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Abstract
In this paper, we shall give a characterization of the differential operator D =pd/dxy +a,3/dx; + + + + + ) Oy
with coefficients o; (i = 0,1,...,m) of Clifford number for which any solution of the differential equation

Di=(0 is always a solution of Laplace's equation Af=0, where A = &/ax}+o¥/axf+ -+ -Plaxs,.
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1. Introduction

The Clifford algebra was constructed by W. K. Clifford in 1878 as a generalization of the
quaternion algebra. It was studied in the 1930s in connection with the theory of
spinors'™ and has been studied in mathematics and physics™ .

The generalized Clifford algebra which is a generalization of the ordinary Clifford
algebra was constructed as a generalization of the theory of spinors and had extensively
heen studied by many authors'®='®, in 1971, T. Nono'™"'* had also generalized the
concept of linearization of wave equation for the more general differential equation as
another generalization of the theory of spinors.

Many authors have studied higher dimensional function theories
of classical complex function theory. This study has also been applied within a number of
areas of theoretical physics (for example, refs 27-29). Most of the function theories' 9-26
issociated with the solutions of first order elliptic differential equations are special
lincarizations of the Laplace's equation.

We gave™ the characterization of the differential operator D = ayd/dxy + ad/
0+ /0%, + 4,9/ with quaternionic coefficients o; (i=0,1,2,3) for which any
solution of the differential equation Du = 0 is always a solution of the Laplace’s
equation (6%/axg + ¢ ax2 + %/ gxd+ Flaxiu = 0, where u is a quaternjonic function.
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In this paper, we shall give 2 generalization of the result in ref. 30 for Laplacian of
(m+1)-real variables (m=1).

2. Preliminaries

Let A,, be the Clifford algebra over an n-dimensional vector.space with orthogonal bagis
{e1, €2,. .., e,}. It is well known that A, is a real 2"-dimensional associative, but the
non-commutative algebra and its basis {g;, €, -+, €4, ", €1 ey} satisfy the
following:

ee + e = —28; (i’, =12, n),

ep is identity of A,

where 8; is the Kronecker’s delta. Then, every element z in A, is of the form
z=¢epxgtexy+ - te,x,tee e, X100,

where xg,Xq, - . ., X12..., are real numbers. For two Clifford numbers z = egxy+e;x, +
eyt eer e, X, and w = epyote yi o Fey, o Feer 6y,
the inner product (z,w) is defined by the following:

(zw) = xoyo + xayr + - HXyn F o F X Vi,
and the norm |z| of z is given by
[zl = Vz.2).
In this paper, let m be an arbitrary integer such that | = m = n. The subspace of A,
spanped by the elements eq, €;,----,e,, is identified with R™"'. For each element

Z =egXg+ X + =+ + ey in R, the conjugate number z* and the inverse 27!
are given by the following:

= ek }: ey, 271 = | ‘2 (z #0).

For elements z and w in R™*! we obtain
lzwl=iz] |wl. ' @y

Let 9/ax; (i=0, 1,---, m) be the usual real differential operators. We consider the
following Clifford differential operator:

D=F o2, @2

m
where @ = 3 ga, (i =0, 1,--, m) are elements in R”*". For the above differential
i=0
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erator D, the matrix 4= (ay) is said to be the matrix of D. Also, for the differential

4 we define the conjugate differential operator D* by

operator D of 2.2)
m
J
L - .
D Z af o

where o) is the conjugate number of a; (1 =0, 1,-++, m).

Let G be a subset of R”F!. We consider a function f(z) = e fy(z) +efi(z)+ -+ +
enfn(z)+"‘+€1€z"'€,,f12.“,,(2) defined in G, where z=(x(),x1,,..,xm) e G.
We say that a differential operator D of (2.2) is a linearization of the Laplacian
A=t + 9¥axT + - +0%ax3, if and only if any solution of a differential

equation

Df=0 (2.3)
is always a solution of Laplace’s equation

Af=0. (2.4

Remark: If a; =0 for some j, then the differential operator D is not a linearization of
Laplacian A, since Df = 0 but Af # 0 for a function f(xg, X1, ", Xm) = x,?.

3. Main theorem

Let O(m + 1) be the (m+1)~orthogonal group. We need the following two lemmas
which are easily proved.

Lemma 1: Let D be a differential operator of (2.2), A = (ay) be the matrix of B. Then,
the following conditions (1), (2) and (3) are all equivalent.

1) A € O(m+1).
(@) afoy+ ooy = 28,(i,j = 0,1,-- -, m).
(3) (o, aj) = Sij (i, i=01,..., m).

Lemma 2. The functions
fij(xm.xb'“;xm) = (et ag)? x? -2(a7 apuixphad, (1, =0, 1, -, m) are solutions of
the differential equation (2.3), where o; (i =0, 1,-++, m) are coefficients of D.

Theorgm: Let D be a differential operator of {2.2) and A be the matrix of D. Then, the
Jollowing conditions (1),(2) and (3) are all equivalent.

(I) D is a linearization of Laplacian A.
2) A= X0, OeOm+1), (r > 0).
) D*D = A%A, (A > 0). '
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Proof: We first prove that (1) — (2). Let f;; (¢ # j, ij = 0,1, -, m) be the functions iy
Lemma 2. Since we have

Afy =2a7" @) +2,
from Afy = 0 it follows that

(@7'eqP+1=0(#j,5j=0 1--, m). G
From (3.1) and remark in Section 2, we obtain

atatafay =0+, j=0,1,---,m)-

From (3.1), we have |a7! | e | = |a7' | fei | (i 5%, 1,j =0, 1,- -+, m) which implies
la;| = |y | >0 for all 4, j=0,1,---, m. It now easily follows that

alo; + afo; = 0(i #j, 1, j=0, 1, m). (32
Put

A=l | =lay| = - = fan | >0 @3)

Thus, (3.2), (3.3) and Lemma 1 show that A = X0, O & O(m+1), (A >0).

Next, we prove that (2) — (3). By operating D* on the left side of D, from Lemma 1
and condition (2) we have

m
D'D=NA+ 3 (ale+ ate) = A4,
ij =0 ox; 8x;

X
i<y
At last, we prove that (3) — (1). Let f be any solution of Df=0. From condition (3), it
follows that 0=D*Df = A?Af. Thus, D is a linearization of Laplacian A.

Corollary: Let D* be the conjugate differential operator of D and A* be the matrix of D*.
Then, the following conditions are all equivalent.

(I) D is a linearization of Laplacian A.
(2) D* is a linearization of Laplacian A.
(3) A =10, OcO(m+1), (A > 0).

(4) A* =10, OeO(m+1), (A >0).

{5) D*D = XA, (A > 0).

(6) DD* = )24, (A > 0).
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