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Abstract 

In this work, the equation for obtaining the transient temperature dlstrihution within u solid are derived using 
the nonlinear finite element anaiyms. The mixed boundary conditions in this formulation can be made up of 
iouidiffefermt forms which are. (a) the specified heat flux, (b) the convective heat flux, (c) the radiative heat 
flux and (d) the specified surface temperature distribution. The nonlinear set of equations are solved using a 
method based on optimizetian principles as well as threc other numerical techniques. The results show that the 
methods based on the optimization principles can he successfully used in solving such problems. 
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1. Introduction 

There are a large number of industrial processes where one has to solve the transient 
nonlinear finite element-modelled heat transfer equations1. The nonlinearities in these 
problems arise due to two reasons; the first reason is the variation of the material 
properties with the temperature and the second one is due to the radiative heat flux 
where higher powers of temperatures are involved. The first type of nonlinearity can be 
taken care by evaluating the elemental matrices at each time increment; thus these 
matrices are updated at each time-step. The second type of the nonlinearity can be 
analysed by formulating the problem using the variational principles or the method of 
weighted residualsz-'. 

Irrespective of the method used, one arrives at a set of nonlinear partial differential 
equations which must be solved by an iterative, time-marching scheme. Some of the 
commonly known techniques which have been used to solve such problems are: (a) the 
iteration method, (b) the Newton-Raphson method, (c) the Gauss-Seidel iteration 
method. In reference 4, there is an excellent discussion on some of the routines for 
solving the nonlinear problems which includes the gear predictor-corrector routine. 

The specific contribution of the present investigation is to obtain the solution of such 
heat transfer problems wing the n~ethods based on the optimization principles. These 
methods have been successfully utilized in obtaining the minima or the maxima of the 
functions, and have proved as excellent and reliable tools for design problems over a 
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very long period of time. The application of these techniques in the fluid mechan~cs area 
can be seen in Bristeav ti al's workss? 

'These optimization methods are of two types. They are: (a) thc direct search 
methods, and (b) the gradient search methods. In the present work, the heat transfer 
problem is solved using the Davidon-Fletcher-Powell method (DFP method). which is a 
gradient method. 'This method has been selected because it has been accepted as one 
aillong a few reliable methods to obtain the optima, but not necessarily the most efficient 
method in terms of CPU time. The purpose of the present work is to  demonstrate the 
applicability of thc methods based on the optin~ization principles to the nonlinear heat 
transfer problems. Therefore this reliable method has been sclectcd. The efficiency in 
termsof the CPU time is quite dependent upon the type of problem being solved; thus in 
the opinion of authors, to  start with, one should choose the method based on reliability 
rather than on efficiency. These were the reasons for selecting the DFP method. Once 
the feasibility of solving nonlinear heat transfer problems can bc established using a 
reliable method then one can go for the efficiency. 

2. Mathematical formulation 

The differential equation of the heat conduction process in solids can be written as2 

with the boundary cond~t~ons  

T =  T,  on S,, and 

The union of both the surfaces, S, and S,, forms the complete boundary of the solid 
having a volume V. The functional formulation which is equivalent t o  eqns (1) and 
( 2 )  can be written asi 

The contribution of each of the elements can be added up  and the resulting global 
matrices can be written as' 
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allere the expressions for the matrices I('''], [K"] and the vectors (~$1, IF; ) ,  {F; ) ,  {p : }  
are given in Appendix 1; the superscripts 6 3  and  e refer to the global and 
matrices rcapectively. 

The vector {F:} is the glohal torce vector due  to  the radiative heat transfer. This 
vector contains thc terms of  higher powel-s of the nodal tcmperaiurcs. Since eqn. 
(5) represents a system of n0niine;lr first order dil'krential equations, it nlust be solved 
by the nonlinear methods. AS mentioned c;irlicr, eiln. ( 5 )  can be  solved using the DFB 
method and for comparison purposcs by a few other commonly known methods such as 
(a) the iteration method. (b) thc Nswton-Raphson method, and (c) the Gauss-Seidel 
iterat~on method. 

3. Methods of solation 

There are two commonly known methods for solving the nonlinear set of transient 
temperature equation5 which is q n .  ( 5 ) .  It is a system of first order nonlinear differential 
equation. The first method ol solving lhese typcs of equations is by using the finite 
clzment method defined in the lime donlain'. The  second rncthodi for solving these 
equations is by approximating the time derivative using a finite difference scheme. 
However, the numbcr of cornputa~ions involved in the first method are very large. On 
the other hand, thc Crank-Nicolson ccntral finite difference method3-" is unconditionally 
stable and can be eaaily used in the present investigation for obtaining the temperature 
distribution. 

Using this central finite d i f f~rcnce  method, one can rewrite eqn.  (5) in the following 
form: 

where {A , }  is known because all the parameters at  time t arc known. Equation (6) 
contains vector {Ff;},. ,  .,,, and the unknown nodal temperatures whereas. {F?},+A,,~ 
contains T, at [+At12 which is known. In the present problem, there are no  heat 
gerleration or specified heat flux terms so that {F$},+.,;: and { F : } ~ + A ~ , ~  are zero. Since 
the unknown nodal temperatures a re  present in the nonlinear form here, one has to solve 
this equation hy an iteration technique. 

3.2 Methods of solvit~g the ,ron[ineur system of ai~ebraic equutions 

The method of solving the nonlinear system of algebraic equation such as the 
Gauss-Seidel iteration technique, o r  the Newton-Raphson technique, etc.. is well known 
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and will not be discussed in detail here. Only a brief introduction to the application of the 
DFP method would be desirable and is mentioned here. 

Ifwe denote the global temperature vector at the ith iteration stage of the optimization 
as  {T: ) ,+~ , ,~  and substitute on the right hand side of eqn. (6) then we can compute the 
force vector, {F:},,,,,~ Then, this equation reduces to a system of linear equations 
which can be  solvedfor the unknown temperature vector at time t +  Atl2. This calculated 
vector can be denoted as {T:}, ,~, ,~.  So we can define the objective function 8 for the 
minimization as 

0 = 1 (C - TA)'t+auz 
, = I  

where n denotes the total number of nodes. 

Therefore, the global temperature vector { T ~ } , , ~ , , ,  is obtained by minimizing the 
objective function 8. The iterative procedure of this method can be seen in Rao". 

4. Numerical example 

The transient heat transfer process of the body shown in fig. 1 was studied using the finite 
element method1. It is a ceramic body whose sides were maintained at 300°C and the 
bottom surface was insulated. The top surface exchanged heat with the surrounding fluid 
at 50°C. This heat transfer process takes place due to the convection and radiation 
mechanisms. Initially the whole body was at 300TC, and was analyzed as a two- 
dimensional problem. Because of the symmetry about the vertical axis, heat transfer 
analysis was carried out for the right half of the body only. Linear finite triangular 

I Convection, radiation boundary 

Convection, radiation boundary 

6 

Insulated boundarv 

Fio. 1. System mnfigurarion with variolls boun. 
Cr) uwrditio~s. 

FIG. 2. Discretization of the system into finite 
elements. 
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elements were used in this study. The finite element discretization of the system is shown 
in fig. 2. The unsteady heat transfer process of this body is represented by eqn. (6).  
Equation (6) was solved for { T ~ } , , ~ , , ~  using all the methods mentioned earlier i.e. the 
iteration method, the Newton-Raphson method, the optimization method, and the 
~au~s-Seidel method. 

1" the selection of proper size of the elements and the time step At, these were 
varied so that the oscillations in the nodal temperature values died out 

soon. It should be pointed out here that using the consistent matrix approach, these 
oscillations are always present but they die out with timc because the finite element 
method is an unconditionally stable method. If one uses the lumped matrix approach 
then these oscillations may not occur but the model would be less accurate. One can 
reduce the amplitude of each of the frequencies which are present by a suitable 
combination of the element size and the time step, At. In order to compare the finite 
element results with the finite difference results, this problem was also solved using the 
finite difference method. The nodes in the finite difference method coincided with those 
of the finite element method. 

5. Results and discussion 

Figure 3 shows the temperature distribution of the solid using the iteration technique 
and thc continuous decline of ternpcratures for all the nodes with time. The 
temperatures of various nodes oscillate in the beginning, and then die out after some 
time. At a given time, the oscillation amplitudes are higher for the top surface nodes 
compared to the nodes at the insulated boundary. The rate of decrease of the 
temperature at the top surface is very high, whereas the temperatures at the nodes which 
are on insulated boundary decrease very slowly. At any given time, node 21 is at the 
lowest temperature. This is because it lies on the symmetrical axis losing heat to the 
surrounding fluid by convection as well as radiation. Moreover, it is the farthest point 
from insulated and isothermal surfaces. Figure 4 shows the time-temperature plot of 
node 1. It is clear from this figure that the temperature distributions obtained by 
different numerical methods are quite close. As expected, the finite element results show 
oscillations in the initial time period, whereas finite difference results do not exhibit such 
a behaviour. However, one has to take care of the stability criteria in the finite difference 
method. To solve equation (6) by the Newton-Raphson method, one has to compute the 
Jacobian matrix. This computation requires more computer memory storage 
and involves more number of computations as compared to the iteration method. 
The results obtained by the Gauss-Seidel method were the same as those of the 
Newton-Raphson method. The CPU time required for ten time steps for the 
various methods are shown in Table I. It shows that the iteration method is the most 
efficient. It is simpler- to use also. The minimum time, in case of the Gauss-Seidel 
method, is taken when w = 1.0, i.e., when the situation is unmodified. Both, under and 
over relaxations lead to increased CPU times. The Newton-Raphson technique yields 

good results but not better than the iteration method. The optimization method 
takes considerable amount of time. As pointed out earlier, the CPU times in the 
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FIG. 3. The tcmperatuic-me plat ni  the czramlc at various nodes usmg variable 
lnctric method. 

numerical methods are problem dependent. Therefore. this picture may change 
complctelg while solving other types of problems. In the present work onlv one out of a 
large number of optimization methods has been used to obtain the translent 
temperamres. lt yielded correct temperatures hut was not very efficient as comparcd to 
some other methods. However, onc should consider other optimization methods which 
could be quite effective in obtaining the convergence. On the other hand, one can use 
some of the modifications to the DFP method"." to economize on the CPU time. As a 
point of clarification it should be added here that the difference in the temperatures 
obtained at various nodes, with and wlthout radiative terms, were quite significant even 
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Time (Minutes) 
FIG. 4. The temperature-tlme plot at node 1. 

though the solid was only at 300°C (not a very high temperature) initially. This difference 
will be more if the solid is cooled from higher temperatures. 

6. Conclusions 

In this paper, the equations for the transient nonlinear temperature distribution within a 
solid due to the convective and radiative heat flux from the surroundings were obtained 
using a combination of finite element and finite difference methods. The nonlinearities in 
this analysis were due to two reasons; the first was due to the variation of the material 
Properties with the temperature and the second was due to the radiative heat flux. The 
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Table 1 
CPU time fur ten Time Steps for 
various methods (At = 60 seconds) 

CPU time 
Mcthod (Seconds) 

Iteration 
Newton-Raphson 
Davidon-Fletcher-Powell 
Gauss-Se~del w = 0.2 

o = 0.4 
0 = 0.6 
o = 0.8 
0 = 1.0 
0 = 1.2 
w =  1.4 

resulting nonlinear heat transfer equations were solved by (a) the iteration method. 
(b) the Newton-Raphson method, (c) the nonlinear optimization method, and (d) the 
Gauss-Seidel iteration method. Based on this study it can be concluded that the methods 
based on the optimization principles can be successfully used in solving nonlinear heat 
transfer problems. 

Nomenclature 

c : specific heat 

Icl : capacitance matrix 
ID]  : thermal material property matrix 
tf'} : residual vector 
I F c ]  : force vector due to convection 
{Far} : force vector due to the specified heat flux 
{Fg} : force vector due to heat generation within the body 
V r l  : force vector due to radiation 
h : convection heat transfer coefficient 
K , .  K,, K ,  : thermal conductivities in the x, y and z directions respectively 
[K]  : thermal conduction matrix 
1 ,  1 ,  1 : direction cosines of the normal to the surface 
n : total number of nodes 

[Nl : shape function matrix 
4 : the specified heat flux 
Q : heat generated within the body 
SI : surface experiencing heat flux 

. sz : surface experielicing convection and radiation heat transfer 
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: time 
: time increment 
: nodal temperature vector 
: fluid temperature 
: optimization temperature vector 
: surface nodal temperatures 
: emissivity of the body 
: objective function to be minimized for the solution of nonlinear heat 
: transfer equations 
: density of the material 
: Stefan-Boltzmann Constant 
: relaxation parameter 
: a functional 
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Appendix I 

The following are the expressions for the elemental matrices: 

[C'] = Jv ,pc [Ne]  ' [ N ~ ] ~ v  

[ K e ]  = J v c [ ~ e ] T [ D e ]  [ B e ] d V + J 3 ; h [ N e ]  ' [ N e ] d s  

{FE) = J,,,Q [ N e ] ' d v  

{F;} = Jx;qlNe1 'dS 

{F:} = J,;h T,  [ N e ]  'dS 

{F;) = Js;m T i  [NeITdS 

- J s p ~ [ N e ] r ( [ ~ e ] { T e } ) 4 d ~ .  


