
P. K. BIIAKATIIAN? 
Department of Electricid and Computer Engineering. Unwersity of West Indies. St. Augustine. Trinidad. 

Ahstract 

Nonzcm-wm dillcrcnritil game\ ;Ire primmiy concerned with control situ.rtionr evolving over time and are 
es\entially competitive In nature ch;!r;ictcn~ed hy diffeicnti;li equ:ltions. whcrc there arc N players, each one 
extremizing h ~ s  indiv~duel payolf function. the dyn;imic situation heing common to all. The ?hsh cquilibrnm 
Wtcgy olfcrs the mast w u r e  solut~on, hcc;lusc. any player is hound to lose by unilaterally deviating irom hls 
Naah control. ;issunling that othur plt~yel.; hold last In rheu re\pcctivc Nash controls 

Kej wards: Optimel control. dilCcrcntial 8:imes. 

1. Introduction 

Pursuit-evasion problems usually encountered in military applications fall in the category 
of two-person zero-sum differential game, since one player gains only at the expense of 
the other, their interests being exactly conflicting. This situation may be considered as a 
particular case of a more general differential game formulation, where there are N 
players, each one minimising his own individual cost. the dynamic system being common 
to all. Clearly, there are as many pay-off functions as there are players and the cost 
associated with any one player, may, in general, be influenced by not only his individual 
control and the common state vector but also by the controls of other players as well. 
Moreover, the sum of all the players' costs is neither zero, nor a constant. The control 
situation is otherwise known as a nonzero-sum differential game1.'. 

A general, nonzero-sum, N-player differential game may be described as foll0ws: 
Given a dynamic system characterized by a vector differential equation, 
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where x is the n-vector state. fiere it is ;lko ;lssumcd that the initial state xo and the 
terminal time I, are fixed and known. .v(i,.) is free and there are no constraints on the 
control vectors u, ,. . . i 1 ~ .  

In order to solve the above control sitwtion, it is necessary for one to demand that the 
solution has some attribute such as minimas, Nash equilibrium, stability agaikt 
coalition, Pareto optimality and so on. Also. one must specify what information is 
available to each player during thc course of the game. Here, only the Nash equilibrium 
strategy is considered, assuming that e;rch player knows the current value of the state 
vector as well as all system parameters and cost funci.ions. but he does not know the 
strategies of the other players. It J ,  (14,. ... ~i ,,,), . . . ,JN(li  , .  . . .i(v) arc cost functions for 
players I , .  .. .N, then the strategy set (ii :,. . .,u,;) is a Navh equilibrium strategy set if, for 
i =  I ,  .... N ,  

Thus, Nash equilibrium strategy offers the most secure solution since no player can 
achieve a better result by unilaterally deviating from his Nash equilibrium control 
provided other players are assumed to hold fast to their respective Nash controls. 

It is easily s e e 2  that the 0ptim;rl control prohlem and the two-person zero-sum 
differential game are only particular cases of thc general problem posed above. When 
there is only one player ( N  = I ) ,  it is the optimal control problem. The number ofplayers 
being limited to two (N = 2), the problem becomes a two-person zero-sum differential 
game, if the players have entirely conflicting interests (.I, = - j l ) .  Also, in this case, the 
familiar saddle point solution is none other than the N;~sh equilibrium strategy Set. 

In this paper, the specific optimal control approach using time-invariant-feedback 
gains and integral-state feedbackJ-", is extended to study the Nash equilibrium strategies 
for nonzero-sum differential games. The open-loop, closed-loop and suboptimal 
strategies are considered for the general case. A scalar csample7 is worked out for 
numerical results. 

2. Open-loop and closed-loop Nash control 

The open-loop and closed-loop Nash controls are, in general, different for a 
nonzero-sum differential game even under deterministic conditions'. This is clearly 
against the common notion in respect of optimal control problems and zero-sum 
differential games that the two solutions are just different ways of describing the same 
outcome. This is not true for nonzero-sum differential games, the actual solution itself 
depending on which type of solution is sought at the outset. Whichever type of Nash 
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is rcqmired. one could, in principle. solve for the Nash strakgics in rcspect of all 
the players in advance if there are no unpredictablc inputs to the system. The principle of 
optimalily hold?, and thc open-loop and closed-Loop strategies for any one player are the 
same. provided the naturc of strategies of the other players are fixed and, in particular 
>vhether they are going to he open-loop or closed loop. 

The neccssary conditions in respect of open-loop, closed-loop and suboptimal feed- 
back solutions are given below. 

Consider the dynamic system (1.1) and the cost (1.2). If the i th player is to choose his 
open-loop control u,(t) satisfying the Nash equilibrium condition (1.31, a variational 
approach may he used to obtain the following necessary conditions, which hold only if all 
the controls are essentially open loop. 
For i = 1. ..., N .  

where the Hamiltonian H ,  is given as 

One may note that thc ;th player ,ctuaIIy solves an optimal-control problem. I-lence, the 
Prlrlclple of optimality llolds and open-loop and closed-loilp solutions are the same. But. 
this is made possiblc only becauac, at the outset ~t is known that other players are going 
to use only open-loop Nash controls. 

If a closed-loop Nash control u,(r,r) is mught at ihc outset for the player i, when the 
0 t h  playcrs arc assu1ncd to use theit respective cl,~sed-loop Nash conlrols. it is known 
that Wpntion (2.2)  is replaced by: 



Consider again the dynamic system (1.1) and the cost (1.2). Let the suboptimal feedback 
control for the ith player be specified in the beginning itself as 

where only the constant feedback gain vector p ,  is to be chosen in an optimal way. The 
Nash equilibrium condition (1.1) may be rewritten as, for i = 1 ,. . . , N ,  

The ith player solves his optimal control problem resulting in a feedback solution. 
Following the basic results" the necessary conditions may be easily given as, for 

where the Hamiltonian H, is given by: 
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~ h , , ~ .  for 3 nonzero-sum dil'ferential game. when the players are assumed to use 
suboptimsi strategies ( 2 . 6 ) .  the Open-loop and closed-loop solutions are the same. the 
suboptimal solution being csscntlally a feedback solution 

 hi' gencr;~l result\ of Section 2 may be particulariied for the himple and common case 
ofthe two-pla)er. nonzero-sum, linear quadratic tliffcrential game. The extension. being 
ohvillus and \trai~littorward. is n o t  repeated here. 

3. Numerical example 

A scalar two-playcr. linear quadratic, nonzero-sum differential game is worked to study 
tlie open-loop, closed-loop and the suboptimal strategies. The example is taken from 
Simaan and Cruz' where the open-loop Nash solutio~l has hcen obtained as a function of 
m e  explicitly. 

Consider the scalac example of a linear lime-invariant dynamic system 

and the quadratic costs for the two playcrs 

'The following truly optimal and suboptimal Nash equilibrium strategies are considered 
for illustration. 

(i) Open-loop strategies 
(ii) Closed-loop strategies 

(iii) Proportional suboptimal strategies 

U I  = n,x .u ,  = uzx 

(iv) Proportional plus integral suboptmal strategies 



Following the  developincnrs of section 2.1 through 7.j.  necessary conditions are 
obtained in respect of aii the four pairs of s r r ; i t c g i c s  given ahove and these equations are 

using a digital cornputcr. 'The nunlcricai results arc given in Table I. For all the 
four cases, i f , ,  u: and .r are shown in figs 1-3 rcspec:iveiy. 

It is obvious that case (i), being an open-loop situation, is distinctly different from the 
rest of  the feedback control situations. l'hc addition of integral feedback to the 
proportional control generally brings the solutions closer to the truly optimal closed-loop 
solution. The off-line computation of the lime-invariant suiloptirnal feedback control 
parameters and the ease of implamcntation o f  the suboptilnal strategies on-line are, of 
course, added advantages. Cases (ii)-(iv), being all feedback solutions, the correspond- 
ing minimum costs in respect of  playcrs 11 I and r 1 2  may he compared in Table I for the 
three cases. One may note that the minimum costs arc less for player u ,  for suboptimal 
control compared to the unconstraincd case. Thus, it appears that a suboptimal feedback 
scheme is advantageous to player 11, compared t o  the optinlai case provided the other 
player also is adopting it similar suboptimal scheme. Naturally, this can lead to 
persuasion to his advantage on the part of 11, to have constrained controls for both 
players instead of a free choice of controls. The condition under which a suboptimal 

Table I 
Computer results for the numerical example 

Care Conrml Opt imd p a r a m e l m  Minimum u ~ s t h  

(i) Open-loop J , = 0.2633 
J 3  = U.5646 

(ii) Closed-loop 

(iii) Proportional 

U ,  = a,x a,  = - 2.0293 j ,  = 0.3102 
u2 = a2x a, = 1.2087 J2  = 0.6087 

(iv) Proportional r i ,  = -.1.U3OX 
pluv integral b,  = -0.5353 
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FIG. 1. Controls U ,  (I). FIG. 2. Controls u2(t) 

policy can be advantageous compared to the unconstrained one for any one player may 
be obtained at least for the two-player linear quadratic case in terms of the sign 
definiteness of an 'advantageous matrix'. However, this is not discussed here. 

F!G. 3. Stare trajectories. 



Open-loop and closed-loop and suboptimal feedback Nash equilibrium strategies ar 
examined for nonzero-sum differential games. Open-loop and closed-loop strategies ar 
quite different and give rise to different response trajectories. 

The introduction of integraI state feedback generally brings the suboptimal feedbat 
solution closer to the unconstrained case. Also, it is possible that suboptimal constraine, 
strategies may be advantageous to certain players compared to pure strategies. Othe 
asoects such as mixed slratcgiesh, cooperation, etc., are not examined in the presen 
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