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Abstract 

The present paper is concerned with the R e i z  means of: (i) the differentiated resolution matrix, and (ii) the 
differentiated generalized Fourier integrals. The resolution matrix H(x, y,  A) is one generating the resolution of 
the identity of the seif-adjoint diiferential operator 

Key words: Resolution matrix, Riemann matrices, Cauchy-type problem, Generalized orthogonal relations, 
B,BFourier transforms, Levitan-Tauberian theorem, finite function. 

1. Introduction 

Suppose that 

is a real-valued matrix defined on (- m ,  m )  and is summable on every finite internal 
(a, b) C (- m ,  m). Further, suppose that Q ( x )  has derivative Q'@) which is also 
summable on (a, b) c (- m ,  m ) .  

Consider the differential system 

MU = AU (1.1) 

where M is given by (A) ,  U = and h is a complex parameter. 14 
The boundary conditions considered are 

[U, 411, = 0 = [U, cbjIb, 1 = 1,2; j = 3,4, with [&I, &] = 0 = [ h  ,441, 
where 41, +j are the boundary condition vectors of (1.1), i.e. vectors which together with 
their first derivatives take prescribed constant vallres independent of A at x  = a and 

= b, respectively; [U, V], is the value of the bilinear concomitant 
163 
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The Fourier case is obtained when p = q = r = 0 in (1.1). It is well known'-3 that the 
system (1.1) along with the boundary conditions prescribed as above, gives rise to a 
self-adjoint eigenvalue problem both in the finite as well as in the singular cases [O, m) 
and (- m, a). 

Let &(x, A) = (r:), r = 1.2,  be the solutions of (1.1) satisfying at x = 0 

the conditions (u j ,  v j ,  u,!, vj')lx=o = E ~ ,  j = 1 , 2 ,  where ej is the jth unit vector in d. 

Further, let 

be two other solutions of (1.1) connected with 6, by the relations 

[+pb,,ekl = 8,; [e,,s21 = 0, r ,k  = 1,2. 

Then 4,, Ok are linearly independent. 

Let H(x, y, A), A real, be the matrix 

im G(x,y,u+iv) du, A > 0 

=o, A = 0 

where G (.) is the Green's matrix associated with the system (1.1). 
The explicit form of H(x,y, A) involving the matrices 

and the matrices t , ~ , [  occur in authors' paper3 (p. 158). 
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then it has been proved that3 (p. 1601, for real A, 

This shows that the self-adjoint extension T 'generated' by M and determined by the 
pscribed set of boundary conditions, is connected with the spectral resolution E(A) 
'generated' by H(x,y,A) by the relation 

= 1 A d E j A ) .  

-m 

The matrix H ( x , y ,  A) is the spectral resolution or the resolution matrix associated with 
the differential system (1.1). 

It is noted that discussion of the system of differential equations of type (1.1) is 
motivated by the fact that the Schroedinger equation for a deuteron (in its ground state) 
leads to such a system if tensor interaction forces are taken into account. 

In the previous papers3.4, we considered a number of properties of the matrix 
H(x,y ,  A) including some asymptotic formulae. An equiconvergence theorem involving 
the generalized Fourier integral of a vector-valued function f (x)  r. L2( -" ,  m), as also 
the spectral representation theorem, and the generalized Parseval identity have been 
derived. 

The object of the present paper is to study certain theorems on the asymptotic 
behaviour of the Riesz means of the derivatives of H(x,  y,  A) and to obtain a theorem on 
the Riesz summability of expansions of the differentiated generalized Fourier integral 
and of the Fourier integral of vector-valued functions of class LZ(- m, m), associated 
with the system (1.1). The results can be extended to hold for similar problems involving 
higher order derivatives of H ( x , y , ~ ) .  

Introduction of abstract Hilbert space in mathematics leads to tremendous develop- 
ments of abstract spectral theory of self-adjoint operators in the Hilbert space. But this 
theoni sometimes fails to answer certain questions or it cannot give complete answers to 
"flain specific problems, and a separate theory becomes necessary. Spectral theory of 

operators has thus received considerable attention in the present day analysis 
and a complete volume dealing with such theory by Levitan and sargsyan6 is an 
luustration in support of the point. Various methods are also being tried to develop the 
general theory. For example, in recent Langer and Textorius define the notion 
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of a spectral function for a symmetric linear relation with a directing mapping by means 
of a Parseva[-Bessel inequality and apply their results to pairs of formally syinmetric 
differential expressions and Hermitian differential systems. The papers contain useful 
references in connection with certain recent developments in the subject. Their method 
follows the directing functionals developed by M. 6.  Krein and others of his school. 

In the following, we utilize the ideas initiated by Levitan and Sarg~yan'.~ in solving 
problems involving derivatives of spectral functions £01 (i) the Sturm-Liouville operator 
(ii) higher order linear differential operators and (iii) the Dirac operator. In their 
investigations they use Fourier cosine transforms and the asymptotic formulae for the 
derivatives of the eigenfunctions along with solutions of Cauchy problems for a 
one-dimensional wave equation and a similar problem for a one-dimensional Dirac 
system; boundary conditions being of type # 0, du!dtl,=" = 0. The formulation of 
their problem is such that the Fourier sine transform theory cannot be applied. We solve 
similar spectral problems arising in the system (1. I ) ,  where we use Fourier sine transform 
theory, the Cauchy type problem for a second order partial differential system satisfied 
by a vector-valued function u satisfying ul,,,, # 0, d~ldt l , ,~  t' 0 and certain results 
involving the derivatives of the resolution matrix H ( x , y ,  A) not considered by them. 
Fourier cosine transform is inapplicable in our investigation. Since the analysis runs 
parallel in some stages to those of Levitan and Sargsyan, we therefore indicate steps 
only, emphasizing only those parts where we differ considerably. 

2. Certain inequalities involving the Riemann matrices 

We consider in conjunction with (1.1) the Cauchy type problem 

d2 U!dt2 = d2 Vldx2 - Q(x) U 

with 

w ,  t)lr=o = f(x) 

dV(x, t) dtl,+ = h(x) 

where f(x) = c) and h(x) = + 0. 

Then the solution of (2.1) is 

where g(x) = I' h(t) dr, an indefinite integral of h(x), and W(x, t ,  s) and T(x, t ,  s) are the 
Riemann matrices associated with the system (2.1). 



SPECTRAL RESOLUTION OF A DlFFERENnAL OPERATOR :I1 167 

where 

1 = / Qb) W.-I ( y ,  r . r )  d r d y ,  n > 1, 
<h" 

&, being the domain 

0,: { o s  T S  I ;  ~ - t + ~ s y  C X + C - T ) ;  x - t - : s ~ x + t ,  

Also 

where 

W,,(x, t,s), T,(x, t ,  s )  satisfy the inequalities 

and 
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for all integral values of n 2 1 (see Chakravarty and ROY Paladhi9, pp. 17-22), 
The series (2.3) and (2.5) are therefore uniformly convergent for x ,  t , s ,  lying in some 
fixed interval, by the M-test. 
Put 

xr { / Q f ( 4  + l Q ( d ~ d ~  = x k t ) .  

Differentiating (2.6a), it follows that 

la iaxT,(x, t ,s) l  x (x ,  4 ,  

where x - t  < & t x - t )  s s ~ + ( s + x + t )  6 x + t .  

Let lalax T,-,(x, t,s)j s t"-212n-2(n-2)! Xn - l (x ,  t )  

for a positive integer n 3 1. 

Differentiating (2.6) we obtain 

= tn-'12"-'(n - l)! xn(x , t ) .  
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Hence IdIdxT,(x,t,s) tn- ' /2"- ' (n - I ) !  ,yn(x,t ) ,  (2.8) 

for all integral values of n 3  1. 
Hence from (2.5) by uniform convergence we have the inequality, for X -  t < x+  t ,  

Similarly, 

Let C(a,P, y, . . . .) denote various constants depending on the arguments shown. 
Then we have 

Theorem2.1: Let Q(x) and Qr(x)  in (1.1) be summable in each finite interval. Then for 
every arbitrary, finite and f ied interval (xo ,x l )  and an arbitrary fixed positive number 
4 > 0 it is possible to determine a constant C - C(xo,x , ,  to) such that, for t < to, 
b T ( x ,  t,s)l < C holds. 

The theorem is an immediate consequence of the inequality (2.9). 

Further, we have 

Theorem 2.2: If Q1(x)  satisfy the relation 

then lalax T(X,  t,s)l s c t 4 + l ,  

where C = C ( x o , x l ) ,  t Q t o a n d a = a ( x o , x ~ ) .  

It is easy to deduce from (2.10) by the mean value theorem that 

I' / Q ( u ) l d u s  C t 0 + ' .  o > 0. 

x-r 
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The thcorem then follows from the inequality (2.9) 

Similar theorcms also hold for dl& W(x,  t , s ) .  

Put K(x. t , s )  = fL(x , t , s ) -An(x ,  t , x+  t )  - Bn(x , t ,x - -  t )  

where the constants A.  B are defined as follows 

A = 1,  if s F(O,X+E) and B = 1, if s E ( 0 , ~ - S )  

= 0 otherwise; = 0 otherwise; 

E being an arbitrary fixed positive number; and n ( x ,  t ,  s) = j' T(x ,  t,y)dy, the indefinite 
integral of T(x, t , s ) .  

Since 

(see Chakravarty and Roy ~aladhi', formula (3.11)) it follows from (2.11) that 

T ( x , t , x i t )  i Ctofl 

Hence if Q'(x)  satisfy (2.10), we obtain from theorem 2.2, 

ldldxK(x,t,s)/ S C taC1, a > 0.  (2.13) 

Id'/dxds~(x,t ,s)l  S C to", a > 0. (2.14) 

3. Generalized orthogonal relations for derivatives of the resolution matrix 

- r  
Let M(x, A) = (PI: - A ) ,  w that re M(x,  A) = JPI: (1;) 
and im M(x,  A) = - vl, where I is the unit 2 x 2 matrix and A = p + iv. 

If C(X,Y,  A) be the Green's matrix in the singular case (- m, m) for the system (1.11, it 
follows from the Titchmarsh (p. 34) 
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that 

(6-x)'G(x.y,A) = ,/ (6- u)'(u-x) M(U.A) ~ ( u . y , A ) d u +  

(3.1) 

where f is an arbitrary but fixed number. It may be noted that for the uniqueness of the 
Green's matrix in the singular case quite a number of stringent conditions are to be 
imposed on Q(x) (see chakravarty2). When necessary, such conditions are assumed to be 
satisfied in what follows. 

Taking imaginary parts on both sides of (3.1) and then differentiating the result with 
respect to x, we obtain 

(5-~)~dldxim G(x, y, A) = 2(f-x) im G(x,y,A) + 

+ \ (2- (5-u)'reM(u. A)) im G ( U . ~ , A ) ~ U -  

- ,/ (~- i r )2 imM(u,~)reG(u,y ,A)du.  (3.2) 

Putting A = p+iv, v > 0, it follows from (3.2) and the lemmas 2 and 3 as given in 
Chakravarty and Roy paladhi3 (p. 153) that the integral with respect to p over any 
interval of each term on the right hand side of (3.2) is bounded as v tends to zero 
uniformly for x in any compact interval which does not contain y. Therefore 

is bounded in x, where H(x,y, p) is the resolution matrix. 

Similarly with dldy and d2Iaxdy. 

In (3.2) let v tend to zero. Then using the Schwarz inequality and the inequality 

la + biz < 2 ( j ~ / ~  + Ib12), (3.3a) 

we obtain / ~ - X ~ ~ ~ J I ~ X H ( X , ~ , ~ ) / ~  S ~ ( ~ - x ) ~ / H ( x , Y , ~ ) / ~ +  



172 N. K.  CHAKRAVARTY AND SWAPNA ROY 

Similarly, as a function of x ,  dldy H(x,y, p )  ELz ( -  m ,  m), and as a function of x and also 
as a function of y ,  aZ/dxdyH(x,y,p)&Lz(- *, *). 

We now establish the following lemmas required for our further discussions. As 
before, K(x,.  . .) denotes various constants depending on the arguments shown. 

Lemma 3.1: If A = p+iv,O< V S  1 , x  # y ,  then 

This immediately follows from (3.2) and the lemmas 2 and 3 in Chakravarty and Roy 
paladhi3 (p. 153). 

Lemma 3.2: If A = p+iv, 0 < v 6 1, x # y,  then 

P 

h 
1 

la /axG(x,y ,~) ldp < K(x,y,a,P)v-+. 

Differentiating (3.1) with respect to x ,  

( ~ - ~ ) ~ a I a x G ( x , y , ~ )  = -2 ( [ -x )G(x ,Y ,A) -  

Hence 

Since IM(u, h)l S C for 0 < v S 1 for all u in x < u < 5, the lemma folIows by using 
lemma 3 in Chakravarty and Roy Paladhi3 (p. 153). 
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Lemma 3.3: If O < LJ S 1, x # y ,  then 

It follows from (3.4), the inequality (3.3a) and the Schwarz mequality that 

The lemma follows by using lemma 5 in Chakravarty and Roy paladhi' (p. 153) and the 
inequality (M(u ,  A)l < C, for O < v < 1 ,  u ~ ( x ,  5). 

Lemma 3.4: If O < LJ < 1, x # y, then 



174 

Now 

Thus 

so that 

, B 
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/ im (M(u. A) G(u, y,  A)) dp = re M(u, A) im G(u. y, A) d p +  ," 

[ i m ( ~ ( u , A )  ~ ( u . y , l ) )  d q  S 2C ( 18 i m ~ ( u .  y . ~ )  d p r +  

P 

+ 2 -  j ~(U .Y .* )12d i l ) .  

Hence, from (3.5) and the Schwarz inequality, 
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let tend to - m and fi to m. Then thc result foliows by utilizing lemma 4 In 
Ch&avarty and Roy paladhi (p- 153). 

Lemmas similar to those of 3.1-3.4 also hold when one replaces dldx by d/dy or 
&ax ay. 

~~t G(a, b,x,y, A) be the Green's matrix for the given boundary value problem of the 
interval (a,b). Then for non-real A, A'(A # A') it is easy to dcducc by using Green's 
theorem and subsequent differentiation under the sign of integration that 

= dl& G(a, b,y,x. A) - dlax C(a, b, y,x, A'). (3.6) 

If G(x,y,A) be the Green's matrix in the singular case (- m ,  m), by the familiar 
extension procedure (see for example chakravarty2, p. 400) we have 

lim G(a,b,y,x,A) = Gb,x,A)  
a+-m 

(3.7) 

6- m 

uniformly for y,x, A with im A S 0. 

Considered as functions of x or y, since G(a, b, y,x, A) and G b , x ,  A) satisfy the same 
differential system (I.]), we obtain from (3.4), for a fixed 5, 

Hence, from (3.7) it follows that 

lim d/dxG(a, b, y , x ,  A) = 3ldx G(y,x,A) 
a--m 
b- m 

uniformly for y,x and A (complex) with imA Z 0. 
Again from (3.8) 
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+ 2  1 l ( t -u ) 'W~,4 -2 l ' du  lG@,  b,y3xrA)-G(~,x,A)IIL1,h (%lo) 

by the inequality (3.3a) and the Schwarz inequality. Since 

lim 11G(a,b,y,x,A)-G(y,x,h)ll,,a < m ,  
(I-+ - CD 

b- m 

it follows from -(3.10) that 

Hence by the familiar extension procedure (see  itchm marsh", p. 58; chakravarty2 
p. 410), we obtain from (3.6) 

(*-A1) j raxC(t(, ,x,n) cT(v, t,A1)dt = a , ~ ~ ~ ( y , x , i ) - a / a x C ( y , n ,  A l l .  

-m 
(3.11) 

A similar result holds if we replace dldx by dldy. Also 

A -  j dldxG(i,x,A) dN@ C T ( y , t . ~ ' ) d l  

-m 

= ~ I J X ~ ~ ( G C ~ , X , A ) -  G(y,x ,A1)) .  (3.12) 

From (3.11) and the same formula obtained by replacing A by its conjugate 1, it follows 
that 



where A = p+ iv, X = p - iv and A '  = p' +id. 

closely following  itchm marsh", (pp. 41.43 and 51) and by utilizing the lemmas 
3.1-3.4 at relevant places, we obtain from (3 .13)  

a / H f ( t , x ,  v ) ~ ' ( y .  t ,* ')dt = 

-cc 

= H ' ( y , x .  v ) l ( v - A ' ) +  N ' ( y , r , p ) l ( p - ~ ' ) 2 d i u .  (3.14) 

where HI(.) = dlax H ( . ) ,  the partial derivative of the resolution matrix H ( , )  with respect 
to x .  

Integrating with respect to p' over (O,u), u s v, taking imaginary parts and then 
proceeding as in Titchmarsh" (p. 60) by utilizing the Cauchy singular integral, it follows 
from (3.14), after some reductions, that 

i dldx H ( t , x ,  / l )HT(x,  [ , A ' )  dt = r a l d x H ( y , x ,  A  f l  A t )  (3.15) 

-m 

where A  = (a,@), A' = ( a l , P ' )  and H ( t , x , A )  = H ( i , x , p ) - H ( t , x , a ) .  In particular, 

= ~ d l d ~ H ( y , x , A ) l ~ ? . ~  = . trk(x,x,A),  say. (3.16) 

Similarly, 
a 

dldx H ( t , x ,  A) dldy H T O ,  t ,  A t )  dt = ~ d l d x a y  H ( y , x ,  A  f? A ' ) .  (3.17) 
-m 

Finally, proceeding as before4 (formula 1.14), we obtain 

" d x H b , x , A )  * &(gT(x ,x ,  A)  +gCy,y,A))  
where 

"d Hij are the elements of the .resolution matrix H ( , ) ;  

@/axdy  H(y ,x ,  A) e +(JT(x ,x ,  A) + I h , y ,  A ) )  
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where J = dg /ay  = 9 h I d n d y .  The symbol '4 represents that the matrix on the right 
'majorizes' the one on the left. A non-negative n X n matrix B = (b,) majorizes a 
complex n x n  matrix A = (a,-) (in symbol A < B), if bql b,!, i , i  = 1,2 , .  . . , n. (see 
~ i r s k y ' ~ ,  p. 328). 

From (3.17) it follows that k ( x , x ,  A) is symmetric and positive in the sense that the 
corresponding quadratic form is positive. 

4. Some preliminary estimates 

It easily follows from (2.2) that 

where 4, ,  &,a( . )  are all defined as before (compare formula (2.2) in Chakravarty and 
Roy ?aladhi4). 

Let g, (t) be an odd function of t which vanishes outside (- E, e )  and satisfies certain 
smoothness conditions stated in sections 2 and 3 of the authors' paper4; @=(%6) is the 
Fourier sine transform of g,(t): 

$E (V%) = [ g, (t) sin %% t dr. 

Differentiate (4.1) with respect to x ,  then multiply both sides of the differentiated result 
so obtamed by g,(t) and integrate with respect to t over ( 0 , ~ ) .  Then changing the order 
of integatlon we obtain after some easy manipulations 
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~ ( ~ , t , s )  being defined by (2.12). Similarly, 

t he relations (4.2) and (4.4) determine the 9 and 0 Fourier transforms, respectively, of 
thejth row vectors of Q(x ,s .  ~ ) . j  = 1,2, in (x-E.x+E), vanishing outside the interval. 

Then by the generalized Parsevsl relation3 (p. 151) and the 4- and 8- Fourier 
transforms of row vectors of Q ( x , s ,  E) and Q ( y , s ,  E) we obtain3 (p. 158) in view of the 
explicit representation of the resolution matrix H(x,y,A), the relation 

A similar consideration with the 9, &transforms of the different row vectors of Q ( x ,  s, &) 

and the same of P(y, S,  E ) :  

Y-e 
where 
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(see Chakravarty and Roy paladhi4, formulae (2.4) and (241, and the generalized 
Parseval theorem leads to 

with a similar result involving dldy H(x, y ,  A). 

In particular, 

In our subsequent discussions we shall require certain lemmas involving derivatives of 
the resolution matrix H(x,y,A) similar to those obtained in Chakravarty and Roy 
Paladhi4 (section 3). The methods of derivation of these lemmas do not materially differ 
from those in the previous paper with the exception of the use of the results involving the 
derivatives of H(x,y, A) obtained earlier. We therefore state without proof the final 
forms of the results in the form of a single lemma. 

As before let (xo,x,) denote a fixed interval andx, ye(xo ,XI); C(a, P ,  . . . ) are various 
constants depending on the arguments shown. 

Suppose that Q, Q' satisfy the relations (2.11) and (2.10) respectively. 

If A = k2, we write H(x, y, A) = Hl (x,y , p); Kl (.) is continued to the negative half 
line as a matrix each element of which is an odd function of p. 

Let Y(x,y, A) = didx K(x, y, A) or dldy H(x,y, A) or d2/dx dy H(x, y, A), the corres- 
ponding entities when H(x, y, A) is replaced by HI ( x ,  y, A) being represented by 
YI(~,Y,P) .  

Then we have, 
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an arbitrary positive number. 

5,  Asymptotic formulae invoiving derivatives of the resolution matrix 

Put g,(t ,a) = g,(r) cos at, where n is an arbitrary positive number and 

Then $k (p. a )  = &($c ( p  + a )  + $., ( p  - a ) ) ,  ushere h = p2, and $c (p, a )  is an odd 
function of p. 

Also let 

From the 6- and &Fourier trmsforms o f f  and the same for the column vectors of 
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Parseval relation, after some reductions, that 

From this, in view of the arbitrariness of the vector f,  we have 

= Q ( x , s , u , e ) ,  for Ix-st S E 

=o, for jx-sj > F .  

Since the uniform houndedness of the integral on the left of (5.2) and the same integral 
when dldx H( . )  is replaced by dzldx dy H ( x , s ,  A)  follows from lemma 4.1 (C) ,  it 
is possible to differentiate (5.2) with respect to s so as to obtain, if s > x ,  

= 0, for s - x  > E 

where K(x,s)  = - d!dx(fl(x, t , s )  -Af l (x ,  t , x +  t )  -- B f l ( x ,  t , x -  1))1,=,-~ (5.4) 

and L(x , s , t )  = dZldxds f l (x ,  t , s ) .  (5.5) 

A similar result holds for the case when s < x  
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= - y r  1 ge (l, a) sin V5 t / f i  dt d i  (d/dxH(x, s, A)). lx -si < E (5.6) 

and 

Also from (5.3) 

= d i a ~ g . ( ~ - x , a )  I+K(x ,s)g , (s -x ,a)+ 1 L(x .s , t )ge( t ,a)dt -  

11-3: 

O b  

-2tn 1 1 gs(t ,a) sin fi t l f i  dt dA (a2/d.rds H(x,s,A)),  lx-$1 G E (5.7) 

-r 0 

kt l i pa l ( x , s , p )  = a* ( x ,  t ,s)  sin pt d t  i (5.8) 

/x-*; 

where 

n'(x,t,s) = d i d x ( n ( x , t , s ) - ~ n ( x , t , x + t ) - B n ( x , t , * - f ) ) .  (5.9) 

Then by applying the Parseval theorem for the Fourier sine transform to each e h e n t  of 
~ I P @ I ( x , s , ~ )  and (5.1),  we obtain 
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Again, changing the order of integration, 

i i g, ( t ,  a) sin fitla dt dA (dldx H ( x , s ,  A ) )  

-m a 

where hl ( x ,  s, t )  = sin fi t l f i  dd, (dl& H(x,  s, A ) )  i 
-m 

(5.12) exists uniformly for x , s , t ,  by lemma 4.1 (C). 

Applying the Parseval theorem for the Fourier sine transform to (5.1) and each element 
of B1(x,s ,p)Ip ,  we obtain for 0 < E s 1 

k t  %(x,s ,P)  = ~ I ~ x ( H ~ ( ~ , s , P ) - H P ( x , s , ~ ) ) ,  
where HF(x,s,  A) is the resolution matrix for the Fourier case and H?(x,s,  p) that when 
A is replaced by p2. 

Then from (5.61, (5.10), (5.14) and a result obtained from (5.6) by replacing H ~ ( x , s ,  p)  
by H:(x ,s ,p) ,  we obtain 

where 
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o l ~ ( x , s , p ) l ~  = L ( x , s ,  t )  sin wtdt i 
Ix-SI 

-cc 

and a relation obtained by changing H I ( . )  to H:(.) in (5.7) we obtain 

where 

with @* (x,s ,  P )  = Q 2 ( x , s ,  +)  - 4  K ( x , s )  aldx H ~ ( x , s ,  P) .  

The following lemma holds. 

Lemma 5.1: Let Q f ( x )  satisfy the relation (2.10). Then 
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as p  tends to uniformly in every finite domain which contains x and s,  and 
pi(.) can be taken, without generality, to be positive. 

ai(.), 

The proofs are similar to those in Chakravarty and Roy Paladhi4. The difference, 
however, lies in utilization of the estimates of a* ( x ,  t ,  $1 of (5.9)  and L(x ,  t ,  s) of (5.5), 
i. e. 

ln*(x , t , s ) j  < Cta+' and lL(x,  t , s )  S C t a + ' , a  > 0 ,  which can be easily deduced 
from theorem 2.2. 

We now establish 

Theorem 5.1: If Q r ( x )  satisfy (2.10),  then 

as p tends to infinity uniformly for x , s  lying in a fixed interval ( x o ,  so) ,  say. Here J,(.) is 
the Bessel function of order v and a*(.) is given by (5.9). 

It is easy to show by using lemmas 4.1,  5.1 and the definition of $ ~ ~ ( p ) l p  that the 
conditions of the Levitan-Tauberian theorem (quoted in the appendix) are satisfied. 
Hence, from (5.15) and (5.20), for 12 0 ,  

as p  tends to infinity uniformly for x , s  contained in a fixed interval ( x o , s ~ ) ,  say. From 
(5.23) 
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by substituting for a, (I,$, V) given by (5.10) and then changing the order of integration. 

Then, integrating by parts by utilizing the integral derived from differentiation with 
respect to 1 of 

(watsonI3, p. 48), we have, for large values of p ,  

Again, by integration by parts, 

4 Up2 1 (1 - v21p2)" vdu 4 C, 

0 

where 

lemma 5.1 (ii) as /L tends to infinity and C are different constant matrices independent 
Of IL but functions of I,xO, so ; (xo, so) an arbitrary but fixed interval. The theorem now 
foUows from (5.23), (5.24) and (5.25). 
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In an exactly similar manner we have from (5.23), ( j  = 21, 

Theorem 5.2: if Q ' ( x )  satisfy (?,.lo), the asymptotic formula 

(1- V ~ I ~ ~ ) ~ ~ ~ ~ ( ~ ~ ~ ~ X ~ S ~ H , ( X , S ,  v ) - H ; ( x , s ,  ~ 1 1 -  

holds, as p tends to infinity uniformly for x,s lying in a fixed interval; K(x.s )  is given by 
(5.4). 

6.  Snmmability of the differentiated Fourier expansion 

to he called the generalized Fourier integral, where f (x)  E L z ( - " ,  m) and 

is the Fourier integral corresponding to the system (1.1) with p = q = r = 0. When 
A = 2, put 

H(%Y,A) = H ~ ( x , y , p ) , H ~ G , y , h )  = H:'(x ,y ,p) ,S(x ,A)  = S I ( X , P )  

and SF(x,A) = s:(x, p ) ;  for every fixed x,y  we assume, as before, that H I ( x , Y , P )  is 
continued to the negative half-line as an odd function; with similar consideration for 
H F ( x , y , p ) .  

For CL < 0, let S I ( x , p )  = - S I ( X ,  - p ) ;  ST(x ,p)  = -SB(x, - p ) .  
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where$, @are the matrices which occur in the explicit representation for the resolution 
matrix H ( , x , ~ ,  A) (see Chakravarty and Roy Paladhi", p. 158). Then 

with similar relations for p < 0. 

0 

+ {4'  (x, r )  d d 4  + H ' k  II) E z W  

for p > 0, and similarly for p < 0. 
It evidently follows from (6.3) that 

ddxS, (x, p)  = alax HI (x ,  s, p) f(s) dr = S2(x,r) say. i (6.3a) 

Again, as before we have the relation (see formula (5.la)) 

From (5.11, (6.3) and (6.4) 

-2 j j j g. 0, 01 sin pii,adl d, (dldx S.(X, P)).  

-- 0 
1 
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Put R ( x , p )  = dIdx(S~(x,  CL) -S: (X ,  P)) .  (6.6) 
Then from (6.5)  and a similar result involving SF in place of S1, we obtain 

where 

K(x ,  t ,  s )  being given by (2.12) .  Hence using the same procedure as before (see section5), 
we can ultimately obtain from (6.7) 

where R * ( x , r )  = R ( x , r )  

The Stieltjes integral exists In accordance with Radon's definitlonX4 (p. 307). By adopting 
the analysis of Chakravarty and Roy Paladhi4, we obtain the following lemma. 
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~ ~ ~ ~ ~ 6 . 1 :  Let Q'(.r) satisfy the condition (2.10) and let f ( x )  F L z ( -  m, m), ~h~~ for 
fixed ", as p tends to infinity uniformly in any finite interval containing x, 

We next obtain 

Theorem 6.1: If f ( x ) ~  LZ(- M, m) and Qf(x) satisfy the condition (2.10), then 

as tends to infinity uniformly for x in any finite interval 

It follows from lemma 6.1 and the relation (6.9) that R * ( x , p )  is of bounded variation 
over every finite interval containing p where 

$0 that by the Levitan-Tauberian theorem we obtain from ( 6 8 ,  
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as p tends to infinity uniformly for x belonging to any finite interval. Now 

as /L tends to infinity uniformly for x in a finite interval, by lemma 6.1 (A) .  Similarly by 
lemma 6.1 (B), 

as p tends to infinity uniformly for x in a finite interval. Hence from (6.10) 

as p tends to infinity uniformly for x in any finite interval. The theorem therefore 
follows. 

Suppose that the eigenvalue problem is considered over the interval [0, m) and the 
spectrum is assumed to be bounded below (conditions for which for the present problem 
remain to be decided). Then the term containing B(x, v) contributes o ( l ) ,  as /.L tends to 
infinity. Theorem 6.1 now reduces to 

Theorem 6.2: If 1 > 0 and f ( x ) ~ L , [ o ,  m), Q'(x) satisfies the relation (2.10), then 

uniformly for x belonging to any finite interval. Theorems 5.1 and 5.2 can also be 
modified similarly. 
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Let r ( v )  satisfy 

i of bounded variation over every finite interval; 
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for every finite function g, ( t ) ;  i.e. g, ( t )  is a function having bounded r + 2th derivative 
but vanishing outside (- E ,  E ) .  

Then as p tends to infinity, 

The theorem remains true when o is replaced by 0 in (ii) and (iv); also one can consider 
the Fourier cosine or sine transform of the finite function according as it is even or odd. 


