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Abstract

Exact solutions are obtained for the unsteady MHD flow of a viscous, electrically conducting, homogeneous,
incompressible fluid between two infinite parallcl, insulated, porous disks rotating with angular velocity
about two non-coincident axes. The disks are subjected to non-torsional oscillations of different frequencies
and a uniform magnetic ficld is applied normal to the disks. The asymmetric or symmetric solutions containing
arbitrary constants reduce to 4 single unique solution when one prescribes the pressure gradient. Necessary and
sufficient conditions for u solution to be symmetric and asymmetric are obtained. In some special cases both the
symmetric and asymmetric solutions for cccentrically rotating disks are evaluated numerically and discussed in
detail.
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1. Introduction

Recently, asymmetric flow between two parallel rotating disks for both coaxial and
non-coaxial axes of rotation has been studied by Lai ef al'. The complete non-linear
Navier-Stokes equations have been solved numerically by Galerkin’s method with
B-spline test functions and several interesting results were obtained. This work was
motivated by the pioneering work of Berker??*, who has established the presence of
one-parameter family of asymmetric and symmetric solutions for the flow between
coaxial and non-coaxial rotating disks. Parter and Rajagopal" have investigated the flow
between two disks rotating about a common axis, or about different axes and have
established the existence of new asymmetric solutions for the full Navier-Stokes
equations which are not isolated from classical solutions obtained by von Karmdn® and
Batchelor®. By the same numerical method of their earlier paper. Lai et al” have studied
the asymmetric flow of an incompressible viscous fluid above a single rotating disk and
generalised von Karman solution to include non-axisymmetric solutions. The problem
corresponding to a single rotating disk in the presence of uniform suction in a streaming
flow has been solved by Szeri et al®,

The importance of unsteady flows due to a single rotating disk or two paraliel rotating

disks is well known. Thomley" has presented an exact solution for the flow of an
143
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incompressible viscous fluid above a single disk or confined between two infinite disks
with one of the disks performing non-torsional oscillations in its own plane in a rotating
frame of reference rotating with uniform angular velocity Q. Superposing the
non-torsional oscillations of disks given by Thornley®, on the results of Berker®,
Ramachandra Rao and Kasiviswanathan'® have investigated the unsteady flow confined
between two non-coaxially rotating disks. Recently, Kasiviswanathan and Ramachandra
Rao'! have studied the flow due to eccentrically rotating porous disk and a fluid at
infinity.

Gopinath and Debnath'? and Debnath' have extended the results of Thornley® to
include the effects due to the presence of a transverse magnetic field. A general study of
the unsteady hydrodynamic and hydromagnetic boundary layer flows including the
effects of the pressure gradient and uniform suction or blowing has been made by
Debnath*, Anexact solution for the MHD flow of a viscous, incompressible, electrically
conducting fluid between two infinite, parallel, insulated disks rotating with same
angular velocity about two non-coincident axes under the application of a uniform
transverse magnetic field has been obtained by Mohanty'>. Ramachandra Rao and
Raghupathi Rao'® have studied the steady MHD flow between two disks rotating with
different angular velocities about non-coincident parailel axes. This analysis has been

further extended by Raghupathi Rao'? to the case of torsionally oscillating eccentric
disks.

Asymmetric and symmetric solutions for the unsteady MHD flow between two
infinite, parallel, porous disks rotating with angular velocity {} about two non-coincident
axes are obtained in this paper. The disks are subjected to non-torsional oscillations of
different frequencies and a uniform magnetic field is applied normal to the disks. Exact
solutions are obtained by introducing an arbitrary boundary condition in the middle
plane between the two disks. The arbitrariness of the boundary condition can be
removed by prescribing the pressure gradient. The criteria for a solution to be symmetric
or asymmetric are presented. Numerical results are discussed in some special cases.

2. Mathematical formulation

Consider the unsteady flow of a conducting, homogeneous, incompressible, viscous fluid
bgtween two infinite, insulated, parallel, non-torsionally oscillating, porous, rotating
disks with different frequencies, »; and w,, which are rotating with an angular velocity Q
abou? two non-coincident axes. A uniform magnetic field By is applied perpendicular to
the disks. Let the upper disk rotate about the point Py(x1, y1, h) and the lower disk about
Po(~xy, — Ji 1) and let O the middle point of P, P, be taken as the origin. The Ox and
Oy axes which are perpendicular to each other, are chosen perpendicular to z-axis lying

in the middle plane given by z = 0. The equations governing the flow under the usual
MHD approximations'® are

F -
P(BT+(V- V)V>=—Vp+uV2V+J><B, V.V =0, o
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VXE =—dB/at, VB =0,VYxB =uT,J=c(E+VxE), @)

where V (u, v, w) is the velocity vector in the Cartesian coordinate system, pis the
density, p is the pressure 1 is the coefficient of viscosity, B isthe magnetic field, Eisthe
electric field, 7 is the current density, p' is the magnetic permeability and o is the
electrical conductivity. The velocity components satisfying the constraint of incompres-
sibility for this type of flow are of the form similar to those of Rajagopal'® and they are

given by
u=—-0y-glz, 9], v=0x=flz, 1], w= -W,, ©)

where W, is the uniform suction velocity. We observe that for the flow given in (3) the
streamlines are concentric circles in planes z = constant for a given time ¢ with centre at
the stagnation point (f, g). In each plane the fluid rotates about a stagnation point and
the locus of these stagnation points is a space curve I

The initial and boundary conditions for the flow are

F={f(z, H+i g(z, £) =0, dF/9z =0 for t = 0, )
F= e +aye™™i+x;,+iy, on z = h for t >0, (5)
F=a,e +ase™ —(x,+iy) on z = —h for >0, (6)

where @, and w, are frequencies of the non-torsional oscillations of the upper and lower
disks respectively, a,, a,, a3, a4 are complex constants which give the amplitudes of the
oscillations and the last terms in (5) and (6) are due to the disks rotating about the axes
through (+x,,y;). We assume that the magnetic Reynolds number is small which
implies the induced magnetic field is negligible and this enables one to replace B by the
applied magnetic field By. The third equation in (2) is ignored completely but its
consequence V. J = 0 is retained (see Mohanty'). Since the disks are insulated J, = o
E, = 0. From the first equation of (2) we get (9E,/3z) = (4 £,/dz) = 0, which means
that E, and E,, are functions of x, y and ¢ only. Integrating J, and J, between — A and 4,
since the current across the cross-section is zero, we get

h h
Jdez =0, J'Jydz =0. @
~h ~h
Using (7) we obtain £, and E, as
E, = QBy(P-x), Ey = QBo(Q-y), ®
where
h h
P——lj(zz ) dz, Q——ljg(z,t)dZ- ©)
Zh “h

Now the expressions for J, and J, are obtained by using (8) in the last equation of (2).
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Using the expressions for J,, J, and velocity components (3) in (1) and eliminating
pressure by differentiating with respect to z, as the pressure p is independent of z frop
the third component of (1), we get

HEzzzt WOpgzz—pgzI—prz"pB%gz =90, (]O)
p‘fzzz+W()pfzz—ple+pﬂgl—p8(2)fz =0, (1

where the suffixes denote the partial differentiation with respect to the corresponding
variable. For pseudo-plane motions of first kind (Berker?) the velocity field is given by
(3) in the absence of Wy, The non-linear governing equations (1) and (2) reduce to linear
equations (10) and (11} for the flows given by (3). Now combining (10) and (11), we get

pFoet pWo Fre~pFo— (ipQ+ o BY)F, = 0, 1)
where F= f+ig.

3. Symmetric and asymmetric solutions

Now the problem is to solve (12) subjected to the initial and boundary conditions givenin
(4)~(6). Taking the Laplace transform of (12) and using (4), we get

FFZZZ+PWOFzz—(in+PB(z)+ps)fz =0, (13)
where

@

F(zs) = JF(Z, Betdr. (4
0

The transformed boundary conditions corresponding to (5) and (6) are given by

= a a x1+iy
F= 1 + 3 +1 Y1

- = 15

s—iw S+iw; s on z=h, a9

= a a, x1t+iy

F= i T = e 6
s—iwy S+iw; S oz h- (19)

As the ordinary differential equation given in equation (13) is of third order, one needs
three boundary conditions to determine the solution completely, But we have only two
boundary conditions as given in (15) and (16). For completeness, we assume the third
transformed boundary condition arbitrarily on the plane z = 0 by

5 a a a i
F=_lu , %n G a({a +Xp+l}’p o
ST STy stiwy S+im, s

nz =0, (mn

where o1, Gg, Go3, s and x, +1y, are arbitrary complex constants. But afterwards, we
shall give a method.of evaluating these constants when the pressure gradient i
prescribed. The solution of (13) safisfying (15), (16) and (17) is given by
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F=i gy +xp+iy,,+[(i a,~j_>a(,,>_2(xp+iyp)]
: o s—lw, 3

y=1 S—iw, s

2(cosh Bh—cosh ah) 2 sinh Bh (cosh Bh—cosh ah)

(=1, +2(x1+iy1) sivh ak (7% cosh Bz—1)
+[(, ) H 2(cosh Bh—cosh ah)

[ cosh ah (¢”%cosh Bz~1)  cosh Bh sinh ah e~ sinh [Sz}

=1 S—iw, s
(cosh Bh coshah—1) e”** sinh Bz 18
7 sinh Bk (cosh Bk —cosh ah)  |' (18)
where
w3 =~y 0= —wy, a = pW2u,
1 .
B= i—;[(p Wo)? + 4 (ipQ + o Bé+ ps)]'2. (19)

The inverse transform is given by
1 yhico
Flz, ) = 8 = =~ F st
(z)=8 5 J’ F(z, s) e ds,

y—1%

(20)

where y > 0 is a real number in the domain F (z, 5). The integrand in (20} has simple
poles at s =0, iwy, iwy, iws, iwg,—(w/p)[(W*a*/h?)—a®—(iQp/un)—oBi/p)] for
n=12,.., and double poles at (—4n*m*w/h’p—oBi/p—~iQ+dinwau/hp) for
n=12,.. The residues at the poles s = 0, iw,, r = 1,2.3,4 give the steady-state
oscillatory solutions whereas the residues at the other poles give the transient part of the
solution which vanishes at ¢— . The full transient solution is not presented for
briefness; however, it is presented for a special case in which w; = w, = wand Wy = 0.
The general steady-state oscillatory solution is given by

4 4
F(z, ) = x,+iy,+ > aoe™ + 2 (a,~280r)
r=1 r=1
[ cosh ah (¢** cosh B,z—1)  cosh B,h sinh ah e”* sinh B,z }
2(cosh B,h —cosh ah) 2 sinh B,k (cosh B,.h— cosh ah)

L it . cosh ah (¢~ °% cosh Bsz—1)
e lth P)[ (cosh Bk —cosh ak)

. oz 4 ;
co.sh Bsh sinh wh ™ sinh Bsz +3 (~1) e e
sinh Bsh (cosh Bsh —cosh ak)

r=1

~
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sinh ah (¢~ cosh B.z—1) + (cosh B,h cosh ah~1) e™* sinh B,z
’ [ 2(cosh B,h— cosh ah) 2 sinh B,h (cosh B,h—cosh ak) }

) sinh ah (¢7** cosh Bsh—1)
Ot i) [ (cosh Bsh—cosh ah)

(cosh Bsh cosh ah—1) €™ sinh Bsz )
sinh Bsht (cosh Bsh—cosh ah) | @
where
8= 5 (Wl +4ulio0 + 0B+ ipo ] ™,
L,
r=1,2,34,5 and w; = 0. @)

The solutions in (21) reduces to that given by Ramachandra Rao and Kasiviswanathan®
when w; = w, = wand By = W, = 0 and the steady solutions presented by Berker’ are
recovered from (21) when By = Wy = 0 in the absence of forced oscillations. Further,
the problem in which By # 0, Wy = 0, &, = &, = w has been studied in detail by
Kasiviswanathan and Ramachandra Rao®. For the case when w, = w, = w, the solution
(21) reduces to

1 cosh ah (e7°* cosh Bz — 1)
Fl 9 =7 [ { (cosh Brfi—cosh «h)

cosh Bih sinh ah ™% sinh Bz sinh ah (¢~ cosh p1z~1)
sinh B4 (cosh B4 — cosh ah) } { (cosh Bih— cosh ah)
(cosh B,h cosh ah~1)e™* sinh B,z ot

sinh By (cosh firh ~ cosh ah) }+2(“(” +an)le

1 [ { cosh ah (e7 cosh B3z~ 1)
2

+1|c
(cosh Bsh—cosh ah)

cosh Bk sinh ah ™% sinh Bsz
sinh B3k (cosh Bsh —cosh ak) }
D { sinh ah (7% cosh B3z —1)
(cosh Bsh —cosh ah)

(cosh B3k cosh ah—~1)e™ sinh B,z
+ 3 —i
sinh B3 (cosh fizh —cosh ah) ]+2(”°3 Taole™

+(xi iy | SRb oh (€7 cosh Biz—1)
(cosh Bsh —-cosh ak)
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(cosh Bsh cosh alv— 1) ™ ** sinh Bsz
T Sinh 5k (cosh fahi— cosh ah) }

Liv) cosh ah (e cosh Bsz—1)
— G, { (cosh Bsh—cosh «h)

(23)

cosh Bsh sinh ah e % sinh Bsz _
sinh Bsh (cosh Bsh—cosh ah) ’

where

A=ayta—2an+ap), B=a—a,

C=as+a;—2ays+ag), D= ai—ay.
The complete solution including the transient part for a special case in the absence of
suction and w; = w; = @ is given by

1

Flz, =5[ACOSh myz—1 Bsinh mz

cosh mh—1  sinh mh

+2(ag; + a(,z)] Fand

+2(ap3+ans) ] Faad

1 cosh myz —1 sinh m,z
2| “cosh myh—1 sinh myh

.. sinh miyz L cosh myz—1
+ [+ by ) 2o s
[SCI ) sinh mah o i) (1 cosh mzh—1 )J

+ 2 {Q1(n, 1) [cos@mnzih) — 1]+ Qx(n)(z/h) sin (Zmnzih)} - e~ P57 %

+

e

Qs(n) sin (mnz/h) e~ P, (24)
1
where
Qi(n, &) = AB2uwa*n®D, — 4N K2R D?
+ B(32tv72n2Dy — 4NK?)REDE
— 2x, +iy,) (32tvwnP D3 — 4AN3H?) R D3,
Oy(n) = 8mn (A/Dy+ BIDy—2x,+iy,)/Ds),
Q3(n) =2 (= 1)".n(C/Dy+DIDs+2(x, +iv1)/Dg),

D, =i (Q+w)h*v+ o B3P+ 4mwin?,
D, =i (Q~ o) v+ o B3R p+4mn?,
D, =i Qhv+oBR u+4mn’,

D, = i(Q+ ) v+ o B p+ w207,
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Ds = i(Q~ )k fv+ o B u+ an”,

D = QR v+ o B e+ win?,

N, = [(Q+ )i v+ o B w+ wn?,

N, = i{(Q~ v+ o B p—4mn’,

N; = iQh¥ v+ o B n—dnPn,

my = {{Q+w)/v+o B/ ) "?,

m; = {i(Q~w)/v+ B},

m; = {(iQv+oBYu}Pand » = plo. (25)

Itisinteresting to observe that the transient part in (24) given in terms of infinite series in
the last two terms vanish at z = 0, =+ & and thus it consists of the eigenfunctions of the
corresponding problem. The solution given in (21) contains five complex arbitrary
constants dg, G, do3 Goar X+ iy, whereas (24) contains three complex arbitrary
constants dy +dyz, dgz+ ape and x, +iy,. Each of these arbitrary constants gives one
parameter family of solutions.

Any solution, the velocity tield of which is symmetric with respect to a point 0 is called a

symmetric solution with respect to that point 0. Thus, a symmetric solution satisfies the
condition

V(-x,~y,~2,0 = —V(x y z 9, (26)
and this in our problem implies
F-z,t)= - F(z, 1). 27

Here, the symmetric solution is different from the usual axisymmetric solution. Solutions
which are not symmetric are called asymmetric solutions. The solutions given in (21), (23) and
(24) do not satisfy condition (27) and therefore they are asymmetric solutions. The
symmetry condition given in (27) cannot be satisfied by (21) for any choice of the
arbitrary constants owing to the presence of suction or injection. Whereas the solution
(23) in the absence of suction or injection satisties (27) when ay = ap =
Qg3 = 4y = xp = y, = 0, a;+a, = 0 and a3 +a, = 0. Thus for a symmetric solution all
the arbitrary constants become zero and hence it is unique. The symmetric solution
corresponding to (24) in the absence of suction, as t—> %, is given by

. sinh m s s
F=(x,+ip) -2 72 aeter Llh iz
sinh msh sinh mh
i SINR 5z
FazeTir T TF 28
? sinh myh @)

and contains only odd functions in z.
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4, Some important properties of the motions

In obtaining the solutions in the'previvous sections, equation (12) was derived_by
climinating pressure by differentiating with respect oz 1ron? the equations of motion
which has resulted in an increase in the order of the 'd.xfferemlal equation governing the
motion. In order to determine the solutions, an artificial boundary condition (17) was
introduced which leads to non-unique solutior}s. It‘ is well-.known that the solu}ion is
unique for 2 motion in which the pressure gra-dzent is pr;scnbed. No»w{, we examine, by
knowing the pressure gradient whether it will be possible to prescribe the boundary
conditions at z = 0 without any arbitrariness. Using (3) in (1), we get

1w Og.. +pWollg, — pQg— pQ*f— o Q Bjg

=2 _s0B30-p0, (29)
x

B+ pWoldf, — pQUf, + pQPg = o QB

= —%—UQB(Z)P'F[)QZ)I. (30)

Combining (29) and (30), we get

vFZZ+M)FZ—F,—(iQ+%B—°—)F= ivP, (31)
where
P 4P’ p Q,,. , oB
AL . ~2%000x— Py). 32
VP > +'&y and P 0 5 (%) 5 (Qx—Py) (32)

Without any loss of generality, in what follows, we base all our discussions for the case
©1=0; = w and f — %, as the essential qualitative features remain the same cqmpared
with the genera} case. The pressure can be determined from (29) and (30) but it is not
presented here since all our discussions are based on the modified pressure grgdlent.
Modified pressure gradient VP’ is calculated from (31) making use of the expression for
Fgiven in (23) and it is given by

cosh ah

R— ) .

tvE {(x" i) ( cosh fBsh — cosh ah )

. sinh ah o o2 ,[

- —_— — B + 41 2(ag; +ag)
oty cosh Bsh— cosh ak ]V(a £5) ) A+ o

B ( A cosh ah+ B sinh ah ) (= F)e +%{2(a03+,,04)
cosh B — cosh ak
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( C cosh ah+D sinh ah

cosh B3h —cosh ah )}v(a-—ﬁg)e"‘”’_ (33)

In the absence of suction, (33) reduces to

A i
iVP = %{ Mh_—l—z (am"'a()z)}”ﬂ%e !
C — o
+%{ m;h—‘_—l_z (41)3"'(11)4)}”5%@ !
+i L B3 34
% ’y”)(cosh Bh—1 )” s G4

If we assume that the modified pressure gradient is prescribed and has the form

VP =py+p € +py e, (33

where py, p; and p; are complex constants, then by comparing (33) or (34) with (35) we
can determine the arbitrary constants in (33) or (34) uniquely. Thus for a flow in which
the modified pressure gradient is prescribed, we have a unique solution as the boundary
condition on z = 0 is determined without any arbitrariness. Further, we prove the
following theorems.

Theorem I: Consider the unsteady MHD flow governed by (12) with Wy = 0 and with
the boundary conditions

F=ae“+ae ™ +x,+iy, on z =h, (36)
F=ae™+ae™™ —(x;+iy), on z = —h, (37
F= (am+a(,2)ei“"+(a(,3+a”4)e'i“"+(xp+iy,,), on z=0. (39)

A necessary condition for this flow to have a symmetric solution is that the modified
pressure gradient in (34) must be zero. But this condition is not sufficient in general.

Proof: Let the solution be symmetric. The steady oscillatory solution given in (24) with
t—> » must satisfy the condition (27). This is true only when

o1 = Qo2 = do3 = Ags = Xp = y, = 0 and
atay =a3+a, =0, (39
Using (39 in the expression for the corresponding modified pressure gradient given in

(3‘?), weget VP =0, Given VP’ = (, the solution of (31)with right hand side zer0
satisfying the corresponding boundary conditions is obtained and is given by
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a, +a, cosh mz  a—ay sinh mz) .,
s - e
2 cosh mh 2 sinh m,hj

a;ta, cosh maz  az—ay sinh moz)
: - e
2 cosh mah 2 sinh mth

.. sinh m;z

i) sinh mzh (40)
The solution given in (40) does not satisfy the condition (27) for a symmetric solution.
Thus VP’ = 0 is not a sufficient condition in general. Hence the theorem.

We observe that (40) will be a symmetric solution, if
(1)

() ay+ax =0, az+aq =0,

or
(42)

(i) a=ay=a3=qa;=0.

In view of (41), VP’ = 0 will be a sufficient condition for an unsteady flow to have a
symmetric solution if the amplitudes of the oscillations of the disks are equal and
opposite in sign. Equation (42) implies that the motion is steady and we have the

following theorem.

Theorem 2: The necessary and sufficient conditions for a steady MHD flow confined
between two rotating disks to have a symmetric solution is that the modified pressure

gradient is zero.

We observe that a steady MHD flow, confined between two rotating disks, has an
asymmetric solution when the modified pressure gradient is different from zero and vice
versa. The above results hold good even in the absence of magnetic field. Further we

have:

Theorem 3: A sufficient condition for the solution of the flow given in Theorem 1 to be
asymmetric is that VP’ # 0.

Proof: Solution in (40) is derived under assumption VP' = 0 and it is not a symmetric
solution even in the absence of suction. Hence V.2’ # 0 s not a necessary condition for
the solution to be asymmetric. Given VP’ # 0, we have to prove that the solution is
asymmetric.

By comparing (34) and (35), we observe that the arbitrary constants in the boundary
conditions at z = 0 can be determined uniquely and therefore they cannot satisfy the

condition (39) for a symmetric solution. Hénce the theorem.
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It is clear from (33) and (35) that a symmetric solution is not possible for a flow in the

presence of suction or injection.

5. Numerical discussion of the results

[t is very difficult to clearly understand the effects of suction or injection, magnetic field
and unsteadiness on the flow from the exact solutions presented in the third section as

720
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(b)

(a)
FiG. 4. The variations of f when Re = 20, H? = 0 for different values of S.
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o5

~0.5

Fiii, 6. ‘The variations of g when Re = 100, 5= 0,

Fi6. 5. The variations of f when Re = 100, § = 0,
H* = for different values of x,.

=0 for different values ol x,,.

the forrp temains the same in all cases. Some insight into the problem is obtained by
e"a.’”ﬂ“ﬂg the physically interesting, quantities numerically in some special cases for
various non-dimensional numbers like Re = A%y (Reynolds number), W = wh?lv
{Womersley number), H* = o B3h¥/u (Hartmann number) and S = Woh/2v (suction
parameter), governing the flow. In order to understand the effect of various parameters,
we CO'HSxder the numerical results for the flow of the fluid between two disks in different
situations. [n the unsteady case we will consider both disks oscillate with the same
flequency. Solution (23) is non-dimensionalised and is computed for different values of
the parameters for the special case in which the dimensionless constants are chosen as

4= ay=az = a4 =)
I = Q= sy = apg = 0; X, = 2, ¥, = 0;x =1,y =0 (43)

The real and imaginary parts of (23) give us f and g and they correspond to a steady

asyr ; ; ) .
ymmetric solution for the choice of constants in (43).

e case in which

Figures 1 and 2 show the variations of f and g respectively for th
tmann number

Re=20, § = 0 for different values of H*. We observe that as Har
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Fig. 7. Locus of stagnation points I' for Re = 100, FiG. 8. Symmetric f with Re =20, $=0 for
§ = 0 for different values of H™. different values of H>.

increases the variations of f and g are confined to the regions very near to the disks or the
core region in which they do not vary increases with an increase in Hartmann number.
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Fig. 11. Asymmetric f with Re = 100, § = 1.0. Fis. 12. Asymmetric g with Re = 100, § = 1.0,
W =50, H* = 0 for different times 1. W = 5.0, H*= 0 for different times .

The variations of ffor S = 0, H* = 0 for different values of Re are depicted in fig. 3 and
itis seen that the core region in which f does not vary, increases with an increase in Re.
Boundary layer-type behaviour is seen for large Re. The effect of suction or injection on
the flow is seen from the variafion of f. for Re = 20 and H* = { and for different values
of S given in figs 4a and b. Figures 5 and 6 show the variations of f and g respectively for
fixed #° = 0, § = 0, Re = 100, for x,, given in (43) taking different values. The curves f
pass through the valye of x, at z = ( whereas the g curves pass through zero at z = 0 for
allx,. This is due to the fact that I, space curve giving the locus of the stagnation points,
passes through (x,.0) at z = 0. The curves for x, =0 correspond to symmetric solution,
and the rest represent asymmetric solutions. The three-dimensional picture of the space
arve T, for Re = 100, § = 0 and for different values of H?, is depicted in fig. 7. It is
mteresti\ng to observe that the curve I with large H? has straight core region larger than
the corresponding non-magnetic case confirming the observations made earlier for
&ymmetric solutions. In order to get the effect of magnetic field on the flow, the
Symmetric solutions f and g, i. e, with x, = 0 in (43) for fixed Re = 20, § = 0 and for
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different values of A7 are plotted in figs. 8 and 9. It is observed that the curves forfandg
flatten in the core region as Hartmann number increases. Figure 10 depicts the locus of
the stagnation points I' for Re = 100, § = 0 and for different values of I/2. Theg,
three-dimensional curves confirm the fact that magnetic field increases the straight core
region even for symmetric solutions.

Now we pass on to the study of unsteady flows. Here we choose the dimensionles
constants as

ay =0, = a3 = ay = 1

ag =i = a = aw = 0; x, =2, y, =0; x =1, y, = 0. (44)
{ 3.0

2.0}

In/h
S N ) M 1
T
-0.5} /2
b

=30 1.0 "__LA‘

;‘:g- 13. Symmetric f with Re =20, W= 5.0 FiG. 14. Symmetric g with Re = 20, W =50,
=0, H? = 0 for different times r. S§=0, H* = 0 for different times ¢.
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the upper disk for different values of Re, § and #3 the lower disk for different values of Re, § and /.

The flow due to the above choice of the constants is asymmetric and unsteady. Figures 11
and 12 respectively show the variations of fand g for Re = 100, W = 5,5 = 1.0, H? =10
and for different times 7. We observe that the core region is not disturbed by the
non-torsional oscillations of the disks. These graphs include all the effects due to suction,
unsteadiness except the magnetic field. We have already seen the effect of magnetic field
on the solutions. An unsteady motion is symmetric if the amplitudes of the oscillations of
the disks are equal and opposite in sign. Figures 13 and 14 depict the variations of fand g
respectively for Re = 20, W = 5.0, H =0, ¢y = ~@x = 1, a3 = —~as = land x, = 0.
Here the disturbance due to oscillations extends to the entire core region as the Reynolds
number for the flow is small.

The stress applied by the fluid at any point of the upper plate is given by 1, and the
components in x, y, z directions are given by
e = —pog(h 0, b, = pof(h 1), b = p. (43)
Similarly the stress applied on the lower plate at any point can be calculated.

The non-dimensionalised shear stress components £, s £, on the upper disk z= 1 for
the case given in (43) for different values of Re, H? and S are shown in fig. 15. Figure 16
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gives non-dimensionalised stress components f>, vs £, on the lower disk for the same
values of the parameters. It is clearly seen from figures how the suction and magnetic
field affect the shear stress distribution on the disks.
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