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On suboptimal feedback Nash controls for nonzero-sum
differential games*
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Abstract
Nonzero-sum differential games arc primarily concerned with control situations evolving over time and are
essentially competitive in nature characterized by differential equations, where there are N players, each one
extremizing his individual payoff function, the dynamic situation being common to all. The Nash equilibrium
strategy offers the most sccure solution, hecause, any player is bound to lose by unilaterally deviating from his
Nash control, assuming that other players hold fast to their respective Nash controls.
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1. Introduction

Pursuit-evasion problems usually encountered in military applications fall in the category
of two-person zero-sum differential game, since one player gains only at the expense of
the other, their interests being exactly conflicting. This situation may be considered as a
particular case of a more general differential game formulation, where there are N
players, each one minimising his own individual cost, the dynamic system being common
to all. Clearly, there are as many pay-off functions as there are players a.nq the cost
associated with any one player, may, in general, be influenced by not only his individual
control and the common state vector but also by the controls of other players as well.
Moreover, the sum of all the players' costs is neither zero, nor a constant. The control
situation is otherwise known as a nonzero-sum differential game':>.

A general, nonzero-sum, N-player differential game may t?e descrit;ed as follows:
Given a dynamic system characterized by a vector differential equation,
(L1

X=flxay,. . unt)x(ty) = x.
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For i=1,...,N, player / wishes to choose his control «, to minimise the cogt

Ji= Kilxli)) + JVL,(.\\IU‘.M Y,

fo

(12

where x is the n-vector state. Here it is also assumed that the initial state x, and the
terminal time ¢, are fixed and known, x(1;) is free and there are no constraints on the
control vectors u....y.

In order to solve the above control situation, it is necessary for one to demand that the
solution has some attribute such as minimax, Nash equilibrium, stability against
coalition, Parcto optimality and so on. Also. one must specify what information i
available to each player during the course of the game. Here, only the Nash equilibrium
strategy is considered, assuming that cach player knows the current value of the state
vector as well as all system parameters and cost functions, but he does not know the
strategies of the other players. If J,(u,....1en).... (1) ... n) are cost functions for
players 1,....N, then the strategy set (uf,...,u%) is a Nash cquilibrium strategy set if, for
i=1,....N,

Joutouf)y = Ll oaefoa, w uly g, ui). (1.3)

Thus, Nash equilibrium strategy offers the most secure solution since no player can
achieve a better result by unilaterally deviating from his Nash equilibrium control
provided other players are assumed to hold fast to their respective Nash controls.

It is easily seen® that the optimal control problem and the two-person zero-sum
differential game are only particular cases of the general problem posed above. When
there is only one player (N = 1), itis the optimal control problem. The number of players
being limited to two (N =2), the problem becomes a two-person zero-sum ditferential
game, if the players have entirely conflicting interests (J, = ~J). Also, in this case, the
familiar saddle point solution is none other than the Nash equilibrium strategy set.

In this paper, the specific optimal control approach using time-invariant-feedback
gains and integral-state feedback*™®, is extended to study the Nash equilibrium strategies
for nonzero-sum differential games, The open-loop, closed-loop and suboptimal

strategies are considered for the general case. A scalar cxample’ is worked out for
numerical results.

2. Open-loop and closed-loop Nash control

The open-loop and closed-loop Nash controls are, in general. different for a
nonzero-sum differential game even under deterministic conditions. This is clearly
against the common notion in respect of optimal control problems and zero-sum
differential games that the two solutions are just different ways of describing the same
outcomg. This is not true for nonzero-sum differential games, the actual solution itself
depending on which type of solution is sought at the outset. Whichever type of Nash
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solution is required, one could, in principle. solve for the Nash strategics in respect of all
the players in advance if there are no unpredictable inputs to the system. The principle of
aptimality holds, and the open-loop and closed-loop strategies for any one player are the
same, provided the nature of strategies of the other players are tixed and, in particutar
whether they are going to be open-loop or closed loop.

The necessary conditions in respect of open-loop, closed-loop and suboptimal feed-
back solutions are given below.

21 Open-loop solution

Consider the dynamic system (1.1) and the cost (1.2). If the ith player is to choose his
open-loop control u;(r) satisfying the Nash equilibrium condition (1.3}, a variational
approach may be used to obtain the following necessary conditions, which hold only if all
the controls are essentially open loop.

Fori=1, ....N,
X = fl wy,un 1) x(ty) = xo eA)
. aH, IK(x{tr)
A= DA = 2.2

dx () ax(tp) @2

o, 0 (2.3)
du;

where the Hamiltonian H; is given as
(e ity ALY = Ly (6t tinn 1) FAF (X 8y T) 2.4)

One may note that the ith player actually solves an optimal-control problem. Hence, the
principle of optimality holds and open-loop and closed-loop sojutions are the same. But.
this is made possible only because, at the outset it is known that other players are going

to use only open-loop -Nash controls.

22 Closed-loop solution

If 2 closed-loop Nash control u;(x,r) is sought at the outset for the player 1", \fvhen the
other players are assumed to use their respective closed-loop Nash controls, it is known
that equation (2.2) is replaced by:

. N . N -
A= 0 < (7 M ) _ oK) (2.5)
P o\ax ) o ax(1)

Jooi
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The second term in {2.5) makes all the difference which is crucial, One may note that thg
term is absent in the optimal control problem (because N = 1), in the two-person
zero-sum game (because H,=—H,, so that dH/duy = —3Hy/duy = 0), and the
open-loop case for nonzero-sum game (because du;/dx = (), since u; is a function of time
only). Thus the term is responsible for makmg the open-loop and closed-loop Nash
controls different, in general for the fth player, provided the controls of the other players
are mot specified at the beginning itself.

2.3 Suboptimal feedback solution

Consider again the dynamic system (1.1) and the cost (1.2). Let the suboptimal feedback
control for the ith player be specified in the beginning itself as

w(t) = g, (x, J[ xdt,pit) (2.6)

fu

where only the constant feedback gain vector p; is to be chosen in an optimal way. The
Nash equilibrium condition (1.3) may be rewritten as, for i=1,...N,.

it oY =TT ph L PR @7

The ith player solves his optimal control problem resulting in a feedback solution.
Following the basic results”, the necessary conditions may be easily given as, for
i=1,...N,

x=flx.g ey prt)s. o gnY o] X(ta) =X (28
y=x; y(to) =0; (2.9)
2 - D) om
f=2 6y =0 @
J/’ %’—m: ) 2.12)

where the Hamiltonian H; is given by:

H ey Apnént) = Li{x,g (x,v.p1.0.... .gn(2.y .00 1]
A g ey o) gy p e 1) T
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Thus. for a nonzero-sum differential game, when the players are assumed to use
suboptimal strategies (2.6). the open-loop and closed-loop solutions are the same, the
suboptimal solution being essentially a feedback solution.

The general results of Section 2 may be particularised for the simple and common case
of the two-player, nonzero-sum, linear quadratic differential game. The extension, being
obvious and straightforward, is not repeated here.

3. Numerical example

A scalar two-player, linear quadratic, nonzero-sum differential game is worked to study
the open-loop, closed-loop and the suboptimal strategies. The example is taken from
Simaan and Cruz’ where the open-loop Nash solution has been obtained as a function of
time explicitly.

Consider the scalar example of a linear time-invariant dynamic system

r=x+u ~w:x(0)=1,12(0,1)

and the quadratic costs for the two players

P(ld .1,
/1:X2(1)+_J (—x-+~—u1‘)dr;
2,373

1o Ve o
J:=§x (l)+§J (4)( +u2)d!.

0
The following truly optimal and suboptimal Nash equilibrium strategies are considered
for illustration.
(i) Open-loop strategies
(ii) Closed-loop strategies
(iii) Proportional suboptimal strategies
Hy=@1X,Us = X

(iv) Proportional plus integral suboptimal strategies

s
U =ax+b, J xdi¢;

0

r
U= axX + by "xdt.

J0
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In this context, it may be mentioned that the above specific suboptimal control structurey
only have been considered since they are known* ® 10 be better linear control policies
both from the point of view of performance degradation and feasibility of implementa-
tion.

Following the developments of section 2.1 through 2.3, necessary conditions are
obtained in respect of aif the four pairs of straiegies given above and these equations are
solved using a digital computer. The numerical resuits are given in Table 1. For all the
four cases, uy, 4y and x are shown in figs -3 respectively.

1t is obvious that case (i}, being an open-loop situation, is distinctly different from the
rest of the feedback control situations. The addition of integral feedback to the
proportional control generally brings the solutions closer to the truly optimal closed-loop
solution. The off-line computation of the time-invariant suboptimal feedback control
parameters and the ease of implementation of the suboptimal strategies on-line are, of
course, added advantages. Cases (ii)—~(iv), being all feedback solutions, the correspond-
ing minimum costs in respect of players «; and u, may be compared in Table I for the
three cases. One may note that the minimum costs are less for player u; for suboptimal
control compared to the unconstrained case. Thus, it appears that a suboptimal feedback
scheme is advantageous to player 1, compared to the optimal case provided the other
player also is adopting a similar suboptimal scheme. Naturally, this can lead to
persuasion to his advantage on the part of u, to have constrained controls for both
players instead of a free choice of centrols. The condition under which a suboptimal

Table |
Computer results for the numerical example

Case Control Optimal parameters  Minimum costs
@) Qpen-loop . Jy=0.2634
Jy=0.5646
(i) Closed-loop - Jy=1.3373
Jo=10.5638
(iii) Proportional
uy = ax ay==2.0293 J=0.3102
Uy = dox ay = 1.2087 Ja=0.6087
(iv) Proportional a,=~1.8308
pluy integral b, =~0.5353
'
= ax+ by I xdr oy =1.2065 J,=10.3147
0

Uy =X+ by J xdr b= —-0.1210 J,=0.6132

Bl
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Fic. 2. Controls uy(1).

policy can be advantageous compared to the unconstrained one for any one player may
be obtained at least for the two-player linear quadratic case in terms of the sign

definiteness of an ‘advantageous matrix’. However, this is not discussed here.

Fe. 3.

State trajectories.
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4.

Conclusion

P. K. BHARATAN

Open-loop and closed-loop and suboptimal feedback Nash equilibrium strategies ar
examined for nonzero-sum differential games. Open-loop and closed-loop strategies ar
quite different and give rise to different response trajectories.

The introduction of integral state teedback generally brings the suboptimal feedbac
solution closer to the uncounstrained case. Also, it is possible that suboptimal constraine,
strategies may be advantageous to certain players compared to pure strategies. Othe
aspects such as mixed stratcgies®, cooperation, etc., are not examined in the presen
study.
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