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Abstract

A new approach to the generat problem of signal parameter estimation is described. Though the technique
(ESPRIT) is discussed in the context of direction-of-arrival estimation, it can be applied to a.wide variety of
problems including spectral estimation. ESPRIT exploits an underlying rotational invariance among signal
subspaces induced by an array of sensors with a translational invariance structuse (e.g., pairwise matched and
co-directional antenna element doublets) and has several ad ges over earlier such as MUSIC
including improved performance, reduced computational load, freedom from array characterization/
calibration, and reduced sensitivity to array perturbations. Results of computer simulations carried out to

evaluate the new algorithm arc presented.
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1. Introduction

High-resolution parameter estimation is important in many applications including
direction-finding (DF) sensor systems. Many methods have been proposed such as the
maximum likelihood (ML) method of Capon, the maximum entropy (ME) method of
Burg, and conventional (delay-and-sum) beamforming. These methods have been over-
shadowed recently by the signal subspace method (MUSIC) developed by Schmidt!.
Among all the methods proposed to date, only MUSIC is known to yield unbiased and
efficient estimates as the amount of information (i.e., the amount of data or the
signal-to-noise ratio (SNR) increases without bound, though practically the amount gf
residual bias in most algorithms becomes insignificant as the information-to-noise ratio
(INR) becomes large (cf. ref. 2 for extensive simulation results).

The MUSIC algorithm derives its properties from exploitation of the underlying data
model of finite (low) rank signals (¢.g. , spatially coherent wavefronts) in additive noise, a
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situation typical in many sensor-atray environments. The MUSIC algorithm firg
determines the sigial subspace from the array measurements. Intersections between the
estimated signal subspace and the array manifold (the set of all possible array responses
as functions of the parameter(s) to be estimated) are then sought. This search is typically
carried out by computing a weighted norm (Hermitian form) using the direction vectors
for each angle of interest and a kernel obtained from the noise eigen vectors of the data
covariance matrix. Essentially the same computation also underlies the earlier methods
(¢f. ML, ME) with the only difference being in the choice of norms (kernels).

In this paper, a new approach (ESPRIT) to the signal parameter estimation problem is
described™®. ESPRIT is similar to MUSIC in that it correctly exploits the under-
lying data model, while manifesting significant advantages over MUSIC. Moreover,
ESPRIT does not require detailed knowledge of the array geometry and element
characteristics as do other techniques, eliminating the need to calibrate the array
thereby eliminating the need for the associated storage of the array manifold. ESPRITis
also computationally much less complex because it does not employ the search procedure
inherent in other algorithms, and it manifests improved performance over the MUSIC
algorithm in terms of bias and resolution. ESPRIT is also less sensitive to errors in sensor
positions (array geometry), and in sensor gains /phases than the MUSIC algorithm, and
provides a simple solution to the signal copy problem, where the objective is to extracta
patticular signal of interest while rejecting all others. Finally, ESPRIT can simultaneous-
ly estimate the number of sources and the parameters (e.g., DOAs), unlike MUSIC
where an estimate of the number of sources present is required before source parameter
estimates can be obtained. However, in MUSIC there are essentially no restrictions on
the array manifold, other than the design requirement to eliminate ambiguities, whereas
ESPRIT requires the array manifold to possess a displacement invariance. It is precisely
this symmetry/invariance which leads to the simple solution provided by ESPRIT,
though in this sense ESPRIT is not completely general.
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Fre. 1. Sensor-array geometry for multiple source
DOA estimation using ESPRIT.
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3, Problem formulation

The basic problem under consideration is that of estimation of parameters of finite
dimensional signal processes given measurements from an array of sensors. This general
problem appears in many different fields including radio astronomy, geophysics, sonar
signal processing, electronic surveillance, structural (vibration) analysis, and spectral
analysis. In order to simplify the description of the basic ideas behind ESPRIT, the
ensuing discussion is couched in terms of the problem of multiple source one-
dimensional DOA estimation of narrow-band emitters from data collected by an array of
SENSors.

Consider a planar array of arbitrary geometry composed of m marched sensor doubiets
whose elements are translationally separated by a known constant displacement vector
(fig. 1). The element characteristics such as element gain and phase pattern, polarization
sensitivity, etc., may be arbitrary for each doublet as long as the elements are pairwise
identical. Assume there are d < m narrow-band stationary zero-mean sources centered
at frequency oy, and located sufficiently far from the array such that in homogeneous
isotropic transmission media, the wavefronts impinging on the array are planar. Additive
noise is present at all the 2w sensors and is assumed to be a statjonary zero-mean random
process that is uncorrelated from sensor to sensor.

To exploit the translational invariance property of the sensor array. consider the array
as being comprised of two identical subarrays. X and Y, displaced from each other by a
known displacement vector. The signals received at the /th doublet can then be expressed
as:

sx(t)a;(0,) +n (1), 1)

Vil = X si(n)el e a6,) + i (0):

where 5,(-) is the kth signal (wavetront) as received at sensor [ of the X subarray, 8y is
the DOA of the kth source relative to A (the displacement vector between the two
arrays). a,(#,) is the response of the ith sensor of either subarray relative to its response
atsensor 1 of the same subarray when a single wavefront impinges at an angle 6. cis the
speed of propagation in the transmission medium, and r,(-) and 1,,(-) are the additive
noises at the elements in the ith doublet for subarrays X and Y respectively.

Combining the outputs of cach of the sensors in the two subarrays, the received data
vectors can be written as follows:

x(6) = As(1) + n, (1), y(r) = ADs(#) + n.(1):

where x7(r) = [x, (D)en X (D], and y(r), m,(r) and m (1) are similarly defined. The vector
¥ nce sensor of

s(1} is a d-vector of impinging signals (wavefronts) as obsery ed at the refere
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subarray X. The mxd matrix A is the direction marix whose columns {a(g,),
k=1.....d} are the signal direciion vectors for the d wavefronts. The matrix ® i 5
diagonal d X d matrix of the phasc delays. dy = wydsing /e, between the doublet sensors
for the d wavefronts.

Defining the data received from the entire array as z(¢) = [x7().y ()] 7 and assurming
z(r) is zero mean, the auto-covariance of the data is R.. = Elz(0z* (] = C,, + o3,
where o3 is the noise covariance,

o o[ G Cu]_[ASAT  AsdEar .
[Cvr Cyv }vIA‘l’SA* ADShrA* | Q)

and §=E[s(n)s*(7)]. assumed to be nonsingular. Now the problem can be stated ag
follows: Given measurements 2(t) and meking no asswmptions about the array geomerry,
element characterisics, DOAs, noise powers, or the signal (wavefront) correlation,
estimate the signal DOAs.

3. Invariant subspace approach

The basic idea behind the new technique is to exploit the rotational invariance of the
underlying signal subspaces induced by the translational invariance of the sensor array.
The algebraic details behind this geometric interpretation of the ESPRIT algorithm are
embodicd in the following theorem.

Theorem (ESPRIT): Detine I as the generalized eigenvalue mairix associated with the
matrix pencil {C,,, C,.}. For nonsingular 8, the matrices ® and 1" are reluted by:

P 0
F‘[o ()] (4)

to within a permutation of the elements of ®.

Proof: Using the definitions of C. = ASA* and €, = AS®*A*, the matrix pencii can
be written as follows:

CoimyC,y =ASA” ~yASD*A* = AS(1— yD*)A*, 5)

By inspection, the column space of both ASA* and ASd*A* are identical, and in
gencral p(ASA*)-yAS®*A*) =d where p(-) denotes rank. However. when y=%
=¥ the ith row of (I~y,d*) is zero, and p(I—y,&*) = d—1. Consequently, the
pencil C,.—yC,, decreases in rank to d~1. By definition. thesc are the generulized
eigenvalues (GEs) of the matrix pair {C,,, C,,}. Since both matrices span the same
subspace, the common null space GEs are zero by definition. Thus. d GEs lie on the unit
circle and are equal to the diagonal elements of ®, and the remaining m —d GEs ar¢ at
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the origin. Once @ is known, the DOAs can be calculated using 8, = arcsin {cp/wgA},
and the proof of the theorem is complete.

In order to obtain {Cy., Cy.}, i.e., C.., from the data covariance R, and knowledge
of the normalized noise covariance £, the noise power o must be calculated. Defining
i=[A7, (AD)", R, = ABA* +0Z. From linear algebra, p(ASA*) = min(p(A),
o(8)). Assuming there are no array ambigui_ties_, the columns of A are linearly indepen-
dent; hence p(A) = d. Since p(S) = d. p(ASA*) = d. Thus, det(ASA*) = det(R,.—
72} = 0. This equation is only satisfied it o is the minimum eigenvalue Ay, of R, in
the metric £, i.e., the minimum generalized eigenvalue of the matrix pair {R.,,X}, since
ASA* is Hermitian and therefore non-negative definite. Consequently, ASA* = R,. —~
hun = Note that there will be m — d minimum generalized eigenvalues, all equal to o2

since p(ASA*) = d.

3.1 Signal copy

Signal copy refers to the weighted combination of sensor measurements such that the
single output contains the desired signal while completely rejecting the other d-1 signals.
ESPRIT provides an clegant solution to the problem of estimating the optimal signal
copy weight vector. Let ¢, be the generalized eigenvector (GEV) corresponding to the
GE vy, By definition:

AS(I—y,P%)A%e;=0. (6)

Since the column space of AS(I~y;®*)A* is sume as the subspace spanned by the vectors
{ajj#i}. it follows that ¢; is orthogonal to all direction vectors except a;". Thus, e; is
(proportional to) the desired weight vector for signal copy of the ith signal, rejecting
signals from the remaining d - 1 directions;

s %)

witxe,
Note that this is the oprimal capy vector in the sense defined above even when the signals
are correlated.

4. Subspace rotation algorithm

The ESPRIT theorem is based on knowledge of R.., a covariance matrix which in
practice is not known, and which must be estimated. Due to errors in estimating ‘R:;,
from finite data as well as errors introduced during the subsequent finite precision
computations, the relations in the ESPRIT theorem will not be satisfied exact}y. A
procedure which is not globally optimal, but which utilizes some well-established,
stepwise-optimal techniques to deal with such issues is outlined.

The key steps of the covariance matrix formulation of ESPRIT are:

L. Find the 2m x 2m sample covariance matrix R.. of the c_ompletg 2m sensor array,
then estimate the number of sources & and the noise variance o~ a{s the gumber of
minimum repeated generalized cigenvalues of the matrix pair (R.:.Z}.

‘For convenience in the ensuing derivations. the shorthand notation a(8;) = a, is adopted.
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ESPRIT Monte Carlo Resus - Source Separation 0.16 BW
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FiG. 2. ESPRIT GEs for A=6X.

2. Compute a rank d approximation to R..-5°%, denoting the resuit C,..
3. Use the d generalized eigenvalues (GEs) of the matrix pair {C,U,C,,_v,} and/or
{C,..C,,} that lie closest to the unit circle to estimate ®.
The rank d approximation to R., ~ o*3 is obtained using spectral decomposition, Le.,
L :~:>-i’i:1 (A, — G1)éeF. where {e,es....,¢, ) are the ordered eigenvectors of
R.. - &3,

(@]

5. Simulation results

Simulations were carried out to investigate the comparative performance of the ESPRIT
and MUSIC algorithms under similar conditions. The MUSIC algorithm was chosen as
the benchmark due to its superior bias, error variance and resolution performance as
compared to the more traditional methods (MLM, MEM, AAR, etc.). Two scenarios
were used in this analysis in order to investigate the relative performance of ESPRIT and
MUSIC; one in which the standard MUSIC specrrum fails to resolve the two sources
present, and one in which it resolves the two sources with high probability.

The first scenario consisted of two planar wavefronts impinging on a 12-element array
consisting of two six-element uniform ( A/2) linear subarrays which for convenience were
assumed to be collinear and separated by A=6A. Two planar uncorrelated signal
wavefronts impinged on the array at angles of 26 and 27°, with SNRs of 20 and 15 dB
relative to the additive noise. Covariance estimates were computed from 100 snapshots
of data, and 100 trials were run using independent data sets. Figure 2 shows the ESPRIT
results. The two sources 1° apart* are easily resolved. The sample means and sigmas of

*For A=6M, BW3,5=6, and 56=0.16BW.
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the ESPRIT estimates of sin(8) were (0.4381 +0.0011, 0.4540 % 0.0021) which compare
favorably with the actual values (0.4384, 0.4540}. Note that the ESPRIT algorithm did
not require knowledge of the array geometry, nor did it exploit-the uniform linear
structare of the subarrays. Figure 3 contains MUSIC spectral estimates obtained using
the sample covariances from the first 20 trials. In all cases, the number of sources was
assumed known (d = 2), and the signal and noise subspaces estimated appropriately. The
conventional MUSIC spectrum is given by P(8)=[a*(¢#)E,E*a(¢}] ', where E,
denotes the estimated noise subspace. In a majority of the trials, two spectral peaks were
not resofvable in the scarch region [25°,28°].

To investigate the relative performance of ESPRIT and MUSIC in a situation where
MUSIC is clearly able to resolve the sources, the scenario was changed. An
cight-clement uniform Knear array with A/4 spacing** was used. Two sources with SNRs
of 20 dB each referenced to the additive noise were located at 24 and 28°, and 5000
Monte Carlo trials were run. A histogram of the ESPRIT results (using overlapping
seven-element subarrays) is shown in fig. 4. The sample means and sigmas of the
resulting angle estimates are (23.99° % 0.30°, 28.01°+0.27°). Gaussian curves with these
means and variances are also included in fig. 4. The ESPRIT estimates are clearly

MUSIC Monte Carlo Results - Source Separation 0.16 BW
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FiG. 3. MUSIC spectra for A = 6A.

*"For this cight-element array steered 10 26°, BWigp = 30°.
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unbiased. The corresponding results for the MUSIC algorithm are given in fig. 5, Tpe
sample means and sigmas arc (24,157 0.30°,27.86° £ 0.27°). A significant bigs of
approximately one-half sigma is manifest in the MUSIC results. However, both ESPRIT
and MUSIC have the same varjance.

Preliminary comparisons of the sensitivity of ESPRIT and MUSIC to errors in sensor
position, gain and phase have also been made. In these simulations, the nominal array
structure had the desired £SPRIT displacement structure though no information other
than the nominal displacement vector was used by the algorithm. On the other hand,
MUSIC had a complete characterization (array manifold) of the nominal array. Sensor
positions, phases and gains were perturbed randomly N (4, %) in each trial and data from
the perturbed array used to obtain DOA cstimates. The nominal scenario was the same
as the previous case with two sources (20dB SNR) at 24 and 28°. The sigmas for the
relative position, gain, and phase errors were 0.01A, 0. 1d B, and 2° respectively and 5000
independent trials were run. The conventional MUSIC spectrum proved incapable of
resolving the sources in 4)% of the trials making a direct comparison of ESPRIT and
MUSIC resuits untenable. However, the ESPRIT results (with no failures by definition)
were unbiased with a sigma of 0.7°

Overlapping ESPRIT Monte Carlo Results - Source Separation 0.12 BW

00— v " "
ULA(M4)
A= (M4)
500(- m=8

d=2
SNR = (20,20)dB

= 400% 100 points/trial

e 5000 trials

o0

(5]

o

é 300+~

£

2

2

T 200

100+
o ‘
22 26
DOA (deg)

Fi. 4. Overlapping covariance ESPRIT results.
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MUSIC Monte Carlo Results - Source Separation 0,12 BW
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Fii. 5. Hlistogram of MUSIC resalts.

6. Concluding remarks

In this paper, a new approach to signal parameter estimation using data received by an
array having a translational invariance structure has been described. 'th methgd shoys
considerable promise and has significant advantages over previous algorithms xqclu<l}ng
improved performance, reduced computational load. indifference to array ca_hbratxon
(thus eliminating the associated storage) and lower sensitivity to array perlurbat!ops. Eor
example. with a 2(-element array covering an arc of 2 radians with a one milliradian
resolution in both azimuth and elevation, ESPRIT has a computational advantage on th;
order of 10° over MUSIC. Furthermore, while MUSIC needs abc_)ur 20 megabytes of
storage for the array manifold (using 16-bit words), ESPRIT rqulreg no storage. The
fact that array calibration is not necessary is very attractive in applications such as spacc
antennas, sonohuoys, etc., where the array gecometry may _m)t be anWn and irna_y bf;
slowly varying with time. In addition, ESPRIT provides a simple Sf)lutlon to _[hc, Sl%;;i
copy problem. Thus, the new technique has the potential to make hlgh-resolunm} D

estimation, signal copy, etc., feasible in the sense of making it simpler and cheaper to

implement in many applications.
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Note added in proof

Since the submission of the paper, the ESPRIT algorithm has been improved and
is now patented too”.
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