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Abstract
The paper presents @ new two-step design of proportional integral feedback controllers for singularly perturbed

systems with constant disturbances. The control law is derived using a slow subsystem obtained through the
iterative approach. It is shown that the integral gain computation can be separated from proportional control
design. The proposed design procedure is demonstrated in controller design for a synchronous machine

connected to an infinite-bus.
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1. Introduction

The design of control system is often confronted with high dimensionality of the
dynamical system. The problem is further aggravated by the presence of ‘parasitic’
parameters resulting in Stiff numerical problems'. To alleviate these difficulties,
model-order reduction and time-scale decomposition of such systems are generally
carried out using aggregation methods, singular perturbation theory and feedback
controllers are designed using the reduced-order models®. Besides the above
difficulties, system disturbances are quite common and the proportional control alone
can not take care of any external disturbances and/or parameter uncertainties. Thui,
proportional integral-feedback controllers are designed to deal with such situations™.
However, the task of determining optimal-feedback gains for proportional integral
control becomes complicated for high-order systems. The difficulties are further
increased duc to numerical ill-conditioning associated with the singularly perturbed
systcms.

This paper presents a new two-step design of proportional-integral-feedback control-
lers for singularly perturbed systems. The control law is designed using ‘the slow
subsystem obtained via the iterative approach? It is shown that the proportional qnd
integral-feedback gains can be derived separately using parameterA perturbatx_on
technique®. The theory is demonstrated in controller design for a smgle.machme
infinite-bus power system. The results of two-step design are compared with those

obtained via the single-step design procedure.
“First presented at the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Insti-
tute of Science, Bangalore, India, during December 11-13. 1986. 69



370 M. P SINGH AND Y. P SINGH
3, Problem: formulation

Consider the following singularly perturbed linear time-invariant system

H o= Aps At Biut+ Ed (ta)
gy = Ay x+Avxs t Ban+ Ead (1)
y = Crx+Coxs, (1)

where & > ) is a small singular perturbation parumeter, xy £ R®', 52 R, e R,
v e RP, and d represents a constant unimeasurable disturbance.
It is required to design a control of the form

u=Kx~Ky|ydt 2

where x7 =[x x '] for the system (1) such that the effect of constant disturbances is
nullified and y—» vy as 1 .

The effect of disturbances on output is climinated by introducing integral state of the
controlled output variable

w=y = O+l ®
Thus the problem here is to design o to minimize the performance index
J = { (x7 Ox+prwl Fwtut Ru) de 4
0
subject to the dynamical constraints (1) and (3), where p > 0 is a small parameter.

3. ltevative separation of lime scales

Equation {Ib) can be written as

bes =1aglx‘+232xz+§lu+gjd (1d)
where

As = Agyie. Axy = Assle, By = Bojeand Ba = Eale. )
Using the following transformation™’

§=xi—Hy me.mp = o~ Lix, . )
(1a). (1d} and (lc) reduce to

= Ayt Ay m+BiutE d (7a)

M= Apw &+ Apy i T Bagu ?3: d (70)

y=Cyp §,+Cz, i (7c)
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where
Lo=An Ay +An L ((Ay=Anl_ )
P= 1.2, .k with L, = A5'4,, )
Hy o= A AR+ (A oy A Hy o A
P=1.2,...jwith H, =Ap A’ ch
A = A= He Aot AL =A—AnLL
A = A= Hi Ay + Ay Hy, An = An+LiAp.
Apy = Ap T Api g, At = Ax Al LA,
B, = B,—Hy, By By = Bat L, B
Cpu=C—Cr L, Cyy = Cor Cy Hy,

(10}

and j and k are the iteration counts on the slow and fast states, respectively.
Since A, and A, — 0 for large values of j and k. the slow and fast variables are

decoupled and (7a), (7b) reduce to

&= Ay &+ Byut Eyg+0(em040 1)

. A, N

M = Ay + Bagaet Exd 000,
Neglecting the stable-fast modes and assuming Ay, nonsingular, equation (11b) yields
the sfow part of 7 due to slow-input u, as

(11ay
(1ib)

ks = — A} By [§hd}
From (7¢), (11a) and (12). the slow subsystem is obtained us

&= A 6+ Byu,+Ey {13a)

Yo= O+ D, (13by
where

D, = ~Cy Aj/Ba.
Since y = y,, we can write

{13c)

W= Cy§+D,u,.

4. Two-step design of proportional integral controllers

The proportional-integral-feedback controller is designed gsing the slow subsystern (13)
and considering the minimization of the following functional
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b= (VO &+ pwT Fodal Ru) de. (14

The solution to the above problem is given in Kwakernaak and Sivan® as

W, == RTRTS & {13y
w
where S is the wmmetrie positive definite solution of
A A LA AN A A A
SA+ATS-SBRTBTS+Q =0 (16)
and
I Ay 0] 4 Byl A Qn 0 5
= . B= . Q= Al 17
A [C,A 0 D, 0 P°F an
.. - -~
Partitioning .S as
5 5
A
§= AroA (18}
S5 08
and inroducing (17). (18) into (16 we obtain the following sct of equations.
A A
$ A4+ 8 C+ALS + CLST—(8, B+ 5, D) R
(858, +D780)+0,, =0 (19a)
~ A o .
STAy+8:cu-31B,+5: 08" (BT 8,+DI8) =0 (19b)
~
~(SIBy+8:D,)R 1 (B8, + D18 +p>F = 0. (190)

Since p is smail. the solution of (19) can be obtained through parameter perturbation
technique® in the following form

S =sy4pst+... (20a)
S =i+, ) (20b)
Si=pSi4.... (20c)

Introducing (20) into (19) and equatiﬁg the coefficients of like powers of p. we obtain

ST AL+ ALST-SYB R BT S{+0,, =0 (1)
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(Sy By+S DR (BT S+DIsH)+F=0 @
S3' Ay+SECu—(SY By+SID,)R"' BTS¢ = 0 3)
StAy+SiCu+ALSI+CTSY ~(S) B+
SIDOR™'BLSS—SyB, RT(BISI+DISITy =0 (24)

where equation (21) represents the reduced-order regulator problem with no integral
terms. Equations (22) and (23) are set of coupled nonfinear cquations and can be solved
for $3 and S% from the known value of 7. We can express (24) as the fellowing

Liapunov equation for S|

S1Ac +AL SI+(SIH+HTSITY =0 (25)
where
Acr = (Agy= ByR™! BS7) (26)
H=(Cy~D,R"'B[;ST). @n
Once §} is known, equation (25) can be solved for St.
Using (15), (18) and (20) the closed-loop system can be represented as
514 [5 28)
[£]-da 4 <
where
Acy = A2, +A1
cL cL cL 9
and
o Ay—ByR™'BIS? 0
Al = [ !
Ciw—D,R"'BLS? 0 (30

AL - —BI,R"(B(js{+DZs;’) —B,RT(BS}+DISH ]
“=| DR\ (BISI+DISY) ~D,RV(BSEeDISH ] (1)
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Feedback gains and eigenvaiues of the system

Feedbuck gain matrix [K 7]

Eigenvalucs

= 11-1061 +j313-466

Single-step  Two-step Open-leop Closed-loop
design design
Single-step Twao-step design
0-4348 0-8853 — {2047 — 15148 ~1-5548
—0-5536+ j9-958 = 4-9308 + 714508 —4-5383+/12:573
—{-8985 ~(-5225 15556 j9-958 - 49308 — j 14508 —4:5383~/12:573
- 31-0553 - 2915.3278 —2801-5403
1-3802 1-3255 =38 1128 — 381147 —38-1136
— 11-2808 +/313.564 - 1091+ j313-453
0-1011 01166 = 112898 - j313-564 ~ 11091 ~f313-453

~0-0245

— 11-1061 - j313-466
- 1-0376

Thus the proportional integral control design can be carried out in two steps: (i) LQR
design for the slow subsystem without integral control, (i) computation of integral gains
via perturbation methods.

5. Simulation results

We consider a synchronous machine connected to an infinite-bus™® to illustrate the
two-step design procedure. The system matrix, A, the input matrix, B, and the output
matrix, C, for an operating point (P,. O,) are as follows:

00 1-0 0-0 00 0-0 00 00
00 0-0  —23.991 —23.991 -52:356 —0-928 —94.638
-190-139  0-844  —1-468  24-176 276396 3914 378422
A= |-341867 1-544 1292 30200 505679 7161 692339 | (3
-732006 -1-734 —812:175 —812-175 ~—38741—1100-370  11:056
550415 —2-443 0130 4-446 —800-115 —11-331~ 1095460
749755 1776 831868  831-868  28:295 1127-050 —11-324
B=1[00 00 209%-8 -1845-52 0-0 —~185-5 007 @)
C=[-0-331 00 00 00 00 —0-197 —0-121]". (4

The slow subsystem model is obtained using the iterative approach with j = k = 3. The
state and control weighting matrices are selected as Q = diag[1,1,1,-01]and R = 1and
the small perturbation parameter is chosen as p = O-1.

TI}c proportional-integral-feedback controller is designed as outlined in the previous
sections. The feedback gains and eigenvalues of the open- and closed-loop systéms are
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compared with those obtained using single-step design procedure in Table I. It is
ohserved that the proposed design approach yields quite satisfactory results. From
simulation it is found that two-step design method reduces the computational burden by
designing proportional and integral gains separately as compared to single-shot design.

The application of iterative time-scale separation to multimachine power systems for
simulation in two time scale has been demonstrated in various research publications'®'!
The proposed two-step design technique can be applied to multimachine power systems
and the proportional and integral control design can be carried out separately using the
slow subsystem models as derived in Winkelman et af'®.

6. Conclusions

Two-step design of proportional-integral-feedback controllers for singularly perturbed
systems is proposed to deal with unknown constant disturbances present in the systern. It
is shown that the integral control design can be separated from the design of proportiorial
control law. The proposed method is ilfustrated in controller design for a synchronous
machine connected to an infinite-bus.
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