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Abstract 

In. this paper, we sllaU give a characterization of the differentia{ operator D=ar/lJ8xo+a:liJJaxl + ... +a/TIoliJxm 
with coefficients Ct.; (i:::: 0,1. ... ,m) of Clifford number for which any solution of the differential equation 
Of=O is always a solution of Laplace's equation h.f=O, where A = ifla:c6+a2Jox;+·' ·iF/ax;.. 
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1. Introduction 

The Clifford algebra was constructed by W. K. Clifford in 1878 as a generalization of the 
quaternion algebra. It was studied in the [930s in connection with the theory of 
spinors'-4 and has been studied in mathematics and physics5- 30 

The generalized Clifford algebra which is a generalization of the ordinary Clifford 
algebra was constructed as a generalization of the theory of spinors and had extensively 
been studied by many authors'(J-,". In 1971, T. N6no n- l

" had also generalized the 
concept of linearization of wave equation for the more general differential equation as 
another generalization of the theory of spinOTs. 

Many authors have studied higher dimensional function theories'9-26 as an extension 
of classical complex function theory. This study has also been applied within a number of 
areas of theoretical physics (for example, refs 27-29). Most of the function thcories'9-26 
ossociated with the solutions of first order elliptic differential equations arc special 
lInearizations of the Laplace's equation. 

We gave
30 

the characterization of the differential operator D = allal aXil + alJI 
BX1+U,JIJX2+a3JIJX3 with quaternionic coefficients ai (i",0,1,2)) for which any 
solution of the differential equation Du = 0 is always a solution of the Laplace's 
equation (a2Iax~+a2IJxT+a2IJ.d+,i'lax~)1I = 0, where u is a quaternionic function. 
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In this paper, we shall give a generalization of the result in ref. 30 for Laplacia,, ,,f 
(rn + 1) -real variables ( m Z l ) .  

Let A, be the Clifford algebra over an n-dimensional vector.space with orthogonal basis 
{el, e,, . . . , em}. It is well known that A, is a real 2"-dimensional associative, hut the 
non-commutative algebra and its basis {el, ez, . . . , en, . . . , e lev  . . en} satisfy the 
following: 

e e + e.e- = -2Sii (i, j = 1, 2, . . . , n) ,  ' I  I '  

eo is identity of A,, 

wherc a,, is the Kronecker's delta. Then, every element z  in A, is of the form 

where xo,xl, .  . . ,xlz . .. are real numbers. For two Clifford numbers z = eo xo+elxl t 
. .  t e , , x ,+ . . .+e l e2 . . . e , , x l z  ...,, and w = e,,y, ,+e,y,i- . . .+e,,y, ,+.. . te,ry. .e, ,y , I .  ,>. 
the inner product ( z ,w)  is defined by the following: 

(z,w) = noyo + x,yl + ...+ x,,y,, + ... +xlz . .  ,,y12 ..., , , 
and the norm (z( of z is given by 

121 = m. 
In this paper, let m be an arbitrary integer such that 1 S m C n. The subspace of A, 

spanned by the elements eo, e l , .  . . . ,em is identified with Rm+'. For each element 
z = eoxo + elxl + ... + emxm in Rm*', the conjugate number z* and the inverse z-' 
are given by the following: 

For elements r and w in R ~ + ' ,  we obtain 

l z w I = l z I  l w l .  (2.1) 

Let dldx, (i = 0, 1, . . . , m) be the usual real differential operators. We consider the 
following Clifford differential operator: 
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,perator D, the matrix A = (ay) is said to be the matrix of D. Aiso, for the differential 
operator D of (2.2) we define the conjugate differential operator D* by 

where crj is the conjugate number of ai (i = 0. 1,. . . , m).  

Let G be a subset of R'"". We consider a function f ( z )  = e,,f;,(z) + e l f i  ( 2 )  + . . . + 
e,f,(~)t.. ,+ele2...e,,f~z ..,, ( z )  defined in C, where z=(xo,x , ,  . . . ,xm) E C.  
we say that a differentla1 operator D of (2.2) is a linearization of the Laplacian 
A = aZ/dx~ + d2/dx: + , , .  +dZ/3x:, if and only if any solution of a differential 
equation 

is always a solution of Laplace's equation 

Remark: If aj =0 for some j, then the differential operator D is not a linearization of 
Laplacian A, since Df = 0 but Af f 0 for a function f(xo, X I ,  . . . , x,) = x:. 

3. Main theorem 

Let O(m + 1) be the (m+l)-orthogonal group. We need the following two lemmas 
which are easily proved. 

Lemma 1 : Let D be a differentia1 operator of (2.2), A = (a,) be the matrix of D. Then, 
flu following conditions ( I ) ,  (2) and (3) are all equivalent. 

(1) A E O(m+ 1). 
(2) &; + a;@i = 2S;, ( i ,  j = 0,1, . . . , m )  
(3) (a ,  a;) = 6ij (i, j = 0, I ,  . . . , in). 

Lemma 2: The functions 

f&oj XI,.  . . ,xm) = (a;' aj)l  x: -2(@;' aj)xixj+xf, (i, j = 0, 1, . . ., m) are solutions of 
the differential equation (2.3), where ai (i = 0,  I , .  . ., m) are coefficients of D. 

Theorem: Let D be a differential operator of (2.2) and A be the matrix of D. Then, the 
following conditions (1),(2) and (3) are all equivalent. 

(1) D is a linearization of Laplacian A. 
(2) A = AO, O E O ( ~ + Z ) ,  (A? 0). 
(3) D*D = h2A, (A  0).  
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proof: We first prove that (1) -t (2).  Letf, (i f I ,  i,j = 0 ,  1, . . . , m) be the functions in 
Lemma 2. Since we have 

Af,/ =2(u;' aJ2 +2> 

from Ahl = 0 it follows that 

( a i l a , ) ' + l = O ( i # j ,  i . j = O .  I;.., m ) .  

From (3.1) and remark in Section 2, we obtain 

a; ' a ,+aa:a ,=O ( i f j ,  i , j = O , l ; . . , m ) -  

From (3.1), we have /a;' 1 la, I = la;' I / a ,  1 ( i f  j ,  i ,  j = 0 ,  I;.., m )  which implies 
lai / = a /  / > 0 for all i, j = 0 ,  1 , .  . . , m. It now easily follows that 

a T a j + a : a , = O ( i # j ,  i , j = O , l ; . . , m ) .  (3.2) 

Put 

A = lao = lal/  = ... = la, > 0. (3.3) 

Thus, (3.2), (3.3) and Lemma 1 show that A = AO, 0 F O ( m + l ) ,  (A > 0). 

Next, we prove that (2) -t (3). By operating D* on the left side of D, from Lemma 1 
and condition (2) we have 

At last, we prove that (3)  -+ (1).  Let f be any solution of Df=O. From condition (3), it 
follows that O=D*Df = A'A~. Thus, D is a linearization of Laplacian A. 

Corollary: Let D* be the conjugate differential operator of D and A* be the matrix of D*. 
Then, the following conditions are all equivalent. 

( I )  D is a linearization of Laplacian A. 
(2) D* is a linearization of Laplacian A. 
(3) A = AO, OeO(m + I ) ,  (A > 0). 
(4) A* = AO, OcO(m+ l), (A > 0) .  
(5) D*D = A'A, (A  > 0). 
(6) DD* = A'A, (A > 0). 
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