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Abstract 

Exact solutions are ohtaned tor the unstcady MHI) flow of .I vixous, eleclncally conductmg, homogeneous, 
incompress~blc llu~d hctwccn two lnlinitc par;~llcl, insulated, porous disks rotaung wlth angular vcloc~ty fl 
about two nan-coincident axes. The disks :ire subiectcd to oon-mrsion;ii oscillahons of dillerent frcouencies 
and a uniform magnctlc licld i applied normal to the disks. The asymmetric or symmctric solutionsconts~ning 
arbitrary constants reduce to a smgle unique o lu tmn whcn one pru\vr~bcs thc pressure grad~snl Necessary and 
suftlcient condit~ons lor ;\ ,olnt,iin to he <vmrnetric and asvmmetric are obtained. In some sneclal cases hoth the 
symmetlicand a\y!nmct!~i. solutions for ccccntricolly rolating disks alc e v a h t e d  numcric~dly and discussed in 
dctal. 
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1. Introduction 

Recently, asymmetric flow between two parallel rotating disks for both coaxial and 
non-coaxial axes of rotation has becn studied by Lai ct a [ ' .  The complete non-linear 
Navier-Stokes equations have been solved numerically by Galerkin's method wilh 
B-spline test functions and several interesting results were obtained. This work was 
motivated by the pioneering work of Berker2.', who has established the presence of 
one-parameter family of asymmetric and symmetric solutions for the flow between 
coaxial and non-coaxial rotating disks. Pgrter and Rajagopal* have investigated the flow 
between two disks rotating about a common axis. or about different axes and have 
established the existence of new asymmetric solutions for the full Navier-Stokes 
equations which are not isolated from classical solutions obtained by von Kdrmin' and 
Batchelor'. By the same numerical method of their earlier paper, Lai et a17 have studied 
the asymmetric flow of an illcompressible viscous fluid abovc a single rotating disk and 
generalised von Karmlin solution to include non-axisymmetric solutions. The problem 
corresponding to a single rotating disk in thc presence of uniform suction in a Streaming 
flow has been solved by Szeri et nlx. 

The importance of unsteady flows due to a single rotating disk or two parallel rotating 
disks is well known. ThornleyY has presented an exact solution for the flow of an 
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incompressible viscous fluid above a single disk or confined between two infinite disks 
with one of the disks performing non-torsional osci~~ations in its own plane in a rotating 
frame of reference rotating with uniform angular velocity a. Superposing the 
non-torsional oscillations of disks given by ~hornley", on the results of Bet!&, 
Ramachandra Rao and ~asiviswanathan'~ have investigated the unsteady flow confined 
between two non-coaxially rotating disks. Recently, Kasiviswanathan and Ramachandra 
~ a o "  have studied the flow due to eccentrically rotating porous disk and a fluid at 
infinity. 

Gopinath and ~ebna th"  and ~ e b n a t h l 9 a v e  extended the results of Thornley9 to 
include the effects due to the presence of a transverse magnetic field. A general study of 
the unsteady hydrodynamic and hydromagnetic boundary layer flows including the 
effects of the pressure gradient and uniform suction or blowing has been made by 
Debnath14. An exact solution for the MHD flow of a viscous, incompressible, electrically 
conducting fluid between two infinite, parallel, insulated disks rotating with same 
angular velocity about two non-coincident axes under the application of a uniform 
transverse magnetic field has been obtained by ~ohan ty" .  Ramachandra Rao and 
Raghupathi Rao" have studied the steady MHD flow between two disks rotating with 
different angular velocities about non-coincident parallel axes. This analysis has been 
further extended by Raghupathi Rao" to the case of torsionally oscillating eccentric 
disks. 

Asymmetric and symmetric solutions for the unsteady MHD flow between two 
infinite, parallel, porous disks rotating with angular velocity 0 about two non-coincident 
axes are obtained in this paper. The disks are subjected to non-torsional oscillations of 
different frequencies and a uniform magnetic field is applied normal to the disks. Exact 
solutions are obtained by introducing an arbitrary boundary condition in the middle 
plane between the two disks. The arbitrariness of the boundary condition can be 
removed by prescribing the pressure gradient. The criteria for a solution to be symmetric 
or asymmetric are presented. Numerical results are discussed in some special cases. 

2. Mathematical formulation 

Consider the unsteady flow of a conducting, homogeneous, incompressible, viscous fluid 
between two infinite, insulated, parallel, non-torsionally oscillating, porous, rotating 
disks with different frequencies, o, and w,, which are rotating with an angular velocity fl 
about two non-coincident axes. A uniform magnetic field Bo is applied perpendicular to 
the disks. Let the upper disk rotate about the point Pl(xl, y l ,  h)  and the lower disk about 
PL(-xI, -YI. -h)  and let 0 the middle point of PIPZ be taken as the origin. The OX and 
?Y axes which are perpendicular to each other, are chosen perpendicular to z-axis lying 
In the middle plane given by z = 0. The equations governing the flow under the usual 
MHD approximations18 are 
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V = (u, v ,  w) is the velocity Vector in the Carteskn coordinate system, p is the 
density; p is the pressure, p i s  the coefficient of viscosity, B is the magnetic field, E is the 

field, is the current density, P' is the magnetic permeability and w is the 
electrical conductivity. The velocity components satisfying the constraint o i  incompres- 
sibility for this type of flow are of the form similar to those of Rajagopal19 and they are 
given by 

u = - R [ y - g ( z ,  t ) ] ,  v = R[x-f(z, r ) ] ,  w = - w,,, (3) 

where Wo is the uniform suction velocity. We observe that for the flow given in (3) the 
streamlines are concentric circles in planes z = constant for a given time t with centre at 
the stagnation point (f, g). In each plane the fluid rotates about a stagnation point and 
the locus of these stagnation points is a space curve r. 

The initial and boundary conditions for the flow are 

F = f ( z ,  t )+ i  g(z ,  t )  = 0 ,  riFldz = 0 for t = 0, (4) 

F = ale'"~'+a3e-'w~'+xl +iy l  on z  = h for t > 0, (5 )  

where ol and w2 are frequencies of the non-torsional oscillations of the upper and lower 
disks respectively, a, ,  a,, a,, a4 are complex constants which give the amplitudes of the 
oscillations and the last terms in (5) and (6) are due to the disks rotating about the axes 
through ( I x , , i y l ) .  We assume that the magnetic Reynolds number is small which 
implies the induced magnetic field is negligible and this enables one to replace B by the 
applied magnetic field Bo. The third equation in (2) is ignored completely but its 
consequence O. 7 = 0 is retained (see ~ o h a n t y ' ~ ) .  Since the disks are insulated J, = u 
E, = 0. From the first equation of (2)  we get (dEJaz) = (dE,/dz) = 0,  which means 
that Ex and E, are functions of x,  y and t only. Integrating J, and J, between - h and h, 
since the current across the cross-section is zero, we get 

i J,dz = 0, J,dz = 0. 
-h  -h i 

Using (7) we obtain Ex and E, as 

where 

(9) 
-h -h 

Now the expressions for J,  and Jy are obtained by using (8) in the last equation Of (2).  
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Using the expressions for J,, Jy and velocity components (3) in (1) and eliminating 
pressure by differentiating with respect to z, as the pressure p is independent of z from 
the third component of (I), we get 

where the suffixes denote the partial differentiation with respect to the corresponding 
variable. For pseudo-plane motions of first kind (~erker ' )  the velocity field is given by 
(3) in the absence of Wo. The non-linear governing equations (1) and (2) reduce to linear 
equations (10) and (11) for the flows given by (3). Now combining (10) and (ll),  we get 

where F = f + ig. 

3. Symmetric and asymmetric solutions 

Now the problem is to solve (12) subjected to the initial and boundary conditions given in 
(4)-(6). Taking the Laplace transform of (12) and using (4), we get 

where 

F(z, s )  = F(z, t )  e-"'dt. i (14) 

The transformed boundary conditions corresponding to (5) and (6) are given by 

As the ordinary differential equation given in equation (13) is of third order, one needs 
three boundary conditions to determine the solution completely. But we have only two 
boundary conditions as given in (15) and (16). For completeness, we assume the third 
transformed boundary condition arbitrarily on the plane z = 0 by 

where ~ O I ,  aoz, ao3, %a and x,+iy, are arbitrary complex constants. But afterwards, we 
shall give a method of evaluating these constants when the pressure gradient is 
~ r e e b e d .  The solution of (13) satisfying (15), (16) and (17) is given by 
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cosh a h  (eCacosh P z -  I) cosh ph  sinh ah eCE sinh pz + [ Z(wsh ,Bh -cosh r h )  2 sinh ph (cosh ph -cab ah) ]  

4 ( - l y + l  2(xl +iy,) sinh ah  (e-" cosh p z -  1) + (  ] [  Z(cosh oh-cosh oh )  

(cosh ph coshah - 1) e-"' sinh pz 
t 

2 sinh ph (cash ph-cosh ah )  1' 

The inverse transform is given by 

where y > 0 is a real number in the domain F(z,  s). The integrand in (20) has simple 
poles at s = 0, iw,, iwZ, iws, i q ,  - (plP) [(n2?i2/hZ) - a2 - (iSZpIp) - uB$I+)] for 
n = 1,2, ..., and double poles at (-4n2n?.ylh2p- crB~lp-i~li-4inmp1hp) for 
n = 1,2, .... The residues at the poles s = 0, iw,, r = 1.2.3.4 give the steady-state 
oscillatory solutions whereas the residues at the other poleb give the transient part of the 
solution which vanishes at t -+ m. The full transient solution is not presented for 
briefness; however, it is presented for a special case in which wl = w~ = w and WO = 0. 
The general steady-state oscillatory solution is given by 

4 4 

F(z ,  t )  = x, + iy, + 2 a,,e1++ 1 (a, - 2a,,) 
r = i  r = l  

cosh a h  (e-@' cosh p,z- 1) cosh p,h sinh ah  e - -  sinh p,z + '[ ? (~osh  p.h -cash ah)  2 sinh prh (cosh p.h- C O S ~  bh) 1 
cosh ah (e-OZ cosh ~ S Z  - 1) . eiuJ- (xp + iyp) [ 

(cosh &h - cosh ah) 

cosh p5h sinh a h  e-" sinh p5z + 2 (- lY1 a, eiW,' 
+ sinh p5h (cosh prh - cash ah)  ] ,=, 



sinh ah  (eCe7 cosh p,z - 1) ( C O S ~  P,h C O S ~  a h  - 1) eCez sinh p,z 
i + [ 2(cosh pih - cosh oh) 2 sinh P,h (cosh P.h - cosh ah) ] 

sinh ah  (CUZ cosh P5h - 1) ' x l y l  [ ( C O S ~  fish - C O S ~  ah)  

(cosh P5h cosh a h  - 1) e-az sinh Psz 
+ 

sinh P5h (cosh P5h - cosh ah) 1 ' 
where 

r = 1,2,3,4,5 and w, = 0. (22) 

The solutions in (21) reduces to that given by Ramachandra Rao and Kasi~iswanathan'~ 
when wl = u2 = w and Bo = Wo = 0 and the steady solutions presented by Berker3 are 
recovered from (21) when Bo = Wo = 0 in the absence of forced oscillations. Further, 
the problem in which B, # 0, Wo = 0, w, = w2 = w has been studied in detail by 
Kasiviswanathan and Ramachandra ~ a o ~ ' .  For the case when w ,  = w2 = w, the solution 
(21) reduces to 

cosh a h  (e-az cosh p l z  - 1) 
F z t {  (~osh/3~h-coshah)  

cosh j3,h sinh ah  e-az sinh plz sinh a h  (eCaZ cosh Plz - 1) + .  
smh (cosh Plh-  cosh ah) 1'' [ (cosh fiih- msh ah)  

+ (cash Plh cosh a h -  1)e-"' sinh p,z 
sinh Plh (cosh p,h -cosh ah) 

cosh ah (eFaz cosh p,z- 1) 
(cosh Pfh - cosh ah) 

cosh P3h sinh a h  eCaZ sinh /3jz + .  
smh &h (cosh p3h - cosh ah) ] 

sinh a h  (e-"' cash p3z - 1) 
+ ( (cash & h  -cash ah) 

+ (cosh pjh cosh a h  - l)e-= sinh &z + 2(an3 + ~ ~ 4 ) ] e - ' ~ '  sinh plh (cmh p3h - cosh oh) 1 
sinh a h  (e-"' cosh psz - 1) 

+ "I) [ (cosh /3& - cosh ah) 



(cosh psh cosh all- I )  e-."' sinh P5z + ------T smh PSh (cosh Psh - cosh ---I a h )  

cosh a h  (e-O2 C O S ~  Psz - I) 
- ('1~ ' "' [ (cosh - cosh a h )  

cosh P5h sinh a h  e-"' sinh PSz + 
sinh PS. (cash P5h - cosh a h )  '1' 

where 

A = nl+u2-2(al, ,  +ul,2), B = a,  -u2. 

The complete solution including the transient part for a special case in the absence o f  
suction and o, = oz = w is given by 

cosh m i z  - 1 Bsinh m i z  + -------- 
cosh m l h  - l sinh m i h  

cosh m2z - 1 sinh m,z +; [ c  + D -  
cosh mzh - I smh m2h 

+ ): Q,(n) sin ( m z l h )  e-D""''h', 
n=1 

(24) 

where 

Qi(n, t )  = ~(32tvrr'n"~ - 4 ~ ~ h ~ ) I h ~ D :  

+ B(32r i&z2D2  - 4N2h2)/hZD: 

- 2(x ,  + iy,) (32tvrr%n2D1 - 4 ~ ~ h ' ) l h ~ D $ ,  

&(n )  = 87rn (A/D1+BID2-2(x l ,+ih , ) /D?) ,  

Q,(n) = 2 x  (- 1)".n(C/D4+D/D5 +2(x1 +iy,)/D,),  

D I = i (n+ w)h2/v+ u B $ h Z / p  + 4 ~ ~ n ' ,  

DZ = i ( a -  w)hZ/v+ uB;h21p+ 47r2r1', 

D3 = i ~ h 2 / v + a ~ ~ h 2 / p + 4 r r ' n ' ,  

0 4  = i ( n  + w)h7 i + u B ~ h z / p  + vzn', 
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= i ( R  - w)h2/u+ uB$h2lP + 7r2n2, 

= i i lh2 /v+ uB8h2Il* + d n 2 ,  

= i ( n  + w)h21v+ uB,'ih2lP + r 2 n 2 ,  

= i ( n  - w)h2/v+ uBsh2ip- 42%'. 

= i 0 h 2 / v +  uBih21l*. - 47r2n2, 

= { i ( n +  w)!u+ u B $ ~ ) " ~ ,  

= {i(n - w)/u+ CTB$~)"', 

= { ( i O / v +  U B $ ~ ) ~ ' ~  and u = plu .  

It is interesting to observe that the transient part in (24) given in terms of infinite series in 
the last two terms vanish at z = 0, + h and thus it consists of the eigenfunctions of the 
corresponding problem. The solution given in (21) contains five complex arbitrary 
constants no,. aoz, aln, ao4, x,+iy,, whereas (24) contains three complex arbitrary 
constants aol + aO2, ao3 t ao4 and x, +iy,. Each of these arbitrary constants gives one 
parameter family of solutions. 

Any solution, the velocity field of which is symmetric with respect to a point 0 is called a 
symmetric solution with respect to that point 0. Thus, a symmetric solution satisfies the 
condition 

and this in our problem implies 

F(- z, t )  = - F(z, t ) .  (27) 
Here, the symmetric solution is different from the usual axisymmetric solution. Solutions 
which are not symmetlic are called asymmetric solutions. The solutions given in (21), (23) and 
(24) do not satisfy condition (27) and therefore they are asymmetric solutions. The 
symmetry condition given in (27) cannot be satisfied by (21) for any choice of the 
arbitrary constants owing to the presence of suction or injection. Whereas the solution 
(23) in the absence of suction or injection satisfies (27) when a01 = a02 = 
a m = a o 4 = x , , = y p = 0 , a , + a  2 - - 0 and a, + a, = 0. Thus for a symmetric solution all 
the arbitrary constants become zero and hence it is unique. The symmetric solution 
corresponding to (24) in the absence of suction, as t - +  m ,  is given by 

sinh m3z sinh m l z  F =  ( x l + i y I )  - +aleio' - 
smh m3h slnh m l h  

sinh m2z + a3e-'o' --- 
sinh m2h ' 

and contains only odd functions in z .  
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4, Some important propedies of the motions 

obtaining the solutions in the previous sections, equation (12) was derived by 
pressure by differentiating with respect to z from the equations of motion 

which has resulted in an increase in the order of the differential equation governing the 
,,,,tion. In order to determine the solutions. an artificial boundary condition (17) was 
introduced which leads to non-unique solutions. I t  is well-known that the solution is 
unique fora motion in which the pressure gradient is prescribed. Now, we examine, by 
knowing the pressure gradient whether it will be possible to prescribe the boundary 
conditions at z = 0 without any arbitrariness. Using (3) in (1). we get 

Combining (29) and (30). we get 

Without any loss of generality, in what follows, we base all our discussions for the case 
01 = W? = w and t + m, as the essential qualitative features remain the same compared 
with the general case. The pressure can be determined from (29) and (30) but it is not 
Presented here since all our discussions are based on the modified pressure gradient. 
Modified pressure gradient VP' is calculated from (31) making use of the expression for 
F given in (23) and it is given by 
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C cosh ah + D  sinh ah 
- ( cosh &h - cosh ah (33) 

In the absence of suction, (33)  reduces to 

A 
~ V P '  = : (  - 2 (a,,,  + a O z )  vpf e'*' 

cosh Plh - 1 1 
C +; [ cosh P3h - 1 

- 2  + v p ~ e - l * ~  

If we assume that the modified pressure gradient is prescribed and has the form 

where pu, p ,  andp2 are complex constants, then by comparing (33)  or (34)  with (35) we 
can determine the arbitrary constants in (33)  or (34)  uniquely. Thus for a flow in which 
the modified pressure gradient is prescribed, we have a unique solution as the boundary 
condition on z = 0 is determined without any arbitrariness. Further, we prove the 
following theorems. 

Theorem I :  Consider the unsteady MHD flow governed by (12)  with W, = 0 and with 
the boundaly conditions 

F = a l e ' w + a 3 e - i w + x l + i y l ,  on z = h ,  (36) 

F =  aze iw+a4e- '" - (x l+ iy l ) ,  on z = -h ,  (37) 

F = (ao, +ao2)eiYu+ (a03 + ~ , , , ) e - ' ~ +  (x, + i y , ) ,  on t = 0. (38) 

A necessary condition for this flow to have a symmetric solution is that the modified 
pressure gradient in (34) must be zero. But this condition is not sufficient in general. 

Proof: Let the solution be symmetric. The steady oscillatory solution given in (24) with 
t-, 33 must satisfy the condition (27). This is true only when 

ao, = ao2 = ao3 = aw = x, = y, = 0 and 

a , + a z  = a 3 + a 4 =  0. (39) 

Using (39j in the expression for the corresponding modified pressure gradient given in 
(3% we get OF'  = 0. Given O P' = 0, the solution of (3l)with right hand side zero 
satisfying the corresponding boundary conditions is obtained and is given by 
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sinh mi2 
+(x l+ iy l )  - 

smh m3h ' 

The solution given in (40) does not satisfy the condition (27) for a symmetric solution. 
Thus VP'  = 0 is not a sufficient condition in general. Hence the theorem. 

We observe that (40) will be a symmetric solution, if 

(i) a l+a2  = 0 ,  u3+u, = 0, (41) 

In view of (41), VP' = 0 will be a sufficient condition for an unsteady flow to have a 
symmetric solution if the amplitudes of the oscillations of the disks are equal and 
opposite in sign. Equation (42) implies that the motion is steady and we have the 
following theorem. 

Theorem 2: The necessary and sufficient conditions for a steady MHD flow confined 
between two rotating disks to have a symmetric solution is that the modified pressure 
gradient is zero. 

We observe that a steady MHD flow, confined between two rotating disks, has an 
asymmetric solution when the modified pressure gradient is different from zero and vice 
versa. The above results hold good even ip the absence of magnetic field. Further we 
have: 

Theorem 3: A sufficient condition for the solution of the flow given in Theorem 1 to be 
asymmetric is that V P '  # 0. 

Proof: Solution in (40) is derived under assumption VP' = 0 and it is not a symmetric 
solution even in the absence of suction. Hence VP' # 0 is not a necessary condition for 
the solution to be asymmetric. Given VP'  # 0, we have to prove that the solution is 
asymmetric. 

BY comparing (34) and (35), we observe that the arbitrary constants in the boundary 
conditions at z = 0 can be determined uniquely and therefore they cannot satisfy the 
condition (39) for a symmetric solution. Hence the theorem. 
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1 2 3 
FIGS 1-3. 1. The variations of fwhen Re = 20, S = O for different values of H'. 2. The varlarions ofg when 
Re = 20. S = 0 for different values of H z .  3. The variations of f  when S = 0, H' = 0 for different valucaof 
Re. 

It is clear from (33) and (35) that a symmetric solution is not possible for a flow in the 
presence of snction or injection. 

5. Numerical discussion of the results 

It is very difficult to clearly understand the effects of suction or injection, magnetlc field 
and unsteadiness on the flow from the exact solutions presen'ted in the third section as 



FIG. 5 The variations ot f whcn Re = i(H1. S s 0, FK., 6.  '1.h~ variations o f g  when Re = 100. S .i u, 
H z =  0 for different valucs o l  x,,. ti' ;. [) for diffcrcnt v;llut-s of X,,. 

al = a, = U, = U, = 0; 

aill = ao2 = a,,? = a , ,  = O; X ,  = 2, y,, = 0; XI = I ,  Y ,  = 0. (43) 

The real and imaginary parts of (23)  give us f and g and they correspond to a steady 
solution for the choice of constants in (43). 



FIG.  7 LOCUS of stagnaIion points r for Re = IUO, Flr,. 8. Symmetric / with Re  = 211. S = 0 for  
S = 0 far dliferent ialues of Hz.  differem values of H' 

increases the variations off  and g arc confined to the regions very near to the disks or the 
core region in which they d o  not vary increases with an increase in Harrmann number. 

FIG. 9. Symmetric g u?rh Re  = 20. S = 0 for FIG. 10. S y m m i m  r with Re = 100, S = 0, for 
different values of HI. different \ .alms of H'. 



FIG 11. Asymmetric J with Re = 100. S = I 1) 
W - 5 0. H' = 0 tor dillerent times I .  

Thevariations of[ lor S = 0, N' = 0 for different values of Re are depicted in fig. 3 and 
it isseen that the core region in which f does not vary, increases with an increase in Re. 
Boundary layer-type behaviour is seen for large Re. The effect of suction or injection on 
the now is seen from the variafion off. for Re = 20 and H2 = 0 and for different values 
Of Sgiven in figs 4a and b. Figures 5 and 6 show the variations off and g respectively for 
fixed HZ = 0, S = 0, Re = 100, forx, give11 in (43) taking different values. The curves f 
Pass through the value of x,, at 2 2 0 whereas the g curves pass through zero at z = 0 for 
alfx,. Th~s is due to the fact that T, space curve giving the locus of the stagnation points, 
Passes through (x,,, 0) at z = 0. The curves for x, = 0 correspond to symmetric solution, 
and the rest represent asymmetric solutions. The three-dimensional picture of the space 

r, for Re = 100, S = 0 and for different values of H" is depicted in fig. 7. It is 
lnterest$g to observe that the curve r with large H' has straight core region larger than 
the corresponding non-magnetic case confirming the observations made earlier for 
asYnlmetric Solutions. In order to get the effect of magnetic field on the flow, the 

solutions f and g, i. e, with +, = 0 in (43) for fixed Re = 20, S = 0 and for 
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different values of  re plotted in figs. 8 and 9. It is observed that the curvesfor/andp 
flatten in the core region as Hartmann number increases. Figure 10 depicts tile locuso* 
the stagnation points r for Re = 100. S = O and for different values of 112. ~h~~~ 
three-dimensional curves confirm the fact that magnetic field increases the straight core 
region even for symmetric solutions. 

I -3.0 l 
FIG. 13. Symmetric f with RC = 20, W = 5,0 

= 0. H' = 0 for different times r ,  
FIG. 14. Symmetric g with Re -= 20, W = 5.0, 
S = 0, H' = 0 for different t i m o  t. 



FIG 15 Thc shear alress component? I , ,  and I,, on 
the upper d~sk tor d~fferent values of Rc, S and I{' 

Id 1 lo 
-30 -20 t2, -10 0 

FIG. 16. The shcar stress cotnponcnts r2, and I,,. on 

the lower disk for diflcrent values of Rc, Sand ff'. 

The flow due to the above choice o f  the constants is asymmetric and unsteady. Figures 11 
and 12 respectively show the variations o f f  andg for Re = 100, W = 5 ,  S = I .O. H' = 0 
and for d~fferent times I .  We obscrve that the core region is not disturbed by the 
non-torsicnal oscillations of the disks. These graphs include all the effects due to suction, 
unsteadiness except the magnetic field. We have already scen the effect of magnetic field 
on the solutions. An unsteady motion is symmetric if the anlplitudes of the oscillations of 
the disks are equal and opposite in sign. Figures 13 and 14 dcpict the variations off and g 
respectively for Re = 20, W = 5.0, n2 = 0, al = -a2 = 1, a3 = -04 = 1 and x,, = 0. 
Here the disturbance due to oscillations extends to the entire core region as the Reynolds 
number for the flow is small. 

The stress applied hy the fluid at any point of the upper plate is given by tl and the 
components in x, y, z directions are given by 

Slmrlarly the stress applied on the lower plate at any point can he calculated 
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gives "on-dimensionalised stress components !I, VJ. !2? on the lower disk for the same 
values of the parameters. it is clearly seen from figures how the suction and magnetic 
field affect the shear stress distribution on  the disks. 
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