurement of Alice can
give Bob a less decohered state.

Thus in teleporting an unknown state to Bob
when Alice’s qubits see a common environment,
the average fidelity varies with the Bell state
measurement performed by Alice. Even after Bob’s
operation, the state still has the information of
Alice’s measurement. This feature cannot be seen
both in the decoherence free teleportation and
teleportation through local noisy channels (separate
baths). The singlet measurement always gives
Bob the unknown state with high fidelity, only
when both the qubits of Alice interact either
ferromagnetically or antiferromagnetically with
bath. In contrast, if one of the Alice’s qubits
interact ferromagnetically and the other anti-
ferromagnetically then measurement of Bell states
belonging to the triplet sector will give better fidelity.

6. State characterization and
teleportation using three particle states

Teleportation of an unknown state has been
demonstrated using entangled photons67,
atomic states68, spin states in Nuclear Magnetic
Resonance69 and other solid state systems70.
The usage of multi-particle entangled states for
implementing a similar protocol was studied
initially, using three and four qubit GHZ states71.
In addition to the N-qubit GHZ states, W states
form another class of entangled states, and are well
studied for their high symmetry. W states can be
generated from any N-qubit interactions which
conserve the ẑ component of the total spin of qubits.

The symmetric three qubit W state, |ψ〉 =
1
√

3
[|100〉 + |010〉 + |001〉] fails to teleport the

unknown state to Bob. In this connection, Agrawal
and Pati7 have proposed a modification of the W
state which can teleport the unknown state perfectly.
We will consider this modified W state along with
the W state in this section.

As noted earlier, one of the most essential
properties of a state to be used for quantum
tasks like teleportation, dense coding and QIS,
is entanglement. For multi-particle systems,
two particle entanglement has been successfully
formulated and various measures have been given,
for pure as well as mixed states. To calculate
the two particle entanglement in a multi-particle
system, one can construct a density matrix and
trace out the rest of the particles and then find
the entanglement of the two remaining particles
(qubits) by checking the purity (or the lack of it)
of the reduced density matrix. This holds for pure
states only and the entanglement can be quantified
by calculating the von-Neumann entropy4. For
mixed states, Peres-Horodecki criteria is a good
measure for entanglement72 and so is concurrence.
Concurrence has an advantage, in the sense that,
it gives a comparison for relative entanglement
between qubits in a multi-particle system, where the
monogamy inequality can be formulated as follows:

n∑
i=2

C2
A1Ai
≤C2

A1|A2 ...An
. (52)

Here CA|B represents the concurrence between
subsystems A and B.

We now examine the entanglement in a few
states with certain tasks like teleportation in mind.
Let us first consider the W state given by:

|W 〉=
1
√

3
(|100〉+|010〉+|001〉), (53)

and name particle 1 as A, particle 2 as B and
particle 3 as C. Now tracing over particle 3 (or C),
we obtain the reduced density matrix,

ρAB =
1

3


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

. (54)

This reduced density matrix has only two non-zero
eigenvalues, l1= 2/3,l2= 1/3. Similarly,

ρAC =
1

3


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

. (55)
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One finds that, ρAB= ρAC = ρBC . The concurrence

CAB =

√
2

3 =CAC .
Tracing over the second (in ρAB) or third particle

(in ρAC), we obtain,

ρA =
1

3

(
2 0
0 1

)
. (56)

Here also there is a symmetry, ρA= ρB= ρC , hence,

CA(BC) =
2
√

2
3 . Thus,

C2
AB+C2

AC =C2
A|(BC) . (57)

Since the reduced density matrix ρAB = ρAC has
only two non-zero eigenvalues, each pair of qubits
is entangled with only one other qubit, in a joint
pure state. The formula for concurrence inequality
simplifies in this case and it makes sense to speak
of concurrence CA(BC) between qubit A and the
pair BC. This is because, even though the state
space of “BC” is four-dimensional, only two of
those dimensions are necessary to express the pure
state of ABC in their standard basis (i.e., |0〉, |1〉
basis). The equality in this case suggests that the
entanglement between A and BC is shared equally
between B and C. In general however, the amount
of entanglement between A and BC cannot be
accounted for by the entanglements of A with B and
C separately. The difference between the two is the
residual entanglement. Thus in a pure three particle
state |W 〉, the residual entanglement is zero.

Let us now consider the modified |W 〉 state
where there is an asymmetry of the form:

|W ′〉=
1

2
(|100〉+|010〉+

√
2|001〉) (58)

Following the above prescription, one finds,

ρAB =
1

4


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

. (59)

This reduced density matrix has only two non-zero
eigenvalues, l1= 2/3,l2= 1/3. Similarly,

ρAC =
1

4


1 0 0 0
0 1

√
2 0

0
√

2 2 0
0 0 0 0

. (60)

In this case there is a slight asymmetry with respect
to ρAB and ρAC , though both of them have only
two non-zero eigenvalues – l1= 2/3,l2= 1/3 for

ρAB and l1 = 2/3,l2 = 1/3 for ρAC . Using the
same argument as in the |W 〉 state, we obtain

the concurrence CA|BC =

√
3

2 . The concurrence

CAB =
1
2 and CAC =

1
√

2
. Thus, here too we get:

C2
AB+C2

AC =C2
A|(BC) . (61)

Measure of entanglement and its distribution
over the qubits, in the sense how much
entanglement is shared between two qubits in a
multiparticle state is very crucial for tasks like
teleportation and superdense coding. It has been
seen that the asymmetric |W 〉 state can teleport
with a higher fidelity, whereas the |W 〉 state fails.

Thus the modified W state can be a key source
for quantum protocols as different tasks can be
performed in accordance with the requirement.
This state has been subjected to extensive study
in the past few years. Proposals using cavity QED
experiments for generating these states have been
given75. Considering the importance of these states,
an experimental proposal of generating these states
using exchange interaction between the qubits in
quantum dot systems, is given in the next section.
This is then further generalized to N qubits.

Let us consider a 3-qubit state, which is an eigen
state of the total Ŝz =

∑3
i=1 Sz

i operator given by,

|W3〉= α1|100〉+α2|010〉+α3|001〉, (62)

where, |α1|
2
+|α2|

2
+|α3|

2
= 1. If one of the qubits,

say the last one is given to Bob, and the other two
are in Alice’s possession, then, Alice can perfectly
teleport a one qubit state |ψ〉= a|0〉+b|1〉 to Bob
when the coefficients satisfy the following relation,

|α3|
2
= |α1|

2
+|α2|

2. (63)

A simple state which satisfies the above condition,
is the modified |W 〉 state given in Eq. 58. With a
more general parametrization, one can show that,
α1=

1
√

2
, α2=

1
√

2
sinφeιχ1 and α3=

1
√

2
cosφeιχ1 ,

where, 0≤ φ≤ 2π and similarly, 0≤ χ1,χ2≤ 2π.
On the contrary, if Bob is given the first qubit in the
state |W3〉, then for perfect teleportation,

|α1|
2
= |α2|

2
+|α3|

2. (64)

Conditions given in Eq. 63 and Eq. 64 lead to
completely different states. One can see that the
imbalance in the weights of the basis states |1〉 and
|0〉 for each qubit is responsible for such conditions.
To overcome these imbalances, one can construct
a W -like state,

|W̃3〉=
1

2

[
|100〉+|010〉+|001〉+|111〉

]
, (65)
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where the basis states of all qubits are on equal
footing. The problem with the above state is that it
does not conserve the total Ŝz , and hence becomes
difficult to generate using simple interactions.

7. Physical realization of magnon state
As mentioned in the last section, N-qubit GHZ
states and W states are very useful for teleportation.
W states can be generated from a modified N-qubit
interactions which conserve the ẑ component of the
total spin of qubits. These states are nothing but one
magnon excitations of a ferromagnetic ground state.
Here we shall use Heisenberg exchange interaction
between qubits to generate N-magnon entangled
channels for teleporting an unknown quantum
state perfectly. Multi-electron quantum dot systems
can be a possible realization for the schemes that
we propose in generating the desired entangled
states57. Spins of electrons in quantum dots have
been proposed to be good candidates for quantum
computation58. With the state-of-the-art technology
in manufacturing and manipulating semiconductor
nanostructures, quantum dots show the promise
for scalable quantum computing59,60. With a high
level of control over the number of electrons61,
and the applied external fields, desirable initial
states can be achieved. The interaction between
any two electronic spins can be controlled by the
applied gate voltages59,63. The exchange interaction
induced quantum gates, for example the SW AP and
CN OT gates, have been implemented at picosecond
time scales58. The nuclear spins on the 2D lattice
give the dominant contribution to the decoherence
of the electronic spin60. The time scales for this
decay has been experimentally found to be of the
order of a few nanoseconds62,63. The effect of the
spin environment comes into the picture, either in
repetitive usage of the dot, or, when there are large
number of operations to be performed with these
systems. The fidelity calculations show that one can
perform 102–103 gate operations before the real loss
of spin polarization of the electrons.

As has been done earlier, the three qubit
exchange interaction can be described by the
following Hamiltonian,

H= JESA .ESB+ JESB .ESC+ J1ESA .ESC , (66)

where, J is the strength of the interaction. The
exchange interaction is typically of the order
of 0.01eV in strongly interacting systems. The
parameter 1 determines the closeness of the 3-
qubit chain. If 1= 1, this is a perfectly closed chain
and for 1= 0, it is an open chain. We shall show

how different kinds of |W3〉 states can be generated
by varying this parameter 1.

The above Hamiltonian can be diagonalized in
a straightforward manner, and the time evolution of
various 3-qubit states can be found. We shall start
with an initial 3-qubit state, |ψ(0)〉= |100〉. Since
the Hamiltonian given in Eq. 66 conserves the ẑ
component of the total spin, i.e., [H,

∑
k Sz

k] = 0,
where, k= A,B,C, the state at a later time will be

|ψ(t)〉= α1(t)|100〉+α2(t)|010〉+α3(t)|001〉,
(67)

where the time dependent coefficients are given by

α1(t) =
1

6

[
2e−itE1+3e−itE2+e−itE3

]
,

α2(t) =
1

3

[
e−itE1−e−itE3

]
,

α3(t) =
1

6

[
2e−itE1−e−itE2+e−itE3

]
.

(68)

The eigenvalues E1= J(2+1)/4,E2= 3J/4,E3=

J(1−4)/4. The condition for perfect teleportation
(when the first qubit is given to Bob), given in Eq.
64, for the above state gives,

3cos

(
J t

1+21

2

)
+cos

3J t

2
+

3

2
cos((1−1)J t)

−1= 0. (69)

One can now extract the times for which the
above equation is satisfied. If the interaction between
the qubits is switched off at those times, the three
qubit state obtained will be the one which can be
used as a perfect teleportation channel.

For perfectly closed chains corresponding to
1 = 1, Eq. 69 yields the solution, which has a
periodicity of 4π/3, given by

J t =
2

3
cos−1

(
−

1

8

)
. (70)

In addition to this one also finds that |α1(t)2
| =

1
2

and |α2(t)|2=|α3(t)|2= 1
4 , at the above given time.

The three qubit state at time “t”, is given by,

|ψ(t = τ)〉 =
1

2

[√
2eιφ1 |100〉

+eιφ2 |010〉+eιφ2 |001〉
]
, (71)

where τ = 2
3 [2nπ + cos−1(− 1

8 )], and φ1 =

tan−1(−
√

2) and φ2 = tan−1(
√

2
3 ). Since we are
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interested to give the first qubit to Bob, we have
started with the initial state |100〉. Instead, if the
last qubit have to be given to Bob, we would have
started with the initial state |001〉.

The above analysis can be extended to the case
of an N qubit channel with one magnon excitation
and single qubit teleportation can be achieved
using this. This can also be generalized to find
out the n magnon states which can then be used
for perfectly teleporting a one qubit state57. The
exchange interaction among spin-1/2 particles
can be used to generate a class of multi qubit
entangled channels, which can then be used for
teleportation. It was shown in Ref. 57 that for
times t = 1

J cos−1(−1/8), one obtains the N qubit
entangled state which can be used for teleportation.
For a typical quantum dot system this time scale can
be of the order of picoseconds. For smaller number
of qubits these states can be generated periodically,
whereas for large N there exists a unique time where
one can obtain such entangled states.

8. Conclusion
In the last decade or so, there has been tremendous
development in the area of quantum information
processing, especially in accomplishing certain tasks
like quantum teleportation, dense coding etc., both
in the theoretical as well as experimental domains.
To carry out these tasks, the key ingredient in a
quantum mechanical system is entanglement. Spin
chains have proven to be a useful channel to execute
some of these quantum protocols and thus have
been dealt with in some detail here. In absence of
naturally available spin chains, an array of quantum
dots can be used where one has more flexibility
in entangling spins in adjacent dots by switching
the interactions on and off at will. Theoretical
proposals to test entanglement properties of
low dimensional quantum systems have been
given and compared with observed experimental
data in organometallic compounds. Decoherence
poses enormous hindrances in carrying out these
quantum tasks and a lot of work is being done to
beat the effects of decoherence. We give a specific
example, where, the environment can lead to
counterintuitive effect like preferential choice of
basis for carrying out quantum tasks. Entanglement
in many body systems, along with techniques for
avoiding decoherence, will occupy researchers for
years to come.

Received 14 April 2009.
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