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Absract

The present paper is concerned with the Reisz means of: (i) the differentiated resolution matrix, and (ii) the
differentiated generalized Fourier integrals, The resolution matrix H(x,y, A) is one generating the resolution of
the identity of the self-adjoint differential operator

—-D*+p(x) (x) D= @
rx) - D*+g(x)
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1. Introduction

Suppose that
_ ()
0= (1) o)

is a real-valued matrix defined on (— o, <) and is summable on every finite interval
(,b) C (=, ®). Further, suppose that Q(x) has derivative Q’(x) which is also
summable on (g, b) C (— o, @),
Consider the differential system
MU =AU
where M is given by (4), U = (:‘) and A is a complex parameter.

e

The boundary conditions considered are
W, d)e = 0= [U,d15,0=1,2; j = 3,4, with [b1, 2] = 0 = [$3, 4],
where ¢, ¢; are the boundary condition vectors of (1.1), i.e. vectors which together with

their first derivatives take prescribed constant values independent of A at x = a and

*=b, respectively; [U, V], is the value of the bilinear concomitant
163
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vy Vv Uy Uy
f z,l,U= , V= at x = a.
Vi V3 V1 V2

The Fourier case is obtained when p = ¢ = r = 0 in (1.1). It is well known™3 that the
system (1.1) along with the boundary conditions prescribed as above, gives rise to 2
self-adjoint eigenvalue problem both in the finite as well as in the singular cases [0, ®)
and (—®, w).

Uz

W, vl= +

Uy
uip uh

Let ¢,(x,,\)=<:r), y=1,2, be the solutions of (L.1) satisfying at x=0

’,

the conditions (uj,v;,47,V{)|x=0 = &,j = 1,2, where ¢; is the jth unit vector in R,

Further, let

Xy

64z, 1) = (y) r=12,

r,

be two other solutions of (1.1) connected with ¢, by the relations
[0, 0] = 85 [61,82] = 0, 7,k = 1,2.

Then &,, 84 are linearly independent.

Let H(x,y,A), A real, be the matrix

H(x,y,A) = vl%l im G(x,y,o+iv) do, A >0

e

=0, A=0 (12

0
—lim J im G(x,y,o+iv) do, A <0
v—0

A

]

where G. (.-) is the Green’s matrix associated with the system (1.1).
The explicit form of H(x,y, X) involving the matrices

¢=(u1 u2)70=(x1 xz>
Vi V2 n »

and the matrices £, 7, { occur in authors’ paper’ (p. 138).
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If K(x,y,A) = H(x,y,A=0) - H(x,y, ~ =), and

B = v [ Ky ) 10) o, f=(2)£Lz(—°°,°°).

then it has been proved that® (p. 160), for real A,

w o

f (G.g) dx = T A{d j <E<A>f,g)}dx, F=Mige (- ).

—% ) 00

This shows that the self-adjoint extension T ‘generated’ by M and determined by the
prescribed set of boundary conditions, is connected with the spectral resolution E(A)

‘generated” by H(x,y,A) by the relation

T= J AdE(A).
The matrix H(x,y, A) is the spectral resolution or the resolution matrix associated with
the differential system (1.1).

It is noted that discussion of the system of differential equations of type (1.1) is
motivated by the fact that the Schroedinger equation for a deuteron (in its ground state})
leads to such a system if tensor interaction forces are taken into account.

In the previous papers™*, we considered a number of properties of the matrix
H(x,y, ) including some asymptotic formulae. An equiconvergence theorem involving
the generalized Fourier integral of a vector-valued function f(x) ¢ L,(—~®, ©), as also
the spectral representation theorem, and the generalized Parseval identity have been
derived.

The object of the present paper is to study certain theorems on the asymptotic
behaviour of the Riesz means of the derivatives of H(x,y, A) and to obtain a theorem on
the Riesz summability of expansions of the differentiated generalized Fourier integral
and of the Fourier integral of vector-valued functions of class Ly(— @, ®), associated
with the system (1.1). The results can be extended to hold for similar problems involving
higher order derivatives of H(x,y, ).

Introduction of abstract Hilbert space in mathematics leads to tremendous develop-
ments of abstract spectral theory of self-adjoint operators in the Hilbert space. But this
theory sometimes fails to answer certain questions or it cannot give complete answers to
cgnain specific problems, and a separate theory becomes necessary. Spectral theory of
differential operators has thus received considerable attention in the present day analysis
@d a complete volume dealing with such theory by Levitan. and Sargsyan® is an
illustration in supp'ort of the point. Various methods are also being tried to develop the
general theory. For example, in recent papers”® Langer and Textorius define the notion
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of a spectral function for a symmetric linear relation with a directing mapping by means
of a Parseval-Bessel inequality and apply their results to pairs of formally symmetr
differential expressions and Hermitian differential systems. The papers contain usefy]
references in connection with certain recent developments in the subject. Their method
follows the directing functionals developed by M. G. Krein and others of his school,

In the following, we utilize the ideas initiated by Levitan and Sargsyan®® in solving
problems involving derivatives of spectral functions for (i) the Sturm-Liouville operator
(ii) higher order linear differential operators and (iii) the Dirac operator. In their
investigations they use Fourier cosine transforms and the asymptotic formulae for the
derivatives of the eigenfunctions along with solutions of Cauchy problems for 2
one-dimensional wave equation and a similar problem for a one-dimensional Dirac
system; boundary conditions being of type Ulr=o # 0, Su/dt],—g = 0. The formulation of
their problem is such that the Fourier sine transform theory cannot be applied. We solve
similar spectral problems arising in the system (1.1), where we use Fourier sine transform
theory, the Cauchy type problem for a second order partial differential system satisfied
by a vector-valued function u satisfying u|,—q # 0, du/dtl,—¢ # 0 and certain results
involving the derivatives of the resolution matrix H(x,y, ) not considered by them.
Fourier cosine transform is inapplicable in our investigation. Since the analysis runs
parallel in some stages to those of Levitan and Sargsyan, we therefore indicate steps
only, emphasizing only those parts where we differ considerably.

2. Certain inequalities involving the Riemann matrices

We consider in conjunction with (1.1) the Cauchy type problem

FUIBE = PUIox*~ Q(x)U 2.1
with

Ux,Dieo = f)

U(x, 1) 9t] ;=g = hx) (2.13)
whete  fx) = (2) and  A(x) = (Zi) *0.

Then the solution of (2.1) is
Ul 1) = 3{f0ct )+ fox— )+ g(x + 1) - g(x— )] +

X+t

5 | 07609 - T009 660} 0 22

x—t

where g(x) = [* h(t) o, an indefinite integral of A(x), and W(x,1,5) and T(x,1,s) are the
Riemann matrices associated with the system (2.1). ’
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W(x« 1,5) = Z (— 1)r Wr(x~ [ S)
=1
where
1
Walt:t:8) = 5 | Q@) Wom (y,7.8) drdy, n > 1,
G,

Q),, being the domain
Q, 0srsfx—t+rSy=xtr-th x—t=s=x+,

3 (s+x+)

do.
Wi(x,t,5) :% Qle)der
1 Gtx=0)
Also
T(x,t,8) = 3 (=1) T,(x,1,9)
r=1
where
1 1 XL T
Tt =3 J j 00N Ter (3,7, 5) drdy.
0 X—=i+r
3 (st L (s+x—1)
Tiets) =5 [ [+ | ]Q(a)da

W, (x,1,5), T,(x,t,s) satisfy the inequalities

X+t
,

WG, 1,5) < 72D J 1Q(a)|da>"

x-t

and

IT(x, 1,8)] < Y27~ — 1) ( T lQ(tf)‘dO')’l

x—t

167

2.3)

@.4)

235)

2.6)

(2.6a)
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for all integral values of n =1 (see Chakravarty and Roy Paladhi®, pp. 17-22).
The series (2.3) and (2.5) are therefore uniformly convergent for x,1,s, lying in some
fixed interval, by the M-test.

Put

j {10"(@)| +1Q(@)]} do = x(x, ).

Xt

Then ';‘; T 5)| < 712 (= 1) " (e, ).

Differentiating (2.6a), it follows that
|80 Ty (x,t,8)| = x (x,8),
where x—t <Ys+x~ <s<Is+x+o) s x4t
Let (01ax Ty—sy(x,t,8)] < U2 Hn -2 x" M x, 0) @7
for a positive integer n = 1.
Differentiating (2.6) we obtain
¢
[0/x Tylx,t,5)| = —% 1 f dr{Qx+t—~NT,_;(x+t—7,7,8)—

]

—Q(x—t+ DTy (x—t+7,7,5)}

t X+t—-T

[er | d{Q(y)Tn_l(y,r,s)}dyi

0 x~t+T

13 x+I-T

<3[ @ [ 10OI+10 (Tm0sm o+

0 x—thr
I
HTper 0, 7, 8)} dy < 172771 (n—2)! J 2 drXx
0

X4t ytr

x [{lQ'(y)lﬂQ(y)i}H {\Q'<u>l+lQ<“)”““rldy

x-1 Yot

= Y (- D X, ).
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Hence [#2xT(x, 1,8 [< 7722 (n =1 X" (x, 1), @28

valid for all integral values of n= 1.
Hence from (2.5) by uniform convergence we have the inequality, for x—t < 5 < x+¢,
x+r

e T, 1,5)] < j (10'(@)] +10()]} dox

x—t

1 x+r
Z ' do|-
X exp [2 !x—j‘ {lo"@+]|Q)} ] 29
Similarly,
arwie ol <5 [ (0@ + ) dox
1 X+t
—- (o o) }do| .
xexp[ztx j (1@l +10@)) do] o109

Let C(a, By, ....) denote various constants depending on the arguments shown.
Then we have

Theorem 2.1: Let Q(x) and Q' (x) in (1.1) be summable in each finite interval. Then for
every arbitrary, finite and fixed interval (xq,;) and an arbitrary fixed positive number
#>0 it is possible to determine a constant C = C(xo,x1,%) such that, for £ < f,
022 T(x, £,5)| < € holds.

The theorem is an immediate consequence of the inequality (2.9).
Further, we have

Theorem 2.2: If Q' (x) satisfy the relation

x+r

J 0’ (@)ldo < C1#*1, 2 >0, 10
x—t
then  |o/x T(x,1,5)| < Ce*+Y,
Were €= Clxg,x,), £< 1o and a = axo, %1).
Itis easy to deduce from (2.10) by the mean value theorem that
X+l
@.11)

[ [R@|dor=Crt' u>0,

x—r
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The theorem then follows from the inequality (2.9).
Similar theorems also hold for a/dx W(x,1,s).
Put K{x,t,5) = Qx,1,5) = AQx, £, x+ ) - BYx, £, x—1) Q1)
where the constants A, B are defined as follows
A=1,ifse0,x+¢) and B=1, if s € (0, x—¢)
=( otherwise; =0 otherwisc;
& being an arbitrary fixed positive number; and Q(x, £,5) = [* T(x,¢,y)dy, the indefinite
integral of T(x,?,s).
Since
1 t
TGt = 5 j 00 +5)ds
0
(see Chakravarty and Roy Paladhi’, formula (3.11)) it follows from (2.11) that

T(x, f,xx0) < Cr**t

Hence if Q'(x) satisfy (2.10), we obtain from theorem 2.2,

lolax K(x,t,5)] < Ct**, a > 0. (2.13)
|6%ax 85 K(x,1,8)| < C 1%+, a > 0. (2.14)

3. Generalized orthogonal relations for derivatives of the resolution matrix

_A —_ — _—
Let M(x,A) = (p g ), so that re M(x,A) = PR ’

-r q—A -r q—p
and im M(x,\) = ~»I, where [ is the unit 2X2 matrix and A = p-+iv.

If G(x,y, ) be the Green’s matrix in the singular case (— =, ®) for the system (1.1), it
follows from the Titchmarsh formula!® (p. 34)
£ ¢
(=20 = | (=3P b=y - | @-2e-appe

x x
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that

£
(£~ %) Glx,y,A) =f (€= w? (u—x) M(u,A) G(u, y, A) du+

I3
+ J (2 +4€ - 6u) Glusy, \)du G.1)

where ¢ is an arbitrary but fixed number. It may be noted that for the uniqueness of the
Green’s matrix in the singular case quite a number of stringent conditions are to be
imposed on Q(x) (see Chakravarty?). When necessary, such conditions are assumed to be
satisfied in what follows.

Taking imaginary parts on both sides of (3.1) and then differentiating the result with
respect to x, we obtain

(6—x)? dldxim G(x,y,A) = 2(¢~x)im G(x,y,A) +

+ 1 2~ (&~ uyre M(u, A)) im G(u, y, \)du—

- (3.2)

(€~u)?im M(u, Ay re G(u, y, A)du.

R B ——n

Putting A = p+iv, v > 0, it follows from (3.2) and the lemmas 2 and 3 as given in
Chakravarty and Roy Paladhi® (p. 153) that the integral with respect to p over any
interval of each term on the right hand side of (3.2) is bounded as » tends to zero
uniformly for x in any compact interval which does not contain y. Therefore

©
ylimo J 3dxim G(x,y, o+ iv)do = dldx H(x,y, n) (3.3
3
is bounded in x, where H(x,y,u) is the resolution matrix.
Similarly with a/gy and &*/dx 9.
In (3.2) let » tend to zero. Then using the Schwarz inequality and the inequality
la+ b2 < 2(al + b7, (3.32)
we obtain [£~x|*|9/ax H(x,y, w)|? < 8(£—x)?| H(x,y, )+
£ ¢
+2J (2= (6 u)Pre M(u, )2 du J |FI(u, y, )2 i

x x

.



172 N, K. CHAKRAVARTY AND SWAPNA ROY

Since, as a function of y, H(x, y, u) eLo(— @, ), it follows that considered as a functiop
of y, dlax H(x,y, m) eLo(— o, ). In fact,

©

J' \otax Hx,y, w)[*dy < K(x, ).

—c

Similarly, as a function of x, 9/dy H(x,y, u) éL2(— o, ), and as a function of x and also
as a function of y, ¢/dxdy H(x,y, u) eLo(—©, *).

We now establish the following lemmas required for our further discussions. Ag
before, K(x,...) denotes various constants depending on the arguments shown.
Lemma 3.1: f A= pu+iv,0<v<1,x#y, then

8
[ |8/axim G(x,y, Al dp < K(x,y, e, B).

This immediately follows from (3.2) and the lemmas 2 and 3 in Chakravarty and Roy
Paladhi® (p. 153).

Lemma 3.2: If A= p+iv, 0<wv=<1,x#y, then
£ 1
J |alex G, y, M) ds < K(x,y, 0, B) v~ F

o
Differentiating (3.1) with respect to x,

(E—x)?dax Glx,y,A) = —2(£—x) G(x, y,\) —
£ ;
—J (E—u)zM(u,/\)G(u,y,).)du+2J G(u,y, \)du. 34)

Hence

B B
= j |a10x Gz, y, Ml < 21¢—x] j |GGz, y, )l +

@

& B 3 B
+J jé—uPdu j |M(u, N |G, y, D) dp +2 J' du J |G(u,y, Mdp.

Since [M(l't, M <Cfor0<v<1foralluinx<u< ¢ the lemma follows by using
lemma 3 in Chakravarty and Roy Paladhi® (p. 153).
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Lemma 3.3: 0 <v<1, x#y, then

B
j Ao 19035 G(xy V| e < K2, 2, B,

a
w

where HJ/&xG(x,y,).)H,w,m stands for j |olax G(x,y, M dy.

It follows from (3.4), the inequality (3.3a) and the Schwarz inequality that

B B
- xl* j dye 19105 G, y, Mo < Bl j G0,y V|

o

£ B
+2 j (& u)* M(u, 1) — 2/ du j du GGy, )| e

@

The lemma follows by using lemma 5 in Chakravarty and Roy Paladhi® (p. 153) and the
inequality [M(u,A)] < C, for 0 < v <1, uelx,d).

Lemma 3.4: f O<vs<1, x+#y, then

8
” J ddxim G(x,y,A) d/.LM_m L <K@, a,p).

a

It follows from (3.2) and the inequality |a+b+c* < 3(Jal*+ |b*+|c[*) that

B
lé-xf* J im G, y, A)du| +

@

8
f dldxim G(,\f,y,/\)d/qt{2 < 12/¢~x

& B
2
+12U duJ imG(u,y,A)dp‘ +

x 1

£
Al

B
du J im (M, 1) G y, A))dulz ‘ (3.5)
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Now
B B
H im (M, \) G(u,y,A))du—f re M(u, A)im G(u, y, A) dp
. .
sJ fim M(u, )| Ire Gu,y, \)ldgs
* 8
<v J [Glu,y, A)|du.
Thus
B B
[ im(M(u,A)G(u,y,;\))dp.=J re M(u, A) im G(u, y, A) du +
B
+o(u [ |G(u,y,)t)\du),
so that

(f im(M(u,A)G(u,y,)t))dy.)zsZCZ (f imG(u,y,A)de)2+

3

B
+0 <v2([>’—a) J \G(u,y,)\)\zdu).
Hence, from (3.5) and the Schwarz inequality,

B
J im G(x,y,A) dp.“ +
v 7,8

@ @

B
est || mGGunn ] < 12le=af |

+12|¢— x|

B
‘ f imG(x,y,/\)d;L“ +
.5

£ B
du J imG(u,y,/\)duu -

¥y

+6C5 (¢~ x)

3
e j G, y, )P dy).

Y

+0 (:ﬁ(ﬁ—a)

el
|
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Now, let y tend to —o and & to . Then the result follows by utilizing lemma 4 in
Chakravarty and Roy Paladhi® (p. 153).

Lemmas similar to those of 3.1-3.4 also hold when one replaces d/dx by d/dy or
Haxdy.

Let G{a,b,x,y,A) be the Green’s matrix for the given boundary value problem of the

interval (a,b). Then for non-real A,A"(A # A’) it is easy to deduce by using Green’s
theorem and subsequent differentiation under the sign of integration that

b
(A=) [ HoxG(a,byt,x, )G (a,b,y, 0, N ) de

= d/ox G(a,b,y,x,A)~dlox G(a,b,y,x,A"). (3.6)

¥ G(x,y,A) be the Green’s matrix in the singular case (—, ), by the familiar
extension procedure (see for example Chakravarty?, p. 400) we have

lim  G(a,b,y,x,A) = G(y, x,A) 3.7

>

b
uniformly for y,x, A with imA Z 0.
Considered as functions of x or y, since G(a, b, y,x, A) and G(, x, A) satisfy the same
differential system (1.1), we obtain from (3.4), for a fixed ¢,
(E—%)* (dlox {G(a,b,y.%,0) =~ G(y,%,)})
= —2({~x)(G(a, b,y.x, 1) ~ G(y,x,A)) —

£
—J (€—u)® M(u, M) (Gla, b,y, u,A) — G(y,u, A))du +

&
+2J (G(a,b,y,u,A) = G(y,u, A))du. (3.8)
Hence, from (3.7) it follows that
L #ox Gla, b,y,x,A) = #ax G(y,x, 1) (39

b

uniformly for y,x and A (complex) with ima Z 0.
Again from (3.8)
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|£—x]* ||0/x (Gla, by, %, 1)~ G(, 2, ) la,p
<8 }5—117'H G(a,b,y7x,)\)~G(,v,x, A)Ha,b"‘

£
+2 f (£~ ) M(u, 2) 21 du[1G(a, b,y,%, 1) ~ G(¥, %, V)]l s G

by the inequality (3.32) and the Schwarz inequality. Since
lim  (|G(a,b,y,%,0) = G(y, X, A)]lap < =,
=

b

it follows from -(3.10) that

lim  ||3/ax(G(a, b,y, %, Ay = G(¥, 6, W)llap < .
[ — 0

hso

Hence by the familiar extension procedure (see Titchmarsh', p. 58; Chakravarty*
p. 410), we obtain from (3.6)

(A-X) J 3105 Gt %,A) G T(y, A" )t = dlax Gy, x, ) — dlax G(y,x, ).

} (349
A similar result holds if we replace &/dx by #/dy. Also

(-1 J A3xG(,x, 1) dlay GT(y, 1, A" )dt

= #axdy (Gly,x,1) - G(y,x,1")). (.19

From (3.11) and the same formula obtained by replacing A by its conjugate A, it follows
that

8 g

d f imal3x G{t, x,A) G (3, 1,A") dp
]

- J V(A=) Gim 8l0x Gly,x, X)) du—
0
-y J T{A=NY (A=2")} #/ax Gly,x, Ndp +
0

+vdldxG(y,x,A") I1/(()\-,\') (A—A")) du (3.13)
0
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where A= ptiv, A=p—ivand X' = p' +iv.
By closely following Titchmarsh'', (pp. 41,49 and 51) and by utilizing the lemmas
31-3.4 at relevant places, we obtain from (3.13)

f H’(r,x,v)GT(y,r,/\')dt=J AH' (pox ) A7)

0

-2
v

=H(y,x,v)/(v—~A")+ f H (y.x, m)(p—A ¥ du (3.14)
0
where H' () = d/dx H(-), the partial derivative of the resolution matrix H(-) with respect

t0 %.

Integrating with respect to w” over (0,u), 1 < v, taking imaginary parts and then
proceeding as in Titchmarsh'? (p. 60) by utilizing the Cauchy singular integral, it follows
from (3.14), after some reductions, that

f dlax H(t,x, AVHT(x,t,A") dt = waldx H(y, x, A N A') (3.15)

where A = (o, B), A' = (', B') and H(t,x, A) = H{t,x, B} — H(t,x, @). In particular,

j 313t H(r,x, A) HT (x,4, A) dt

= wdlax H(y,x, A ue = wk(x,x, A), say. (3.16)

Similarly,

J dlox H(t,x, A) ooy H (y,1, A’} dt = md*/ox dy H(y,x,A N A"). (3.17)

Finally, proceeding as before* (formula 1.14), we obtain

dlaxHy, x, A) < 3(g" (x,%,8) +8(3,y, 1)) (3.18)
where
Hyy  Hp
h = ( ) = ghlx,
Hy Hp)®
and Hy are the elements of the -resolution matrix H(:);
(3.19)

&lax sy H(y, x, A) < 3(JT(x,x, A)+J(y,y, A))
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where J = dgldy = &*h/dx dy. The symbol ‘< represents that the matrix on the right
‘majorizes’ the one on the left. A non-negative nXn matrix B = (b;) majorizes a
complex # X n matrix A = (a;) (in symbol A < B),if lagl < by, ij=1,2,....n (see
Mirsky'?, p. 328).

From (3.17) it follows that k(x,x, A) is symmetric and positive in the sense that the
corresponding quadratic form is positive.

4. Some preliminary estimates

It easily follows from (2.2) that

X+t

wof

A sin\/th&,-(x,/\):%J' (T+Q(x,1,5)) (s, \) ds —

—%(Q(x,t,ert) J(bj(s,)\)dS*Q(x,t,x't) Jqﬁj(s,)t)ds @1
0 0

where ¢, 8., Q(:) are all defined as before (compare formula (2.2) in Chakravarty and
Roy Palachi*).

Let g, (¢) be an odd function of ¢ which vanishes outside (— ¢, ¢) and satisfies certain

smoothness conditions stated in sections 2 and 3 of the authors’ paper*; &, (VA) is the
Fourier sine transform of g, (1):

e (V) = J . (1) sin VAt dr.

]

Differentiate (4.1) with respect to x, then multiply both sides of the differentiated result
so obtained by g, (r) and integrate with respect to ¢ over (0, £). Then changing the order
of integration we obtain after some easy manipulations

xts

A7 g (VR ¢;(x,A)=% I O(x,5, 2) (s, A) ds (42
where
Qlx,5,8) = g (s~ + J K(x,t,9)g, () dt, @3

fr=s|
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Kix,1,5) being defined by (2.12). Similarly,
1 X+ £
i % (VR) 8] (x.4) = 5 J Q(x.5.€) 8;(s,A) ds. (4.4)
P el

The relations (4.2) and (4.4) determine the ¢ and § Fourier transforms, respectively, of
the jth row vectors of Q(x,s,€),j = 1,2, in (x— &, x +¢), vanishing outside the interval.

Then by the generalized Parseval relation® (p. 151) and the ¢-and 8- Fourier

transforms of row vectors of Q(x, s, €) and Q(y,s, &) we obtain® (p. 158) in view of the
explicit representation of the resolution matrix H(x,y,A), the relation

1 j ATLgE (VR dy (6% 9x dy Hix,y, 1)
s

1
4 [ Q(x.5,2) Q7 (.5, €)ds @.5)

A,
whete A = (x=e, ¥+e) N (y=5,+8)

In particular,
%, J AT I (VA) &y (e Hx, 3, Mlyes

—_—

xte

=Ti f 0(x,5,6) Q7 (x,s, £) ds. (4.6)

x—

Asimilar consideration with the ¢, B-transforms of the different row vectors of Q(x, s, &)
and the same of P(y, s, &):

- BN 1 f" 6,(5,)
Ty, (VR) e,f(y,/\) =3 f PO

>

y~e
where

P(y,s, 5) = J (I+Q(Yytys)'An()’?t9y+t)—Bﬂ(yatay"’t))gs(t) dr

[y=si-
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(see Chakravarty and Roy Paladhi’, formulae (2.4) and (2.6)), and the generalized
Parseval theorem leads to

3

1 JA—lwg(\/X)d/\(ﬁlﬁxH(X,Y:/\))
m

-

1
T3 J O(x,x, ) PT(y, s, 8) ds @
A,

with a similar result involving d/dy H(x,y, A}.

In particular,

f A7 g2 (VA) dy (900x HOx, 9, ))lymx

-0

ERES

% J O(x,s,€) PT(x,s,€) ds. (4.8)

x—z

fl

In our subsequent discussions we shall require certain lemmas involving derivatives of
the resolution matrix H(x,y,\) similar to those obtained in Chakravarty and Roy
Paladhi* (section 3). The methods of derivation of these lemmas do not materially differ
from those in the previous paper with the exception of the use of the results involving the
derivatives of H(x,y,A) obtained earlier. We therefore state without proof the final
forms of the results in the form of a single lemma.

As before let (xg,x, ) denote a fixed interval and x, ye(xo,x1); Ce, 8, . . . ) are various
constants depending on the arguments shown.

Suppose that O, Q' satisfy the relations (2.11) and (2.10) respectively.

) It A = p?, we write H(x,y,A) = Hy(x,y, n); H(-) is continued to the negative half
line as a matrix each element of which is an odd function of w.

Let ¥(x,y,A) = g/ax H(x,y,A) or didyH(x,y,A) or &*/ox dy H(x,y,A), the corres:
p{,or(xdmg entities when H(x,y,A) is replaced by H,(x,y,A) being represented by
105y, ).

Then we have,

0
Lemma 4.1: (A) J exp (20 VIA]) 6, Y(x,y,A) < Cleo, X0, X1), €05
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an arbitrary positive number.

0
In particular, f exp {e \/m) dy Y{x,p.A) is finite for arbitrary finite £,X.y

and Y(xr,y,—®) is finite.
®) ¥y(x.y,p+v) =Y (e, p,v) < Clxg.xy), for a fixed w;

At

at i sup V ,
trt s p Yi(r,y, p) < Clxg.xy);

—eeL e -~

[

© J NF 0 (VI dy Yy, A) < Clxgusr).

5. Asymptotic formulae involving derivatives of the resolution matrix

Put g, (r,a) = g.(r) cos at, where a is an arbitrary positive number and

&

e (. a) = J ge(f, a) sin wt dr.

0

GRY;

Then o, (u.a) = 3(s (+a)+ i (1~ @), where A = p?, and 4, (p,a) is an odd
function of .

Let f = (;‘ ) eha(=o, %),
2
Also let
Q(x,s,a,¢) = g (s—x,a) I+

+ Aox(Q(x, 1,5) — ADX, 1, £ +1) ~ BOQx, £, x— £))g. (¢, @) de.

]

From the ¢- and ¢-Fourier transforms of f and the same for the column vectors of

0(x,5,a,5) = (Sn QZI) and of Q(y,s,a,¢), we obtain, by the generalized
2 On
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Parseval relation, after some reductions, that

1 J g (Via) [ dox H(x,s, 1) f(s) ds
kg
:% ' J O(x,s5.a, £)f(s) ds. (5.1a)

From this, in view of the arbitrariness of the vector f, we have

-ir J 27 (e (VR a) + (VA=) dy (0x H(x,5, A))

= Q(x,s,a,¢), for x—s| <e (5.2)
=(), for x—s| > .
Since the uniform boundedness of the integral on the left of (5.2) and the same integral

when 8/dx H(-) is replaced by #%/6x dy H(x,s,A) follows from lemma 4.1 (C), it
is possible to differentiate (5.2) with respect to s so as to obtain, if s > x,

;17 [ T (VA a)dy (10x 35 H(x, 5, A))

= d/ds g.(s—x,a) I+ K(x,s)g.(s—x,a) +

+ J Lx,s.0)g.(t,a)dr, for s—x < ¢ 63

=0, for s—x>¢
where K(x,s5) = ~d/ox(Q(x, 1,5) — AQ(x, L, x + 1) BOLx, £, £~ 1)) rmsx (G
and L(x,s,8) = 9*/gx 3s Q(x,1,5). (59

A similar result holds for the case when s < x.

Let A = p?and H, (x,, u) have the same meaning as before. Then from (5.2) we have
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3

L[ a7 (e~ 0) e (o By (5, ) = 00005, 0,) = £ ~0(x,5.0,¢)

e J f g.(1,a) sin VX t/VX dr d, (8/3x H(x,5,\)), e 5] < & (5.6)
0

and
0 ¢
L=-2n J j 2:(t,a) sin VA VR de d, (8lx H(x,s,), |x~s| > e.
o

-

Also from (5.3)

Ur j Vet (w—a) du (8210x ds H (6., )

= 9105 g (s—%,a) I+ K(x, $)gs (s — %, @) + J L(x.5,0g, (ta)d—

be—s)

=2m

8o

L3
{ 8. (t,@) sin VA ¢/V/X dr d, (8%/dx 3s H(x,s,A)), [x—s] < & (5.7
9

[
=~2m f J 2:(t,a) sin VX t/VX dt d, (6*/dx as Hix,s5, 1)), lx =5 > .
® 0

1

Let Ty (x, 5, ) = J 0 (1, 1,5) sin ut dt (5.9)
==

where

8*(x,1,5) = dax(Q(x, t,5) — AQ(x, t,x+£) = BO(x, t,x—1)). (5.9)

Then by applying the Parseval theorem for the Fourier sine transform to each element of
Vuey(x,5,1) and (5.1), we obtain

j Va d, (—a) e (5,5, 4) ds

—oo

BRI

£

O* (x,1,5)g. (1, a)dt , x—s| < &
Jx—s|

=0, x—s|>e
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Again, changing the order of integration,

0

f J 2. (&, ) sin VAUVE dr d, (d/ax H(x,s, A))
0

= J g (t,a)hy (x,5,0)dr (5.13)
0

0
where A(x,s, /) = [ sin VAU'VA d, (d/dx H(x, s, A)). (5.12)

(5.12) exists uniformly for x,s,¢, by lemma 4.1 (C).

1
Let p 18 (x,5,p) = J' sin pt hy (x,s,8)de. (5.13)
0

Applying the Parseval theorem for the Fourier sine transform to (5.1) and each element
of Bi(x,s,u)/p, we obtain for 0 < e<1

J b (=0 Br s, 1) dp = j g (6,a) hy (6,5, dr. (514
- 0
Let @, (x,5,p) = dldx (Hy(x, s, w)— Hi(x,5, 1)),

where H(x,s, A) is the resolution matrix for the Fourier case and HY (x, s, 1) that when
A is replaced by u?

Then from (3.6), (5.10), (5.14) and a result obtained from (5.6) by replacing H; (x,s, p)
by H{(x,s,4), we obtain

J Ye(p—a)/pd, ®7(x,s,p) =0 (5.15)

where

4 B
DIx,s, 1) = O (x,s, w— I ay(x,s,v)dv+ 2T f By (x,s,v)dw. (5.16)
0 0
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Similarly, with
®,(x,5, 1) = 0%9x s (Hy (x,8,42) ~ HY (x,5, 1))

1
o (x,s, m)p = J L(x,s,t) sin uede

be—s]

1
By, 5, ) = J ha(x,5, 1) sin pidt
0

0
By (x,s,1) = J sin VAt/VAd, (8% 6x 35 H(x,s,A)

—o

and a relation obtained by changing H;(-) to H{(-) in (5.7) we obtain

[ b (a0 d, BF (x,5,2) = 0

where

P w
x5, p) = O*(x,5, 0) — J o (x,5,v) dv+2/m j Ba(x,s,v)dv
b b

with ®*(x,s5, ) = B, (x,5, w) —§ K(x,5) d/ax H (x,s, ).
The following lemma holds.

Lemma 5.1: Let Q'(x) satisfy the relation (2.10). Then

—

E
S O Gy

,L
ai(x,5,¥)dv = o(1); j a;(x,s,v)dv = o(1)
0
Bi(x.s,v)dv = —Imolax H,(x,s, — ) +0(1)

i) | By(x,s,v)dy = ~%md?lax 85 Hy (x, 5, — =) +o(1)

185

(.17

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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as p tends to = uniformly in every finite domain which contains x and s, and &)
B;(-) can be taken, without generality, to be positive.

The proofs are similar to those in Chakravarty and Roy Paladhi*. The difference,
however, lies in utilization of the estimates of *(x,,5) of (5.9) and L(x, ¢,s) of (5.5)
ie.

s

0% (x,,5)] < Ce**! and |L{x,t,5)| < Cr**',a >0, which can be easily deduced
from theorem 2.2.

We now establish

Theorem 5.1: If Q'(x) satisfy (2.10), then

M
J (1= 212! 4y (3105 Hy (x5, v)— lax HE (x, 5, ) +
0

L -l * I+4
+77 2% T(+p 3l Q (X’I’S)J,+%(Ml)/(/£t)+2dt=O(M),

fx—s]

as u tends to infinity uniformly for x, s lying in a fixed interval (xg, o), say. Here J,(-) is
the Bessel function of order » and Q*(-) is given by (5.9).

It is easy to show by using lemmas 4.1, 5.1 and the definition of U (n)/ i that the
conditions of the Levitan-Tauberian theorem (quoted in the appendix) are satisfied.
Hence, from (5.15) and (5.20), for [ = 0,

m
J (=22 d, ®F (15, 8) = o(u™), j = 1,2 62)
[l

'Els # tends to infinity uniformly for x,s contained in a fixed interval (xo,sq), say. From
5.23)

"
J (1= v*/p2Y d, (3x Hy (x5, v) = dlox HE (x, 5, v)) —
s

u

1 . ‘

3 J A= edY oy (x,s, v) dv+ 2w [ (=42 Bi(x,s,v)dv
° 0

= o(u™"). (5.24)
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"
R N R L
0
1 ©
= [ Q* (x,t,5) df f (12 wsin vedy
fr=s| 0
by substituting for a, (x,s, v) given by (5.10) and then changing the order of integration.
Then, integrating by parts by utilizing the integral derived from differentiation with

respect to ¢ of

I
3 -3 L
J A-v¥u*) cos mtdy = 7> p2 2 I'(l+1)]l+%(m)/(w)/+§
0
(Watson', p. 48), we have, for large values of w,

PR 1
L=m 2 IT{+1)n 6‘/8170*(x,t,s)]l+%(”t)/(“[)[+z dt.

fe—sl

(5.25)

Again, by integration by parts,

"
L= J’ A~y Bi(x,s,v)dp
o

Q=) tedr J B1(x,s,u)du
0

(1= vy tvdy < C,

where
H "
j Bix,s,u)du < f Bi(x,s,udu = O(1),
0 0

bylemma 5.1 (ii) as u tends to infinity and C are different constant matrices independent
of . but functions of 1,%g,50; (X0, 50 ) an arbitrary but fixed interval. The theorem now
follows from (5.23), (5.24) and (5.25).
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In an esactly similar manner we have from (5.23), (j = 2),

Theorem 5.2: ¥ Q'(x) satisfy (2.10), the asymptotic formula

M
J (1= v*1u2Y d, (3% ax ds(H  (x,5, v) — H{(x,5,v)) —
0

~4K(x,s) d/ax H (x,5,v)} +
1 1
%)l_f 1+
+7°2 T+ Dp P ox ot T(x,t,5) J 1 (ui(un' = = o)
fes] (5.26)

holds, as y tends to infinity uniformly for x, s lying in a fixed interval; K(x,s) is given by
(5.4).

6. Summability of the differentiated Fourier expansion

Put S(x,A) = (Sn(x, )\))

)™ J H(x,5, ) f(s) ds 6.

—a

to be called the generalized Fourier integral, where f{x) & L{— %, ») and

SF(x,A) = J H (x,5, ) fis) ds (62)

is the Fourier integral corresponding to the system (1.1) with p = g = r = 0. When
A= put
HQxy, d) = Hi(x,y, 1), H (x,y,8) = H{ (2,3, ), S(x,A) = S,(x, )
and ;P'(x,A) = 8§ (x, p); for every fixed x, y we assume, as before, that Hy (x,y, ) s
co?tlnued to the negative half-line as an odd function; with similar consideration for
Hi(x,y, m).
For <0, let 8(x,p) = —S;(x, —p); ST(x, ) = =S¥ (x, — ).

A A

Let, E;(u) = Li-m. [ 7 (v, ) fx) dv; Ep(r) = lim. J 67 (x, 12) flx) dx
=3 Ao
A

—A
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where @, f are the matrices which occur in the explicit repxesentanon for the resolution

matrix H(x,y,A) (see Chakravarty and Roy Paladhi®, p. 158). Then

§00) = J Hy (5.0 f(5) ds = j (9 (x,12) dE () + 8(x, 1) dn(1)} B () +
) Q

+{p(x, ) dn(u) + 60x, ) di(w)} Ex(p)), p > 0

with similar relations for u < 0.

Hence alax Sy (x, p) = dldx J Hy(x,s, p)f(s)ds

- j ({6 (v 1) Oe(1) + 6 (x, ) dn(3a)} E: () +
[}

+{¢' O, ) dne) + 0 (x, w) A1)} E2 (1))

for p >0, and similarly for u < 0.
It evidently follows from (6.3) that

3lox 8y {x, 1) = f dlox Hy (x, 5, p) f(s)ds = Sy(x, p) say.

—oo

Again, as before we have the relation (see formula (5.1a))

Uiy J U, Gz, @) (¢ (x, w) () Ey () + ¢ (x, ) () B (1) +

x—E

+9’(x,u)dn(n)E1(u)+9’(x,u)d§(u)Ez(u))=% f Q(x,5,a,8) fls) ds.

From (5.1), (6.3) and (6.4) )

xte

x=£

-2 J ( J g (t,a) sin ut/,udt)du(a/dxsl()ﬁ,#))-
1]

—o

j Vp i, (n—a) d, (3o S, (x, p)) = j Q(x.s,a,6)f(s) ds—

(6.3)

(6.3a)

(6.5
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Put R(x, ) = 0ax(S; (x, w)— ST (x, ). (6.6)
Then from (6.5) and a similar result involving § { in place of S;, we obtain

x+g

J b= d, R, ) = 7 j g(x,5,a,8)f(s) ds -

-— X—&
0 £
-2 j ( [ g.(,a) sin ﬂt/udt)du(ﬁ/ﬂxsl(x,p,)) @
-0 1]
where
gx.s,a,8) = K(x,t,5)8.(t,a) dt,
bem

K(x,t,s) being given by (2.12). Hence using the same procedure as before (see section 3),
we can ultimately obtain from (6.7) :

3

[ Y () d, R* (e, p) = 0 6

—®

where R*(x,u) = R(x,p) —T’ll

[EYS——

A, v)dv+2m j B(x,v)dv 69)
0

A (x, )

Alx,v) = <A2(x, )

1
) = J vy(x,t) sin vede
0

yx, 0 = I dlax K(x,t,s) f(s)ds

x—t

B(x,v) = vz(x,?) sin wedt

S

0
2(x,f) = J sin pt/pd, Sy (x, p).

The Stieltjes integral exists in accordance with Radon’s definition™ (p. 307). By adopting
the analysis of Chakravarty and Roy Paladhi*, we obtain the following lemma.
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Lemma 6.1 Let Q' (x) satisfy the condition (2.10) and let f(x} # L,(— %, ). Then for
fixed v, as p tends to infinity uniformly in any finite interval containing x,

# sl

W | Awdu=o(l) V Alx.a)=o(l):

PE J Blx,u)du = —S(x, — ) +o(1): YV Beou) = o(1);
v I3
© V S0 = o).

We next obtain

Theorem 6.1: If f(x)e L, (o0, 0} and Q'(x) satisfy the condition (2.10), then

.
J (1= w212 d, (3ax S, (x, v) - 31x ST(x, v)) = o),
0

as p tends to infinity uniformly for x in any finite interval.

It follows from lemma 6.1 and the relation (6.9) that R* (x, u) is of bounded variation
over every finite interval containing p where

v

sup V' R*(x,u) = o(1);

AT
so that by the Levitan-Tauberian theorem we obtain from (6.8),
1
2

.
(1= v32)d, R(x, v) = J (1= 122 Alx, v) dv—
0

L ——

m
~2m J (1~ v¥u2Y B(x, v)dv=0(u™), 1 > 0, (6.10)
o
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as w tends to infinity uniformly for x belonging to any finite interval. Now

i ®
(1= v22Y Az, v) dv = [ (1~ v21p2Y dy J A, u)du
0 0

TS

w v
== 9] J (1= vyt wplde J A(x,u)du, by integration by parts,
0
»
= O(J A(x,u)du) = o(1),
0

as j tends to infinity uniformly for x in a finite interval, by lemma 6.1 (A). Similarly by
lemma 6.1 (B),

7 I
J (1= 112) B(x, ) dv = O(J B(x,u)du) = o),
o Q
as u tends to infinity uniformly for x in a finite interval. Hence from (6.10)
w
| a2y aRe ) = o,
[}

as g teads to infinity uniformly for x in any finite interval. The theorem therefore
follows.

Suppose that the eigenvalue problem is considered over the interval [0, «) and the
spectrum is assumed to be bounded below (conditions for which for the present problem
remain to be decided). Then the term containing B(x, v) contributes o(1), as w tends to
infinity. Theorem 6.1 now reduces to

Theorem 6.2: If 1> 0 and f(x) e L,[0, »), Q'(x) satisfies the relation (2.10), then

=%

"
lim J (1% u?Y d,(0ex (Sy (x, V) ~ ST (x, ¥)) = O,
0

uniformly for x belonging to any finite interval. Theorems 5.1 and 5.2 can also be
modified similarly.
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w1

ii) sup  V o(p) = o), rz0;
w

R pl o

@

ii) J h(v) do(v) = 0, where h(v) = 12 I g0 (1) exp(—ivi) dr

—e -

for every finite function g, (1); i.e. g.(¢) is a function having bounded r+2th derivative
but vanishing outside (~ &, ).

Then as p tends to infinity,

iv) J' 1=y do(v) = o(|ul™),s = 0.

The theorem remains true when o is replaced by O in (ii) and (iv); also one can consider
the Fourier cosine or sine transform of the finite function according as it is even or odd.



