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Signal delay in RC metworks”

A. A. Dwan’

Solid State Electronics Group, Tata Institute of Fundamental Research, Bombay 400 005, India.

Abstract

In this paper, a new method for approximating the step response of RC networks is presented. The method is
useful in VLS] design, where it is important to estimate the delay introduced by an intcreonnection network.
The method computes an N exponent approximation to the step response by approximating the Laplace
transform of the response. An important [eature of this approach is that the computation time depends only on
the topalogy of the network and is independent of the values of the resistances and capacitances in the network.
This is very useful when approximating the step response of stiff networks. Another feature of this approach is
that distributed RC lines can also be simulated. The convergence of the approximations to the actual response

as V> s easily shown by using Laplace transforms.
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L Intreduction

Circuit simulation is one of the basic steps in the integrated circuit design process‘. The
increasing complexity of VLSI chips requires the development of faster methods for the
simulation of these circuits. The conventional approach of formulating the network
equations in the time domain and using standard numerical methods is no longer
appropriate for circuits of this size. Several special methods, valid for particular classes of
networks, have been developed®.

One such class is that formed by RC networks. An RC network is a good model for an
interconnection network in a VLSI circuit (fig 1). As device sizes become smaller, the
delay introduced by such an interconnection network becomes comparable to the delay
i the device itself. The estimation of this delay is therefore important in order to design

timing fault-free circuits.

The delay is taken to be the rise time of the step response of the RC network. The
approach that has been used previously is to compute the upper and lower bounds on the
step response from which bounds on the delay can be computed”*. The bounds on the
step response are usually single exponential functions. In this paper, a different method
s used to compute multi-cxponent approximations to the step response. Although these
approximations are not upper or lower bounds, their convergence to the exact response

*First presented af the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Iosti-

tute of Science, Bangalore, India, during December 11-13, 1986, ) _
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implies that the delay is approximated directly, rather than computing bounds on the
delay.

Fig. 1. MOS interconnect and its RC model.

The paper is organised as follows. In section 2, the network equations are formulated
in the transformed domain. In section 3, we present an algorithm for solving these
equations and a complete example is given in section 4. Finally, we discuss the extension
of this method to include networks with distributed elements, and iliustrate it with an
example.

2. Formulation of equations

Letv(r) = [vi(#), v2(1), . . . v, ()] be the vector of node voltages in the time domain. We
assume that v,(7) is a step function. Let V() ={V(s5), V.(s)..... V,(s)]” be the vector of
node voltages in the transform domain, V,(s) = 1/s. We assume that there is no initial
charge on the capacitors and also that there are no current sources in the network. The
network equations can be formulated in the transform domain using the admittance
matrix Y(s) as

"

> Y@ Vis)=0i=23,....n, )

j=1
or

n
<~

2 Yy GVis))=0i=23,..., n.
1

The e.ntries in the matrix Y(s) are polynomials in s of degree at most 1, if the nemfork
gomams only discrete resistances and capacitances. Let Vi(s)=sV(s), Vi (s)= 1. Since
lim 5s— 0 V/(s) is the final value of v;(1), V](s) can be expanded in a power series as

£

Vo= o @
i=A
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Consider an N exponent approximation to v;(¢) which satisfies the initial condition and
denote it by Vi (). Thus v, (0) = 0,/ = 2.3, ... #. Let V,(s) be the Laplace transform of
vild). Then sV, (s} is @ rational function of s with numerator of degree N—1 and
denominator of degree N. This is because lim s— o 5V,,(s) = v;,(0) =0, hence the
pumerator of §V;,(s) must be of smaller degree than the denominator. Again Vi(s)

=5V,,(s) can be expanded in a power scries as

Vidsy= N dys' 3
’ i 0
To compute the approximations, we require that ¢; = dyy for i=0,1,2,...2N 1. There
are 2N unknowns in V/].(s) which can be computed from the 2N values of d,
i=0,1,...2N = 1. Therefore V/,(s) is a (N~ 1, N) Padé approximation to Vj(s). Hence
to compute V7, (s) we need to know only the coefficients up to the 2N —~1th power of s in
the power series expansion of V] (s).
IN -1
Let V7 (s) be the truncated power series > ¢;s'. a polynomial of degree 2V — 1.
=0

Then V; (s) also satisfies the equation

i Vi) Vi) =0 i=23,..., n €y
ji=1

This follows from the fact that Y,;(s) is a polynomial of degree at most 1; therefore in the
product ¥;;(s) V{(s) in equation (1), the coefficient of s* depends only on ¢;; and ¢;; - 1
and does not depend on ¢,k tor k>i Thus to compute V;(s) we can work with
polynomials of degree 2N — 1 rather than infinite series. The remaining part of the series
§ irrelevant as far as computing V;(s) is concerned.

We next show that the above method gives a ‘good’ approximation. Let e(f) =
{8 ~v;4(2) be the error function. Then E;(s)=V;(s) — Vja(s) and E}(s) = Vi(s) —
/ja(8). Expanding E 7(s) in a power series, equations (2) and (3) and the conditions ¢j; =
li,i=0,1,...,2N~1, imply that the coefficient of s'is 0 for i = 0,1,...,2N~1. This

iy _
neans that the coefficient of s* in the power series expansion of _Ey(s) is 0 for

=0,1,...,2N~2. Therefore
d'/ds' Ef(s)|,=0=0, i=0,1,2,....2N—2. ©)

rom elementary Laplace transform theory, we have

d'lds' Ei(s) | ;0= r (=0 e di. (é)
0
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Equations (5) and (6) imply that the error function e;{f) satisfies
[ defl) di=0i=0,.. . 2N-2. )
0

i

Hence as N— =, equation (7) implies that the error function is orthogonal to 4
polynomials and hence is identically 0. For a given value of N, equation (7) implies that
the error function is orthogonal to alf polynomials of degree less than 2N ~ [ This gives 3
quantitative measure of the accuracy of the approximation.

For a discrete network with & capacitors, when N = k, v;(§) = viult); however,
computationally this is very expensive when k is large. This is usually the case, as in the
RC models of interconnection networks where every node has a capacitance to ground.
However, we can obtain good approximations by choosing N to be much smaller than the
number of nodes. When the network contains distributed elements, no finite value of N
can give the exact response, but equation (7) implies that the approximations converge to
the exact response.

3. The algorithm

In this section we will briefly describe the algorithms for computing the approximations
derived in Section 2. The basic equation to be solved is equation 4,

2 Y@OVi)=0i=23....nVi(s) =1
F=1

This is a system of linear equations where the matrix elements and the unknowns are
polynomials in 5. The method used for solving it is the same as that used for solving
ordinary linear equations, such as Gaussian elimination, except that the arithmetic is
now performed on polynomials. Let Y™ (s) be the inverse of the matrix ¥ (s). The entries
in Y~(s) are rational functions of s. However, since we are not interested in computing
the actual inverse, but only in the truncated power series expansions of the elements of
Y7(s), we do not have to work with rational functions. Therefore, when dividing onc
polynomial by another, we expand the quotient in a power series and retain terms only
up to the 2N~ 1th degree. We can always do this as long as the constant term in the
denominator is non-zero. Otherwise pivoting may be used to get the appropriate
denominator. As long as the resistance network is connected, the matrix is not singular.
This is guaranteed in the RC models of interconnection networks.

The next step is to compute the Padé approximation V}(s) from the values of V;(s)
computed in the first step®. This can be done by using standard raethods, and it requires
only the solution of a small system of linear equations. Finally to compute v;,() from
V}a(s), we expand V}a(5) into partial fractions and use the standard methods of inverting
Laplac§ transforms. This gives v;,(f) as a sum of N exponentials and a constant. This
ap}?rommation enables us to estimate the delay as the rise time of the step response,
which may be appropriately defined.

@
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Usually N=2 gives a sufficiently good approximation to the step response. When
y=2, the computations in step 2 are considerably simplified, and mosi of the
computation time is taken in the first step. This time depends only on the topology of the
network and not on the values of the elements. Thus if the network is a tree the
computation time depends linearly on the number of nodes. This is in sharp contrast to
ihe case when time domain methods are used to simulate RC networks. The stability
criteria require that the step size be smaller than the smallest time constant in the
network, whereas the response may be governed by a much larger time constant.

4. Example

In this section we illustrate the method with an example. Consider the network shown in
fig. 2. This is a stiff circuit as the time constants differ by about two orders of magnitude.

10/6 @

9 w03 L ®
0} 2 =3

:j‘:‘m/s IB

Fic. 2. A stiff RC network.

Such a circuit poses considerable difficulty when simulated by a conventional algorithm.
The step size should be smaller than the smallest time constant, but the circuit has to be
simulated for a fong time depending on the largest time constant. This simple circuit
required about 1.5 seconds when simulated by SPICE2’ on a CDC machine. On the
other hand, we show the simple computations performed by our algorithm with ¥=2,
and compare the approximation with the actual response. In the transform domain the

uetwork equations can be formulated as

91/90 + 10/9s ~3/10 ~6/10 Vils) 9
-3/10 3/10 + 3s 0 Vi(s) = 0
—6/10 [ 6/10 + 65 Vils) 0

Divide the second row by 3/10 + 3s and the third row by 6/10 + 65 retaining terms up to
§° to get

91/90 + 105/9 —3/10  —6/10] [Vi(s) 1/9
—1+ 105 — 100s* + 100053 1 0 i) = | 0§
0 1 Vils) 0

-1+ 105 — 100s? + 1000s°
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Add 3/10 times of the second row and 6/10 times of the third row to the first row to get

1/6 + 915/9 — 9057 + 900s° 0 ol  Tvs)l 19
—1 + 105 — 100s? + 1000s° 1 0 el o= o
—1+ 10s— 100s* + 1000s* 0 1 Vi(s) 0

This gives Vi(s) = 1/(1 + 91s— 8105 + 8100s°)
=1-91s + 9091s% — 909091s°.

V(s) = Vi(s) = 1 — 1015 -+ 10101s% - 16101015,
Let V4,(s)=ao+a;s/t1 + bes+b,5* be a Padé approximation to Vi),

Then
g+ ay5 = (1—91s + 90915 — 90909153y (1 + bos-+ by s?).
Considering the coefficients of s* and s> on both sides, we get
9091 ~91by+ b, =0

—909091 + 9091 —91b,; =0
which gives by =101, b, =100

and ay=1, a;=10.

1+ 10s
Therefore, V3,(8) = — e
%) =T g1+ 100w
and V,,(s) :.ﬁ.@ﬂ_ﬁ.,
s(1+101s + 100s%)

Expanding in partial fractions

1 1 10
Vas E il —
2l8) =3 UG+l T{s+1/100)

—t ~1/100
which gives vy, (i) = 1— & 10¢
e N THT!
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A similar calculation gives

e 1008—1/1()0
Vag(t) = vaa() =1+ 3T o

In this case, the actual response also has only two exponentials even though there are
three capacitors. Hence the computed response is also the actual response. However, if
we use an approximation with N=1, we obtain

Vi) = 1=

and

Vialt) = 1= €0

If we define the delay to be the time required for the response to reach 90% of the final
value, then for v,(f) we obtain

t;=210 (N=1), t;,=221 with N=2.

This shows that with N =1, a good approximation to the step response is obtained.

4. Conclusions

We have described a method for approximating the step response of an RC network.
This has been done for the special case when all the elements in the network are discrete
and all the capacitors in the network are initially uncharged. However, these restrictions
can be easily removed. An initial charge on a capacitor can be modelled by a constant
current source in the transform domain. If the network contains distributed elements,
the elements of the admittance matrix are no longer polynomials in s, but can be
expanded in a power series. Again, by retaining terms up to the 2N —1th power of s
only, the first 2V — 1 coefficients in the power series expansion of the Laplace transform
of the step response can be computed as above. In this case, no finite value of N will give
the exact response, but the approximations will converge to the actual response as

N-> o,

Ag an illustration, consider a uniformly distributed transmission line of length L, with
resistance r and capacitance ¢ per unit length (fig. 3).

Vils) Iq(s) I5(s} Vals)
eI A
— L —>

Fo. 3. A transmission line.
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Assume that there is no initial charge on the line. The network equations in the
transform domain for this line can be written as

I (s) /ff coth Vscr L - ,frf cosech Viscr L| | Vi(s)
I,(s) - /%cosech Vscr L /s—:coth Vser L Vo(s)

Suppose V1 (s) = 1/s and the line is open circuited at the other end. Then I;(s) = 0 which
gives

1

Vi(s) =sVals) = ————.
2 24s) cosh Vscr L

Expanding this in a power series and retaining terms up to 5%, we get

serL? + 58%c3rP LY 6157 7L

Vi) =1-=; 74 730

Assuming ¢rL?=1, then

con_a 8 55 615’
V=13t T

The Padé approximation to V5(s) can be computed as before, and this gives

120 ~ 45
Vhe(s) = —
2= P S6s 732
Vauls) = 120 — 4s

5(120 + 565 + 35%)

Expanding V,(s) in partial fractions

. 0.277
Vaals) =1 L2717 0277
R Y AR TR TY
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Therefore

Vaalt) =1~ 1.277¢ 72974 0,277 16,

Thus we obtain a better approximation to the step response than would be obtained by
using discrete approximations to the distributed line.
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