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Abstract

There are three parts in this paper: (1) a state-regulating problem is solved for a very-large-scale system
(VLSS). The optimal-control laws are formulated with multiechelon-dynamical-hierarchical structure. A set of
mairix cquations which arises in formulating optimal-control laws is shown to be solvablé i an alternative way;
{2) the stability of such formulated multiechelon-hierarchical structure is anatysed; (3) the number of levels of
hietarchy needed in a multiechelor structure is calculated as also the order of dynamic-state regulator required.

Key words: Large-scale system, decentralised control. multiechelon hierarchy, coordinators, dynamic-state
feedback, controllability and observability indices, Pontryagin's maximum principle, Second method of

Liapunov.

1. Introduction and problem statement

One of the earliest formal quantitative treatments of hierarchical (multilevel) has been
presented by Mesarovic ef al'. Since then a great deal of work has been done in the
field™'%. Two schemes, goal-coordination' and interaction-prediction’, describe a
‘coordination’ process in hierarchical systems. In these schemes, only two-level
controllers and their coordinations are proposed. The goal-coordination principle is
concerned with open-loop control of hierarchical systems, whereas interaction-
prediction has both open- and closed-loop forms of optimal control. There is another
method”*!® of closed-loop control of two-level hierarchical system which has linear
state-feedback-control structure. In this method, a structural perturbation is employed
through which the interactions among the subsystems are set to zero. This makes the
system completely decomposed to subsystems so that local linear state-feedback-contrgl
laws can be generated. Because of structural perturbation, the performance criteria
caleulated are not the same as that for the overall system. Sundareshan'® has shown that
aclass of interactions is said to be ‘beneficial’ if the performance criteria in decomposed
case is greater than that in centralised case and the class of interactions is said tq be
‘neutral’ if the calculated performance criteria for both decomposed and centralised

cases are the same.

*First presented at the Platinum Jubilee Canference on Systems and Signal Processing held at the Indian

Institute of Science, Bangalore, India, during December 1113, 1986.

*:;esem address: Department of Electrical Engineering. G. S. Institute of Techuology and Science, Indore
003.
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In this paper, we comsider a problem of designing optimal-control laws for 4
very-large-scale system (VLSS), using dynamical controllers and forming a multiechelog
hierarchical structure. The performance criteria are taken as an integral of the square of
the error in physical variables, so that the optimal-control laws designed shall regulate
the states while minimising the cost function. Such reultiechelon hierarchical structyre
with dynamical optimal-control laws is shown to be stable. The dynamical optimal-
control laws are formulated with minimum information exchange amongst the levels of
hierarchy as also the number of levels of hierarchy.

Consider a very-large-scale time-invariant system described by
¥=Ax+Bu
y=Cx ()
where x € R" is the state, y € R” the output and « € R" the input vector. The matrices,

A, B, and € have appropriate dimensions. The mathematical model of a VLSS given by
(1) can be written in another form as,

Y
Jr,=A,x,+E Apexp+ By
k=1
k7l
yi=Cup I=1...0,y (la)

where v is the total number of areas, x; € R" the state, u; € R™ the input to the /th-area
large-scale system (LSS) and the matrices A;, A and B, are of dimensions (1; X 1)),
(X ny) and (7, X m,), respectively, such that,

A, A AL,
A, A As,
A =
Ay Ay A,

B=block diag[B,,....B,]

yvhere AER" and BER™ ™. Thus a VLSS is decomposed into y areas, with the
interactions amongst the area LSSs being indicated by the matrix Ay, k=1,....7
I=1,...,yand k+ [. Such interaction matrix in any VLSS model is very sparse in nature,
and therc?fore the interactions amongst the areas may be neglected. This enables us to
have a simpler model of cach area in the compact form as given below:

Xp=Ap;+ B,

yi=Cpx; @
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where x; € R™ is the state, u, € R"" the input and y, € R" the output vector of /th-area
large-scale system. The model (2) can be expressed in detailed form as"?

v

f=Ax Y

i=1

Biuy

yu=Cux) i=1,...,v (2a)

where 4y € R™ is the input and y; eR™ the output of the ith-control station in the &h
area, such that

B;=[By..., B}, CT=[Cl...,CH] (2b)
with m, = ix m;; and r,=§; Fir (2¢)
i= i=1

The mathematical model for the dynamic coordinator for VLSS is,

fe=Ax.+Bou, (3
and that for /th-area LSS is,

Xep= Agxe+ Bougy (3a)
such that,

A.=block diag(A.i....,A) and

(3b)

B, =block diag(B.,....,Bey)

where [=1,...,y areas, x.ER™ the state, u,ER™ the input to the coordipator.
Similarly, x., € R" and u.; & R denotes the state and input to the Ith-area coordinator
tespectively. The matrices A,, B., Ay and B,; are of dimensions (n, X ne)s (neXmy,
(X ngy) and (ny X m,;). respectively.

The mathematical model of the supremal coordinator is also dynamic in nature and is
given by
@)

Fse = AseXset+ Byellse
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where x,. € R"v is the state and . € R™~ the input to the supremal coordinator with A,
and B, of appropriate dimensions.

The problem is to minimise the following cost function,

41 4 .
J= J/ : 70y +u"Ru+xTQx + ULR e+ x5O Xy + ul. R, ) di )

[}
4

with #;~» . subject to constraints (1), (3) and (4).

2. Design of optimal-decentralised and hierarchical-contrel laws

The Hamiltonian for the above optimisation problem is expressed as a function of states,
sontrol inputs and costates as given in the following,

H(x(), x(0), xo0(0). ut), uelt)e see(t)s p(0). po(2), pse(t))

1
=3 F7CTQ,Cx+u"Ru+x]Qox e+ ul Rotte + x 5, QycXye + u LRt ]

+pTO[Ax + Bul+pT (O [Acxe + Bt} + p LA [AyeXoe + Bty ]

Applying the set of necessary conditions for the Hamiltonian H to be minimum, which
gives a set of costate equations and the following optimal-control laws:

u(ty=—R"'BTp(t); ()
u )= — R BLp (o) (6b)
Hoelt) = = R BLp,o(0). (6c)

We now relate the costates p(t), p.(t), ps.(f) as linear maps of system states x(t),
coordinator states x.(f) and supremal-coordinator states x,(z), such that the hierarchical-
feedback system forms a multiechelon (pyramid) structure. That is, we let

0=CT0,C; M
p(8)= Kx(f) + Kox (2); (82)
Pelt) = Hx (1) + H (1) + Hyox, o (1); (80)

Prel)) = Foxc(1) + o2, (0). (&)
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pifferentiating (8a~c} and the aigebraic manipulation of the necessary conditions give
the following set of matrix equations.

ATK+KA~KBR'B"K+Q~K.B.RBTH=0; (92)

ATK .+ KA.~ KBR'B"K .~ K B R'BTH, =0, (9b)

~K.B.R:'BTH, . =0; (9c)

ATH+HA—HBR'B"K-H B R;'BTH=0; (10a)
ATH, + H. A —H.B.RBTH +Q.~HBR'BTK,

~H, B, R;}BLF.=0; (10b)

ATH, 4+ H, A, ~H B.RYBIH,.— H, B, R;}BLF,.=0; (10c)

~F.B.RBIH=0; (11a)

ALF A F.A~F BRBTH ~F, B, R;!BLF.=0; (11b)

ALF, + Fy A~ Fo By R BLF, + Q. — £.B.RTBIH, = 0. (11¢)

The solution of these nine matrix equations, (9a~c), (10a—c), and (11a—c), gives the
matrices, K, K., H, H., H,, F.and F,.
Structures of gain matrices:

K =block diag[K,,-...K,]sxn
H.=block diag|H (.....,Hey}y xn,
F. = diagonal matrix (#1,c X Age)
K.=block diag{&,1,....Key|nscn,
H=block diag[{H,,....Hyln xn
HI={HE HE ) s,
Fom{Furer Filn i, 12

Matrices K, H. and F,, are positive-definite and symmetric_in natur'e. The other
matrices, K, H, H,.and F., act as observability matrices for theA111format10n (states) to
flow from one levél to the other. In this multicchelon-hierarchical structure, any two
consecutive levels only exchange information and the number of controllers reduces as

the levels go up.
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3. Minimisation of information exchange amongst the levels of hierarchy and the order
of the dymamic ceordinator

Consider the description of /th-area LSS given by (2}, (2a—c). Let p,={p,....,p,, } be
the set of controllability indices with respect to uy=[us..., u,,,’/]r of the ith-control
stations in the /th area. Let p,= {f.....px } be the set of largest indices with p,C g,
such that

Then the minimum number of inputs influencing all the states of the ith-control station is

k ;. and the minimum number of inputs required to influence all the states of the /th area
will be,

ka= Y ke (130)

Let §;=1{qi.....q,} be the set of observability indices with respect to
ya={yu.- .,y,”]Tof the ith-control station in the /th area. By similar reasoning as in the

case of controllability, the minimum number of outputs required to observe all the states
of the I/th area will be,

ko= 3 ko (13b)

i=}

Thus, in the sense of minimum information flow between the coordinator and the
{th-area control stations, the minimum number of output states to be directed to the
coordinator is k,; and the minimum number of inputs to be driven by the coordinator is
k1. Though the order of the dynamic coordinator can be chosen arbitrarily the justified
order in view of (13a) and (13b) can be taken as,

kot k,
nd=——'7—’ +1 (14)

where n, is the order of dynamic coordinator for the Ith area.
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4, Solution of matrix equations for gain matrices in the costate expressions

it is well-known that any linear time-invariant multivariable controllable-observable
system can be equivalently transformed into controllable-observable companion
canonical (phase variable) triple (C,A, 5’) form, from which it can be noted that the
columns of C7 are orthogonal to the columns of B, thatis € B = 0. Utilising this fact, the
nine matrix equations. (9a~c}, (10a~c) and (11a-c), can be solved in an alternative way.
The coordinator and the supremal-coordinator dynamics are in choice. Therefore, the
input matrices, B, and B,,, and output matrices, K, F. and H,,, of the coordinator and
the supremal-coordinator can be so chosen that the following becomes true. That is,

K. B.=90, F.B.=0, H, B,.=0.

The output matrix, H, can also be chosen so that HB =0, but because B is restricted
{being a plant-input matrix), the relationship HB = 0 may not however come out to be
true. If, HB # Q0 then usually in the case of large-scale systems the result is extremely a
sparse matrix and therefore may be neglected. Thus the nine matrix equations can be
individually solved in the following manner:

(a) solve (9a) to give K
(b) solve (9b) to give K,
(c) solve (10b) to give H,
(d) solve (10a) to give H
(e) solve (10c) to give H,,
(f) solve (11c) to give Fi,
(g) solve (11b) to give F..

If HB 0, then the steps, (c) and (d), are combined to give both H_ and H as solutions.
Itis to note that steps (a) and (b) involve the dimension of VLSS, ie. n. This may be
further simplified by employing Siljak's approach of disconnecting the area LSS, since
the interaction matrices amongst the area LSSs are sparse. Thus the steps, (a) and (b},
may be carried out for each area separately. Since one coordinator is allotted to each
area and there is no interaction between the coordinators, therefore the steps, () to (e),
are carried out for each coordinator separately. And in the end, the steps, (f) to (g), give
out only for one supremal unit.

The gain matrices obtained as solutions of (Sa—c), (10a~c) and (1la-c) when
substituted into (8a—c) give the optimum-costate trajectory, using which through (6a-c),

leads to optimum-control laws as follows,

u(t)= - R\ BTKx(5)~ R\ BTK x.(0), (152)
u(t) = ~ R BIHx(6) = R BT Hox (1) ~ Re BIHockoc (D) (15b)
(150)

t;o(t) = — ReBLF (1) — Ret BEFoexec().

C
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With these optimal-control laws, the closed-loop decentralised and dynamical-hierar-

chical VLSS becomes.

38y = (A-SK)x(t) - SKcxc(1), (16a)
k() =~ S Hx () + (Ac— S H)x () = ScHoex (1), (16b)
I ()= = SscFexe(t) + (Age = SseFsc)Xse (1) (16c)
where, §=BR'8T
S.=B.R:'BT
S,.= B, R;\BL. (16d)

fn equation (16a) the term, SKx(z), forms a decentralised closed-loop feedback, whereas
the term, SK.x (), indicates a hierarchical drive from one-level up. In equation (16b),
the term, S.H_ x(2), forms a closed-loop feedback to the dynamic coordinators situated
at one-level up above the VLSS. The terms, S Hx(r) and 5.H.x,.(f), indicate drive
from the VLSS and that from the supremal-dynamical coordinator, respectively. The
supremal-dynamical coordinator is situated at one-level up above the dynamic
coordinators. Thus, in (16¢), the term, S, F,.x, (1), forms a closed-loop feedback to the
supremal unit with the term, S, F.x(¢), acting as a drive from the dynamic coordipators.

It is now therefore quite evident that the closed-loop description given by (16a-c)
shows a multiechelon-hierarchical structure of a VLSS.

5. Stability analysis

In this section we now study the asymptotic stability analysis of the hierarchical
closed-loop system (16a-c). Let the Liapunov function be defined as,

- 0 ‘R0
V[f(t)]=J {zT [Q 0. }sz { R. } ﬁ}dr (17)
‘ 0 Qsc 0 R;.
where,
={x" 2T x1]
" =[u’, ul, ul] (18)

and the optimal-control laws be given by,

(¥) = Px

(19
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where,

1
&

Y
-y pu

He . (20)

-l
i
<

On the basis of this assumption the closed-loop multiechelon-hierarchical structure

becomes,
) =(A—-BK)x()~ BR x (1), (21a)
).5(»(’) = B(JTIX([) + (Ar- - Bc[;'c)xc"(t) - Bchcxxc(t)5 (21b)
X.rc([) == Bs:FrXc(f) + (Axr — B Fsc)xsc(t)' (ZIC)
Thus, using (19), equation (17) may be written as,
VIED)] = f #7[0+ BFTRP]x dr (22)
¢
where,
0 R 0
o= QQC . R= R, ) (23)
¢ Q. A (o8

Then the vatue of the performance criteria for a trajectory starting at X(z) is gix_fen by
V[x(to), x (o), x,.(ty)}. The total tme derivative of V(¥) as given by (22) is,

V(¥) = dV(E@)/dt = V(x, X, Xpe) = ~ T (0 + PTRP)E. (24)

Since, V(%) is quadratic in ¥, and because the dynamical-hierarchical-control system and
the plant equations are finear, let V() be also given by a quadratic form. Thus‘, mswte_ad
of minimising V(%), we pick a quadratic form of V(X) and find the corresponding E(x).
Therefore, we have,

V(x) =x"Px (25)
where P is assumed to be any known positive-definite matrix. Matrix P consists of
ordered-lincar maps for the multiechelon-hierarchical structure as given below.
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[k k.0
P=|H H H, %
O F. Fe @

where, K, H, and F;, are positive-definite and symmetric matrices and K, H, H,, and F
act as observability matrices for the information to flow from one to another level. Thé
condition for the positive definiteness of mairix P is given in Appendix I The time
derivative of V(X) (25) is given below.

V() =X PE+ETPY.

Using (21a—c) and (26) we get after substitution the following matrix equation:

(A-BKYT - HTBT 0 K K. 0
vE =% | -KIBT  (A.~B.H)" ~FIBL H H, H,|%
0 ~HLBT (A~ B Fe)T| |0 F. Fy
K K. 0 |{{4-BK) ~BK. 0
+3"\H H. H.|-B.H (A~—~BR) —B.H, %
0 F. Fojl0 - By F. {Ase— BocFsc)

But V(’i) is also equal to the negative integrand of the performance index (24); therefore,
equating these two equations of V(¥), for arbitrary ¥(r), we get the following matrix

cquations:
ATK+KA—~K"B"K - KBE+Q+RTRK~ H"BIH +
H'R.A—~K.B.H=0; (282)

ATK,+ KA.~ K"BTK,— KBR.+ K"RE,— H"BTH, ~
K. B+ HRH.=0; (28b)

~H"BIH, .+ H'R A, - K.BH,.=0; (28)

ATH+HA~HTBTH—H B H+ HTR H~KTBTK +
RIRE - HBE =0; {29)

AZHCJ:ch_xC ~HIBTH,~H.BA +HRH. + Q.- KIB"K +
KIRK.-FIBLF + FIR,.F.~ HBR,— H,.B,.F.=0; (295)
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ATH + H A~ HIBTH, + BIRH, ~H B8, . ~FTBLF, +
FIR Fyo~ Ho B Fro=0; {25¢)

~BIBIH+ HLR A~ F.BH=0; (30e)

ARF + FA ~FLBLF + FLR F.~F B, F. -~ HLBIH, +
Hz;RcﬁL - FchE'r = O; <3Ob)

Az:};w + Eedge— F\ILB;ILF$C - Fch.yL'F.rr + FA‘T(“Rst‘Fjl‘ + Qe+
FiRHy~ HLBIH, ~ FBH, =0, (300)

Atthis stage, it is required to determine the unknown matrices K, K, #, #,, H,., F, and
Fye which are the elements of matrix P as given by (20). Because it is desired to find the
control strategies as a function of state variables, then through Hamilton-Jacobi
formulation it would not be impertinent to choose matrix P as given below:

B R8T 0 0
P=10 RI'BI O Pp.
0 0 R; B

When such a choice is being substituted in the set of equations (28a-c), (29a—c) and
(30a~c), they reduce to the set of equations (9a—c), {10a-c) and (11a—c), respectively.
This leads to the original problem of solving the set of nine equations, the solutions of
which are given by (26). Thus, the decentralised and hierarchical-optimal-contro} laws

given by (15a~c) do indeed stabilise the VLSS.

6. Number of levels of hierarchy

Depending upon the sparsity of interconnections in a VLSS, the number of area LSS can
be decided. For each area, only one dynamic coordjnator need to be designed. Thus the
Tumber of areas is equal to the number of coordinators. The VLSS and the coordinator
dynamics are considered to be situated at levels 0 and 1 in the hierarchical systems. It is
Iow quite evident that the total number of levels. excluding level 0, will be equal to the
total number of areas or coordinators. However, the number of levels in hierarchical
systems can be reduced. In the earlier section, it has already been discussed about the
order of the coordinator being chosen. The order of the supremal coordinator (at Igvc?l 2)
is also chosen in the same way by considering the controllability and observability indices
at level 1. Thus no matter whatever be the number of coordinators at level 1, there can
be only one supremal coordinator at level 2. If the order of the supremal-dynamic
coordinator at level 2 becomes larger than the largest coordinator at level 1, then only

one more level (i.e. level 3) is recommended.
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7. Ceonclusion

The problem of designing dynamic controllers for hierarchical-feedback control of
very-large-scale systems has been sotved. The levels of hierarchy to exist is shown to be
more than one. The multicchelon-hicrarchical structure is formed through costate
equations, which leads to solving the nine matrix equations (Ya—c). (10a-c) and {1la-c),
to give feedback-coefficient matrices as solutions. The /th-area 18§ description (2)
achieved by neglecting the interconnections among the arca LSS is shown to serve two
purposes: {a) to ease solving the first two, {9a), (9b), matrix cquations, and (b} to give
the number of arca LSS as also the number of dynamic coordinators required. The
well-known properties of controllable-observable companion forms have been uiilised to
simplify the solution algorithm for the nine nonlincar-malrix cquations. Further, the
order of the dynamic coordinators can be decided as shown in section 3. through
controllability and observability indices. In the stability analysis. it has been shown that
there exists a non-symmeltric positive-definite matrix 2 through which hierarchical-
dynamical-optimal control laws do stabilise the VLSS, The number of levels of hierarchy
is being shown to depend upon the largest order at a certam level and the complexity in
handling the states at that level.
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Appendix [

Matrix P consisting of ordered-linear maps for the multiechelon-hierarchical structure
given in (26} is reproduced below:

K K. 0
P=|H H, H,
0 F. F,

where, the diagonal block elements, K, H, and F,., are positive-definite symmetric
matrices and the off-diagonal block elements, K., H, H,. and F, are input-output maps
between the levels of hierarchy. These mappings are indicated in the costate expressions
(Ba—c).

Theorem: Matrix P shown above is said to be positive-definite.

if
dct{[ K "] - {“ ]FT"I[O F‘}}>o (A)
H H, H.,,

and det {K—K H'H] >
OR if

H. H UV [H
dct{l\"[[\] (>][F v } L]J }>(}

and det| H ~H, F F ] > 0.
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Proof: By partitioning matrix P we have,

[K K. ©
pP=i{H H. H,
[0 F. Fy.

The determinant of matrix P is,

d K K 0 R0 F] dor | K Ke
det P= et{[H H. Hye HOH |

For matrix P to be positive-definite det P > ( which means,

aet {[K K(.} ~ [0 ][F;,.‘{o F.] ] - -

H H. H, |

K K] »
and det = det{K~K H:'H]det K > 0.
H H. |

Because K is positive-definite and symmetric, it requires,
det{K—K HIH] > 0. (Ab)
Thus, for matrix P to be positive-definite, both the conditions, (Aa) and {Ab), must be

satisfied.

Again, by partitioning matrix P in a different way, we have,

K K. 0
P=|H H, H,
0 F(' F,\'z‘

Then the determinant of matrix P is,
H, HJ'TH
det P =det! K—[K. 0] det K. (Ba)
F. Fy Y

For matrix P to be positive-definite,
det P >0.
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Because K is positive-definite and symmetric, it requires,

H, H'TH
det{K—[Kc 0] ’:F F ] [0]}>Oand (Ba)

H(’ HS(‘
det = det{H,— H,F;\F.]det H.> 0.
F( FSC

Because H, is positive-definite and symmetric, therefore

det[Hc_HscF;rch] > 0. (Bb)

Thus, for matrix P to be positive-definite, both the conditions, (Ba) and {(Bb), must be
satisfied.
Therefore, for matrix P to be positive-definite either one of the pairs of conditions,
(A) or (B), must be satisfied.
Q.E.D.





