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In [hi% paper, a new method tor approx:rnaring the step response o i  RC networks is presenlcd. The method is 
useiul ~n VLSJ dcsign, *here it ir important to estimate thc delay introduced hy an interconnecrion network. 
The ]nethod computes an N espment approxmatmn to the step response by approximarmg the Laplace 
transform ol the respome. An important leaturc of this approach is that rhe compurntron time dc~ends  only on 

- . .  . . 
lhatd~stributed KC lines can also he rimulnted. The convergence of the approx~mations to the actual response 
as A'+ .c is e.islly shown hy using Laplace translorn~s. 
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1. Introduction 

Circuit simulation is one of the basic steps in the integrated circuit design process1. The 
increasing con~plexity of VLSI chips requires the development of faster methods for the 
simulation of these circuits. The conventional approach of formulating the network 
equations in the time domain and using standard numerical methods is no longer 
appropriate for circuits of this size. Several special methods, valid for particular classes of 
networks. have been developed2. 

One such class is that formed by R C  networks. An RC network is a good model for an 
interconnection network in a VLSI circuit (fig 1). As device sizes become smaller, the 
delay introduced by such an interconnection network becomes comparable to the delay 
in the device itself. The estimation of this delay is therefore important in order to design 
timing fault-free circuits. 

The delay is taken to be the rise time of the step response of the RC network. The 
approach that has been used previously is to compute the upper and lower bounds on the 
Step response from which bounds on the delay can be computedi-'. The bounds on the 
IteP response are usually single exponential functions. In this paper, a different method 
'"used to compute multi-cxponcnt approximations to the step response. Although these 
approximations are not upper or lower bounds, their convergence to the exact response . . 
'First nresenr~d at +hr  PI^^;..,.^ r,.hilep rnnf..rpn~p nn xu.;fprns mrl ~imsl  P~ocessine held at the Indian Insti- 
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FIG. I. MOS interconnect and its RC model 

implies that the dclay is approximated directly, rather than computing bounds on the 
delay. 

The paper is organised as follows. In section 2, the network equations are formulated 
in the transformed domain. In section 3, we present an algorithm for solving these 
equations and a complete example is given in section 4. Finally, we discuss thc extension 
of this method to include networks with distributed elemehts, and illustrate it with an 
example. 

2. Formulation of equations 

Let v ( t )  = [v,(t), v,(t), . . . v,(t)lrbe the vector of node voltages in the time domain. We 
assume that v,(t) is a step function. Let V(s)  = [ V, (s), VZ(s). . . . , V,>(s)J7 be the vector of 
node voltages in the transform domain, V,(s)  = 11.5. We assume that there is no initial 
charge on the capacitors and also that there arc no current sources in the network. The 
network equations can be formulated in thc transform domain using the admittance 
matrix Y(s) as 

The entries in the matrix Y(s)  are polynomials in s of degree at most 1 ,  if the netwok 
contains only discrete resistances and capacitances. Let V; (s) = .yV (F),  V ; ( s )  = 1. Since 
lim s-0 I/;($) is the final value of v,(r), V;(s) can be expanded :" a power series as 



Consider an N exponent approximation (0 v , ( t )  which satisfies the initial condition and 
denote it by vIa(f).  Thus I;,,(()) = 0. i - 2.3, . . . , #I. Lel V,,(s) be the Laplace transform of 
1.8,,(t). Then .sV,,,(s) is a rational function ot s with numerator o f  degree N -  I and 
,&ominator of degiec N .  This is bcc;~use lini s -. m s C',,,(,s) - v,,,(O) - 0 ,  hence the 
numerator of sV,,,(v) must bc of slnallcr degrcc than thc denon1in;itor. Again V;,(s) 
=JV,,(S) can be expanded in a power scsie:, as 

To con~pute the approximations, we scquirc that c;, = dli for i = 0,1.2,. . . 2N-  I .  There 
ale 2N unknowns in Cr;, , (s)  which can be computed from the 2N values of d,,, 
i =  0,1,. . , 2 N  - 1 .  Theref'orc V;,,(s) is a ( N  - I ,  N) Pad6 approximation to Vj (.Y). Hence 
to compute V;,,(s) wc need to know only the coefficicnts up to the 2N- l th  power of s in 
the power series expansion of V ; ( s ) .  

LN- I 

Let V;(s) be the truncated powcr series 1 c,,sT. a polynomial of degree 2N-  1. 
, = I 1  

Then V;(s) also satisfies thc equation 

Thia follows from the fact that ~ , ~ ( s )  is a polynomial of degree at most 1; therefore in the 
prodllct Y,,(s) V;(s) in equation ( I ) ,  the coefficient of .st depends only on c,, and c , ( i  1) 

~ n d  does not depend on c,, for k>i. Thus to compute V7(s) wc can work with 
3olynomials o l  dcgree 2 N -  I rather than infinite series. The remhining part of the series 
s irrelevant as far as computing V;(s) is concerned. 

We next show that the above method gives a 'good' approximation. Let e,(t) = 
'~(f)-vj,(t)  be the error function. Then Ei(s) = V,(s) - Vj,(s) and E;(s) = V;(s)  - 
';&). Expanding E;(s) in a power series, equations (2) and (3) and the conditions c,, = 
(,,i = O,l . . . . .2N- 1, imply that the coefficient of si is 0 for i = 0,1,. . . ,2N- 1. This 
mans that the coefficient of s' in the power series expansion of.E,(s) is 0 for 

,..., 2N-2. Therefore 

'rom elementary Laplace transform theory. we have 

d i d  ( s )  , - (- f)' e,(t) d f .  
- I@- 



Equations (5) and (6) iinply that the crror funclion z , ( t )  satisfies 

fience as N+ ca, equation (7) implies that tlie error function is orthogonal to all 
polynomial5 and hence is identically 0. For a given value of N ,  equation (7) injplies that 
thc error function is orthogonal to all polynomials of degree iess than 2N - I .  This gives a 
quantirative measure of the irccur;~y oi the approximation. 

For a discrete network with k capacitors, when N = k ,  v,(t) = v,,(t); however, 
computationally this is vcry expensive when k is large. This is usually the case, as in the 
RC models of interconnection networks where every node has a capacitance to ground. 
However, we can obtain good approximations by choosing N to be much smaller than the 
number of nodes. When the network contains distributed elements, no finite value of N 
can give the exact response, but equation (7) implies that the approximations converge to 
the exact response. 

3. The algorithm 

In this section we will briefly describe the algorithms for computing the approximations 
derived in Section 2. The basic equation to be solved is equation 4, 

This is a system of linear equations where the matrix elements and the unknowns are 
polynomials in s. The method used for solving it is the same as that used for solving 
ordinary linear equations, such as Gaussian elimination, except that the apithmetic is 
now performed on polynomials. Let T ( s )  be the inverse of the matrix Y(s). The entries 
in T(s) are rational functions of s. However, since we are not interested in computing 
the actual ifiverse, but only in the truncated power series expansions of the elements of 
T(s), we do not have to work with rational functions. Therefore, when dividing one 
polynomial by another, we expand the quotient in a power series and retain terms only 
up to the 2N-lth degree. We can always do this as long as the constant term in the 
denominator is non-zero. Otherwise pivoting may be used to get the appropriate 
denominator. As long as the resistance network is connected, the matrix is not singular. 
This is guaranteed in the RC models of interconnection networks. 

The next step is to compute the Pad6 approximation I/;',($) from the values of Vj(4  
computed in the first step0. This can be done by using standard methods, and it requires 
only the solution of a small system of linear equations. Finally to compute v,,(t) from 
Vb(s), we expand V;,(s) into partial fractions and use the standard methods of inverting 
Laplace transforms. This gives v,,(t) as a sun, of N exponentials and a constant. .This 
approximation enables us to estimate the delay as the rise time of the step response, 
which may he appropriately defined. 
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usually N = 2  gives a sufkiclltiy good approximation to the stcp response. When 
,y=2,  the computations in step 2 are considcrahly simplified, and most of the 
omputation tirnc la takcn in the first step. This limc depends only on the topology of the 
network and not on the value5 of the elements. Thus if the network is a trec the 
computation time dcpcnds linearly on tht: numhcr of nodes. 'This is in sharp contrast to 
(he case when tilnc domain nlcthods are  used to sin~ulate RC networks. Thc stability 
citeria require that the step sire be smaller than thc smallest time constant in the 
network, whereas the response may bc governed by a much larger time constant. 

4. Example 

In this section we illustrate the method with an example. Consider the network shown in 
fig. 2. This is a stiff circuit as the time constants differ by about two orders of magnitude. 

6 
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Such a circuit poses considel-able difficulty when simulated by a conventional algorithm. 
The step size should be smaller than the smallest tirne constant. but the circuit has to be 
simulated for a Iong time depending on the largest time constant. This simple circuit 
required about 1.5 seconds when simulated by  SPICE^' on a CDC machine. On the 
other hand, we show the simple computations performed by our algorithm with N = 2 ,  
and compare the approximation.with the actual response. In the transform domain the 
network equations can be formulated as 

Divide the second row by 3/10 + 3s and the third row by 6110 + 6s retaining terms up to 
2 to get 



~ d d  3/10 r k e s  of the second row and 6/10 rimes of the third row to the first row to get 

Let v;'(s) = a. + a 1 d l  + bos + b,s2 be a Pa& approximation to V&). 

Then 

a0+als= (1-9is+9O?Ls~-90909ls~)(l +bas+ b,s2) .  

Considering the coefficients of s%nd s3 on both sides, we get 

-909091+9091bo-91bl=0 

which gives bo = 101, b ,  = 100 

and a,,= 1, a, = 10. 

Therefore, V ( I + 10s 
S, = 1 + 101s 4- 100s2 

and V,,(s) = 
( 1  + 10s) 

s(1 + 101s + 100s') 

Expanding in partial fractions 

e-' l,-,e-"l" 
which gives v,,(t) = 1 - -- ---- 

1 1  11 ' 
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A similar calculation gives 

In this case, the actual response also has only two exponentials even though there are 
three capacitors. Hence the computed response is also the actual response. However, if 
we use an approximation with N =  1, we obtain 

and 

v 3 = ( t )  = 1 - e-r'loL 

If we define the delay to be the time required for the response to reach 90% of the final 
value, then for vz(t)  we obtain 

t d =  210 (N= 1). td = 221 with N = 2  

This shows that with N = 1 ,  a good approximation to the step response is obtained. 

4. Conclusions 

We have described a method for approximating the step response of an RC network. 
This has been done for the special case when all the elements in the network are discrete 
and all the capacitors in the network are initially uncharged. However, these restrictions 
can be easily removed. An initial charge on a capacitor can be modelled by a constant 
current source in the transform domain. If the network contains distributed elements, 
the elements of the admittance matrix are no longer polynomials in s, but can be 
expanded in a power series. Again, by retaining terms up to the 2N-lth power of s 
only, the first 2 N  - 1 coefficients in the power series expansion of the Laplace transform 
of the step response can be computed as above. In this case, no finite value of Nwill give 
the exact response, but the approximations will converge to the actual response as 
N - t  m. 

As an illustration, consider a uniformly distributed transmission line of length L, with 
resistance r and capacitance c per unit length (fig. 3). 

C---------- L ------a 
FIG. 3. A transmission line. 
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Assume that there is no initial charge on the line. The network equations in the 
transform domain for this line can be written as 

Suppose Vl(s) = 11s and the line is open circuited at the other end. Then Z2(s) = 0 which 
gives 

Expanding this in a power series and retaining terms up to s3, we get 

Assuming crL2 = 1, then 

The Pad6 approximation to V$(s) can be computed as before, and this gives 

Expanding V&) in partial fractions 
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Therefore 

%us we obtain a better approximation to the step response than would be obtained by 
"sing discrete approximations to the distributed line. 
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