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Abstract

In this work, the equation for obtaining the transient temperature distribution within a solid are derived using
the nonlinear finite element analysis. The mixed boundary conditions in this formulation can be made up of
four different forms which are: (a) the specified heat flux, (b) the convective heat flux, (c) the radiative heat
flux and (d) the specified surface temperature distribution. The nonlinear set of equations are solved using &
method based on optimization principles as well as three other numerical techniques. The results show that the
methods based on the optimization principles can be successfully used in solving such problems.
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1. Intreduction

There are a large number of industrial processes where one has to solve the transient
nonlinear finite element-modelled heat transfer equations’. The nonlinearities in these
problems arise due to two reasons; the first reason is the variation of the material
properties with the temperature and the second one is due to the radiative heat flux
where higher powers of temperatures are involved. The first type of nonlinearity can be
taken care by evaluating the elemental matrices at each time increment; thus these
matrices are updated at each time-step. The second type of the nonlinearity can be
analysed by formulating the problem using the variational principles or the method of
weighted residuals®~.

Irrespective of the method used, one arrives at a set of nonlinear partial differential
equations which must be solved by an iterative, time-marching scheme. Some of the
commonly known techniques which have been used to solve such problems are: (a) the
iteration method, (b) the Newton-Raphson method. (c) the Gauss-Seidel iteration
method. In reference 4, there is an excellent discussion on some of the routines for
solving the nonlinear problems which includes the gear predictor-corrector routine.

The specific contribution of the present investigation is to obtain the solution of such
heat transfer problems using the methods based on the optimization principles. These
methods have been successfully utilized in obtaining the minima or the maxima of the
functions, and have proved as excellent and reliable tools for design problems over a
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very long period of time. The application of these techniques in the fluid mechanics area
can be seen in Bristeav et al's works™".

These optimization methods are of two types. They are: {a) the direct search
methods, and (b) the gradient search methods. In the present work, the heat transfer
problem is solved using the Davidon-Fletcher-Powel method (DFP methad), whichisa
gradient method. This method has been selected because it has been accepted as one
among a few reliable methods to obtain the optima, but not necessarily the most efficient
method in terms of CPU time. The purpose of the present work is to demonstrate the
applicability of the methods based on the optimization principles to the nonlinear heat
transfer problems. Therefore this reliable method has been sclected. The efficiency in
terms of the CPU time is quite dependent upon the type of problem being solved; thus in
the opinion of authors, to start with, one should choose the method based on reliability
rather than on efficiency. These were the reasons for selecting the DFP method. Once
the feasibility of solving nonlinear heat transfer problems can be established using a
reliable method then one can go for the efficiency.

2. Mathematical formulation

The differential equation of the heat conduction process in solids can be writien as®
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The union of both the surfaces, §, and §,. forms the complete boundary of the solid

having a volume V. The functional formulation which is equivalent to eqns (1) and
(2) can be written as'
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The contribution of each of the elements can be added up and the resulting global
matrices can be written as!
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where the expressions for the matrices [C], [K] and the vectors {Fj}, {Fo}, {Fe), {Fe}
are given in Appendix I the superscripts & and e refer to the global and elemental
matrices respectively.

The vector {FS} is the global force vector due to the radiative heat transter. This
vector contains the terms of higher powers of the nodal temperatures. Since eqn.
(5) represents a system of nonlinear first order differential equations, it must be solved
by the nonlincar methods. As mentioned catlier, eqn. (5) can be solved using the DFP
method and for comparison purposes by a few other commonly known methods such as
(a) the iteration method, (b) the Newton-Raphson method, and (c) the Gauss-Seidel

iteration method.
3. Metheds of solution
3.1 Transformation of the simultancous differential equations

There are two commonly known methods for solving the nonlinear set of transient
temperature equations which is eqn. (3). It is a system of first order nonlinear differential
equation. The first method of solving these types of equations is by using the finite
clement method defined in the time domain®. The second method” for solving these
equations is by approximating the time derivative using a finite difference scheme.
However, the number of computations involved in the first method are very large. On
the other hand, the Crank-Nicolson central finite difference method™ is unconditionally
stable and can be easily used in the present investigation for obtaining the temperature
distribution.

Using this central finite diffgrence method, one can rewrite eqn. (5) in the following
form:
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where {Al} is known because all the parameters at time ¢ are known. Equation (6)
contains vector {F¢},, s, and the unknown nodal temperatures whereas, {FClsam
contains T, at {+A#/2 which is known. In the present problem, there are no heat
generation or specified heat flux terms so that {F$ by a2 and {FS }, . 42 are zero. Since
the unknown nodal temperatures are present in the nonlinear form here, one has to solve
this equation by an iteration technique.

3.2 Methods of solving the nonlinear system of algebraic equations

The method of solving the nonlinear system of algebraic equation such as the
Gauss-Seidel iteration technique, or the Newton-Raphson technique, etc., is well known
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and will ot be discussed in detail here. Only a brief introduction to the application of the
DFP method would be desirable and is mentioned here.

If we denote the global temperature vector at the ith iteration stage of the optimization
as {T. }c4:r2 and substitute on the right hand side of egn. (6) then we can compute the
force vector, {FE},, . Then, this equation reduces to a system of linear equations
which can be solved for the unknown temperature vector at time 1+ A#/2. This calculated
vector can be denoted as {T%},+ asn. So we can define the objective function 8 for the
minimization as

8=

i

where n denotes the total number of nodes.

(T2 =T a2 0

ipgs

Therefore, the global temperature vector {T<};, 4, is obtained by minimizing the
objective function 4. The iterative procedure of this method can be seen in Rao'’,

4. Numerical example

The transient heat transfer process of the body shown in fig. 1 was studied using the finite
element methed'. It is a ceramic body whose sides were maintained at 300°C and the
bottom surface was insulated. The top surface exchanged heat with the surrounding fluid
at 50°C. This heat transfer process takes place due to the convection and radiation
mechanisms. Initially the whole body was at 300°C, and was analyzed as a two-
dimensional problem. Because of the symmetry about the vertical axis, heat transfer
analysis was carried out for the right half of the body only. Linear finite triangular
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elements were used in this study. The finite element discretization of the system is shown
in fig. 2. The unsteady heat transfer process of this body is represented by eqn. (6).
Bquation {6) was solved for {TC},+ a2 using all the methods mentioned earlier i.e. the
iteration method, the Newton-Raphson method, the optimization method, and the

Gauss-Seidel method.

In the selection of proper size of the elements and the time step At, these were
simultaneously varied so that the oscillations in the nodal temperature values died out
soon. It should be pointed out here that using the consistent matrix approach, these
osciliations are always present but they die out with time because the finite element
method is an unconditionally stable method. If one uses the lumped matrix approach
then these oscillations may not occur but the model would be less accurate. One can
reduce the amplitude of each of the frequencies which are present by a suitable
combination of the element size and the time step, At. In order to compare the finite
element results with the finite difference results, this problem was also solved using the
finite difference method. The nodes in the finite difference method coincided with those
of the finite element method.

5. Results and discussion

Figure 3 shows the temperature distribution of the solid using the iteration technique
and the continuous decline of temperatures for all the nodes with time. The
temperatures of various nodes oscillate in the beginning, and then die out after some
time. At a given time, the oscillation amplitudes are higher for the top surface nodes
compared to the nodes at the insulated boundary. The rate of decrease of the
temperature at the top surface is very high, whereas the temperatures at the nodes which
are on insulated boundary decrease very slowly. At any given time, node 21 is at the
lowest temperature. This is because it lies on the symmetrical axis losing heat to the
surrounding fluid by convection as well as radiation. Moreover, it is the farthest point
from insulated and isothermal surfaces. Figure 4 shows the time-temperature plot of
node 1. It is clear from this figure that the temperature distributions obtained by
different numerical methods are quite close. As expected, the finite element results show
oscillations in the initial time period, whereas finite difference results do not exhibit such
abehaviour. However, one has to take care of the stability criteria in the finite difference
method. To solve equation (6) by the Newton-Raphson method, one has to compute the
Jacobian matrix. This computation requires more computer memery storage
and involves more number of computations as compared to the iteration method.
The results obtained by the Gauss-Seidel method were the same as those of the
Newton-Raphson method. The CPU time required for ten time steps for the
various methods are shown in Table I. It shows that the iteration method is the most
efficient. It is simpler to use also. The minimum time, in case of the Gauss-Seidel
method, is taken when w = 1.0, i.e., when the situation is unmodified. Both, under and
over relaxations lead to increased CPU times. The Newton-Raphson technique yields
very good results but not better than the iteration method. The optimization method
takes considerable amount of time. As pointed out earlier, the CPU times in the
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numerical methods are problem dependent. Thesefore, this picture may change
completely while solving other types of problems. In the present work only one out of &
large number of optimization methods has been used to obtain the tramsient
temperatures. 1t yielded correct temperatures but was not very efficient as compared to
some other methods. However, one should consider other optimization ‘methods which
could be quite effective in obtaining the convergence. On the other hand, one can use
some of the modifications to the DFP method"**? to economize on the CPU time. Asa
point of clarification it should be added here that the difference in the temperatures
oblained at various nodes, with and without radiative tesms, were quite significant even
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though the solid was only at 300°C (not a very high temperature) initially. This difference
will be more if the solid is cooled from higher temperatures.

6. Conclusions

In this paper, the equations for the transient nonlinear temperature distribution within a
solid due to the convective and radiative heat flux from the surroundings were obtained
using a combination of finite element and finite difference methods. The nonlinearities in
this analysis were due to two reasons; the first was due to the variation of the material
properties with the temperature and the second was due to the radiative heat flux. The
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Table 1
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CPU time for ten Time Steps for
various methods (At = 60 seconds)

CPU time
Method (Seconds)
lteration 0.092
Newton-Raphson 0.140
Davidon-Fletcher-Powell 0.980
Gauss-Seidel o = 0.2 1.93
o=04 0.97
w=106 0.76
w=108 0.27
w=10 0.18
w=12 0.60
w=14 0.81

resulting nonlinear heat transfer equations were solved by (a) the iteration method,
(b) the Newton-Raphson method, (c) the nonlinear optimization method, and (d) the
Gauss-Seidel iteration method. Based on this study it can be concluded that the methods

based on the optimization principles can be successfully used in solving nonlinear heat
transfer problems.

Nomenclature

C

[l

{D]

{f

{F}

{F}

{Fq}

{F}

h

K, K, K.
[X]

Lo L,
n

N]

q

Q

S

S

: specific heat

: capacitance matrix

: thermal material property matrix

: residual vector

. force vector due to convection

: force vector due to the specified heat flux

. force vector due to heat generation within the body

: force vector due to radiation

: convection heat transfer coefficient

: thermal conductivities in the x, y and z directions respectively
: thermal conduction matrix

: direction cosines of the normal to the surface

: total number of nodes

. shape function matrix

: the specified heat flux

: heat generated within the body

. surface experiencing heat flux

: surface experiericing convection and radiation heat transfer
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t : time

At : time increment

(T} : nodal temperature vector

Te : fluid temperature

Ty} : optimization temperature vector

{T.} : surface nodal temperatures

£ : emissivity of the body

9 : objective function to be minimized for the solution of nonlinear heat

. transfer equations
: density of the material

P

o : Stefan-Boltzmann Constant
w . relaxation parameter

X : a functional
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The following are the expressions for the elemental matrices:

[C°] = frepe[N]TIN AV

(K] = Jo<[BIT[D°][B1AV + [ [N°]T[N°]dS

{F5} = f,.QIN°}TdV

{F} = eqINe]Tds

{Fe} = fhTo [N Tds

AP} = [goe TL[N)Tds

~ JgoeN T (NT{THds.



