Hierarchical optimal control and stability of large-scale systems"

Biswaroop Sarkar† and V. V. Athani
Department of Electrical Engineering. Indian Institute of Technology, Bombay 400075.

Abstract

There are three parts in this paper: (1) a state-regulating problem is solved for a very-large-scale system (VLSS). The optimal-control laws are formulated with multiechelon-dynamical-hierarchical structure. A set of matrix equations which arises in formulating optimal-control laws is shown to be solvable in an alternative way; (2) the stability of such formulated muitiechelon-hierarchical structure is analysed; (3) the number of levels of hierarchy necded in a muticehelon structure is calculated as also the order of dynamic-state regulator required.

Key words: Large-scale system, decentralised control, multiechelon hierarchy, coordinators, dynamic-state feedback, controllability and observability indices. Pontryagin's maximum principle, Second method of Liapunov.

1. Introduction and problem statement

One of the earliest formal quantitative treatments of hierarchical (multilevel) has been presented by Mesarovic et al ${ }^{1}$. Since then a great deal of work has been done in the field ${ }^{2-14}$. Two schemes, goal-coordination ${ }^{1}$ and interaction-prediction ${ }^{35}$, describe a 'coordination' process in hierarchical systems. In these schemes, only two-level controllers and their coordinations are proposed. The goal-coordination principle is concerned with open-loop control of hierarchical systems, whereas interactionprediction has both open- and closed-loop forms of optimal control. There is another method ${ }^{7-9,16}$ of closed-loop control of two-level hierarchical system which has linear state-feedback-control structure. In this method, a structural perturbation is employed through which the interactions among the subsystems are set to zero. This makes the system completely decomposed to subsystems so that local linear state-feedback-control laws can be generated. Because of structural perturbation, the performance criteria calculated are not the same as that for the overall system. Sundareshan ${ }^{16}$ has shown that a class of interactions is said to be 'beneficial' if the performance criteria in decomposed case is greater than that in centralised case and the class of interactions is said to be 'neutral' if the calculated performance criteria for both decomposed and centralised cases are the same.

[^0]In this paper, we consider a problem of designing optimal-control laws for a very-large-scale system (VLSS), using dynamical controllers and forming a multiechelon hierarchical structure. The performance criteria are taken as an integral of the square of the error in physical variables, so that the optimat-control laws designed shall regulate the states while minimising the cost function. Such muttiechelon herarchicat structure with dynamical optimal-control laws is shown to be stable. The dynamical optimalcontrol laws are formulated with minmum information exchange amongst the levels of hierarchy as also the number of levels of hierarchy.

Consider a very-farge-scale time-invariant system described by

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C x \tag{1}
\end{align*}
$$

where $x \in \mathbb{R}^{n}$ is the state, $y \in \mathbb{R}^{r}$ the output and $u \in \mathbb{R}^{\prime \prime}$ the imput vector. The matrices, A, B, and C have appropriate dimensions. The mathematical model of a VLSS given by (1) can be written in another form as,

$$
\begin{align*}
& \dot{x}_{l}=A_{i} x_{l}+\sum_{\substack{k=1 \\
k>1}}^{\gamma} A_{i k} x_{i k}+B_{l} u_{i} \\
& y_{l}=C_{l} x_{l}, l=1, \ldots, \gamma \tag{1a}
\end{align*}
$$

where γ is the total number of areas, $x_{l} \in \mathbb{R}^{n_{i}}$ the state, $u_{l} \in \mathbb{R}^{m_{l}}$ the input to the l th-area large-scale system (LSS) and the matrices $A_{1}, A_{i k}$ and B_{l} are of dimensions ($n_{l} \times n_{j}$), $\left(n_{i} \times n_{k}\right)$ and ($n_{j} \times m_{i}$), respectively, such that,

$$
A=\left[\begin{array}{cccc}
A_{1} & A_{12} & \ldots & A_{1 \gamma} \\
A_{21} & A_{2} & \ldots & A_{2 \gamma} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
A_{\gamma 1} & A \gamma_{2} & \cdots & A_{\gamma}
\end{array}\right]
$$

$\mathrm{B}=\mathrm{block} \operatorname{diag}\left[B_{\mathrm{l}}, \ldots, B_{\gamma}\right]$
where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Thus a VLSS is decomposed into γ areas, with the interactions amongst the area LSSs being indicated by the matrix $A_{t k}, k=1, \ldots, \gamma$, $l=1, \ldots, \gamma$ and $k \neq l$. Such interaction matrix in any VLSS model is very sparse in nature, and therefore the interactions amongst the areas may be neglected. This enables us to have a simpler model of each area in the compact form as given below:

$$
\begin{align*}
& \dot{x}_{l}=A_{l} x_{l}+B_{l} u_{l} \\
& y_{l}=C_{l} x_{I} \tag{2}
\end{align*}
$$

where $x_{l} \in \mathbb{R}^{n_{i}}$ is the state, $u_{l} \in \mathbb{R}^{m_{i}}$ the input and $y_{l} \in \mathbb{R}^{r_{1}}$ the output vector of l th-area large-scale system. The model (2) can be expressed in detailed form as ${ }^{17}$

$$
\begin{align*}
& \dot{x}_{i}=A_{i l} x_{i}+\sum_{i=1}^{v} B_{i l} u_{i l} \\
& y_{i l}=C_{i l} x_{i}, \quad i=1, \ldots, v \tag{2a}
\end{align*}
$$

where $u_{i l} \in \mathbb{R}^{m_{d}}$ is the input and $y_{i d} \in \mathbb{B}^{r_{i}}$ the output of the i th-control station in the l th area, such that

$$
\begin{align*}
& B_{i}=\left[B_{1 l}, \ldots, B_{\nu l}\right], C_{l}^{T}=\left[C_{1 l}^{T}, \ldots, C_{\nu l}^{T}\right] \tag{2b}\\
& \text { with } m_{l}=\sum_{i=1}^{\nu} m_{i l} \text { and } r_{l}=\sum_{i=1}^{\nu} r_{i l} . \tag{2c}
\end{align*}
$$

The mathematical model for the dynamic coordinator for VLSS is,

$$
\begin{equation*}
\dot{x}_{c}=A_{c} x_{c}+B_{c} u_{c} \tag{3}
\end{equation*}
$$

and that for l th-area LSS is,

$$
\begin{equation*}
\dot{x}_{c l}=A_{c l} x_{c l}+B_{c l} u_{c l} \tag{3a}
\end{equation*}
$$

such that,

$$
\begin{align*}
& A_{c}=\operatorname{block} \operatorname{diag}\left(A_{c 1}, \ldots, A_{c \gamma}\right) \text { and } \\
& B_{c}=\operatorname{block} \operatorname{diag}\left(B_{c 1}, \ldots, B_{c \gamma}\right) \tag{3b}
\end{align*}
$$

where $l=1, \ldots, y$ areas, $x_{c} \in \mathbb{R}^{n_{c}}$ the state, $u_{c} \in \mathbb{R}^{m_{c}}$ the input to the coordinator. Similarly, $x_{c l} \in \mathbb{R}^{n_{s i}}$ and $u_{c l} \in \mathbb{R}^{n_{c t}}$ denotes the state and input to the l th-area coordinator respectively. The matrices $A_{c}, B_{c}, A_{c l}$ and $B_{c t}$ are of dimensions $\left(n_{c} \times n_{c}\right),\left(n_{c} \times m_{c}\right)$, $\left(n_{c l} \times n_{c l}\right)$ and $\left(n_{c l} \times m_{c l}\right)$, respectively.

The mathematical model of the supremal coordinator is also dynamic in nature and is given by

$$
\begin{equation*}
\dot{x}_{s c}=A_{s c} x_{s c}+B_{s c} u_{s c} \tag{4}
\end{equation*}
$$

where $x_{s c} \in \mathbb{R}^{n_{"}}$ is the state and $u_{s r} \in \mathbb{R}^{\prime \prime \prime}$ " the input to the supremal coordinator with $A_{s c}$ and $B_{s c}$ of appropriate dimensions.

The problem is to minimise the following cost function,

$$
J=\int_{t_{0}}^{u^{1}} \frac{1}{2}\left(y^{T} Q_{y} y+u^{T} R u+x_{c}^{T} Q_{c} x_{c}+u_{c}^{T} R_{c} u_{c}+x_{s c}^{T} Q_{s c} x_{s c}+u_{s c}^{T} R_{s c} u_{s c}\right) \mathrm{d} t(5)
$$

with $t_{f} \rightarrow \infty$, subject to constraints (1), (3) and (4).

2. Design of optimal-decentralised and hierarchical-control laws

The Hamiltonian for the above optimisation problem is expressed as a function of states, control inputs and costates as given in the following,

$$
\begin{aligned}
& H\left(x(t), x_{c}(t), x_{s c}(t), u(t), u_{c}(t), u_{s c}(t), p(t), p_{c}(t), p_{s c}(t)\right) \\
& =\frac{1}{2}\left[x^{T} C^{T} Q_{y} C x+u^{T} R u+x_{c}^{T} Q_{c} x_{c}+u_{c}^{T} R_{c} u_{c}+x_{s c}^{T} Q_{s c} x_{s c}+u_{s c}^{T} R_{s c} u_{s c}\right] \\
& +p^{T}(t)[A x+B u]+p_{c}^{T}(t)\left[A_{c} x_{c}+B_{c} u_{c}\right]+p_{s c}^{T}(t)\left[A_{s c} x_{s c}+B_{s c} u_{s c}\right]
\end{aligned}
$$

Applying the set of necessary conditions for the Hamiltonian H to be minimum, which gives a set of costate equations and the following optimal-control laws:

$$
\begin{align*}
& u(t)=-R^{-1} B^{T} p(t) \tag{6a}\\
& u_{c}(t)=-R_{c}^{-1} B_{c}^{T} p_{c}(t) \tag{6b}\\
& u_{s c}(t)=-R_{s c}^{-1} B_{s c}^{T} p_{s c}(t) . \tag{6c}
\end{align*}
$$

We now relate the costates $p(t), p_{c}(t), p_{s c}(t)$ as linear maps of system states $x(t)$, coordinator states $x_{c}(t)$ and supremal-coordinator states $x_{s c}(t)$, such that the hierarchicalfeedback system forms a multiechelon (pyramid) structure. That is, we let

$$
\begin{align*}
& Q=C^{T} Q_{y} C \tag{7}\\
& p(t)=K x(t)+K_{c} x_{c}(t) \tag{8a}\\
& p_{c}(t)=H x(t)+H_{c} x_{c}(t)+H_{s c} x_{s c}(t) \tag{8b}\\
& p_{s c}(t)=F_{c} x_{c}(t)+F_{s c} x_{s c}(t) \tag{8c}
\end{align*}
$$

Differentiating ($8 a-c$) and the algebraic manipulation of the necessary conditions give the following set of matrix equations.

$$
\begin{align*}
& A^{T} K+K A-K B R^{-1} B^{T} K+Q-K_{c} B_{c} K_{c}^{-1} B_{c}^{T} H=0 ; \tag{9a}\\
& A^{T} K_{c}+K_{c} A_{c}-K B R^{-1} B^{T} K_{c}-K_{c} B_{c} R_{c}^{-1} B_{c}^{T} H_{c}=0 ; \tag{9b}\\
& -K_{c} B_{c} R_{c}^{-1} B_{c}^{T} H_{s c}=0 ; \tag{9c}\\
& A_{c}^{T} H+H A-H B R^{-1} B^{T} K-H_{c} B_{i} R_{c}^{-1} B_{c}^{T} H=0 ; \tag{10a}\\
& A_{c}^{T} H_{c}+H_{c} A_{r}-H_{c} B_{c} R_{c}^{-1} B_{c}^{T} H_{r}+Q_{c}-H B R^{-1} B^{T} K_{c} \\
& -H_{s c} B_{s c} R_{s c}^{-1} B_{s c}^{T} F_{c}=0 ; \tag{10b}\\
& A_{c}^{T} H_{s c}+H_{s c} A_{s c}-H_{c} B_{c} R_{c}^{-1} B_{c}^{T} H_{s c}-H_{s c} B_{s c} R_{s c}^{-1} B_{s c}^{T} F_{s c}=0 ; \tag{10c}\\
& -F_{c} B_{c} R_{c}^{-1} B_{c}^{T} H=0 ; \tag{11a}\\
& A_{v c}^{T} F_{c}+F_{c} A_{c}-F_{c} B_{c} R_{c}^{-I} B_{c}^{T} H_{c}-F_{s c} B_{s c} R_{s c}^{-1} B_{s c}^{T} F_{c}=0 ; \tag{11b}\\
& A_{\mathrm{sc}}^{T} F_{\mathrm{sc}}+F_{s c} A_{s c}-F_{\mathrm{sc}} B_{s c} R_{s c}^{-1} B_{s c}^{T} F_{s c}+Q_{s c}-F_{c} B_{c} R_{c}^{-1} B_{c}^{T} H_{s c}=0 . \tag{11c}
\end{align*}
$$

The solution of these nine matrix equations, $(9 a-c),(10 a-c)$, and ($11 a-c$), gives the matrices, $K, K_{c}, H, H_{c}, H_{s c}, F_{c}$ and $F_{s c}$. Structures of gain matrices:

$$
\begin{align*}
& K=\text { block diag }\left[K_{1}, \ldots, K_{\gamma}\right]_{n \times n} \\
& H_{c}=\text { block diag }\left[H_{c 1}, \ldots, H_{c \gamma}\right]_{n_{,} \times n_{c}} \\
& F_{s c}=\text { diagonal matrix }\left(n_{s c} \times n_{s c}\right) \\
& K_{c}=\text { block diag }\left[K_{c 1}, \ldots, K_{c \gamma}\right]_{n \times n_{r}} \\
& H=\text { block diag }\left[H_{1}, \ldots, H_{\gamma}\right]_{n_{c} \times n} \\
& H_{s c}^{T}=\left[H H_{s c 1}^{T}, \ldots, H_{s c \gamma}^{T}\right]_{n_{w} \times n_{r}} \\
& F_{c}=\left[F_{c 1}, \ldots, F_{c \gamma}\right]_{n_{w} \times n_{c}} \tag{12}
\end{align*}
$$

Matrices K, H_{c} and $F_{s c}$ are positive-definite and symmetric in nature. The other matrices, $K_{c}, H, H_{s c}$ and F_{c}, act as observability matrices for the information (states) to flow from one level to the other. In this multiechelon-hierarchical structure, any two consecutive levels only exchange information and the number of controllers reduces as the levels go up.
3. Ninimisation of information exehange amongst the levels of haerarchy and the order of the dymamic coordinator

Consider the description of Ith-area LSS given by (2), (2a-c). Let $\bar{p}_{1}=\left\{p_{1}, \ldots, p_{m}\right.$, be the set of controllability indices with respect to $\left.u_{i f}=\left[u_{1}, \ldots, u_{m},\right]\right]^{T}$ of the ith-control station in the th area. Let $\tilde{p}_{i}=\left\{\hat{p}_{1}, \ldots, \hat{p}_{k_{1}}\right\}$ be the set of largest indices with $\hat{\bar{p}}_{i} \subset \bar{p}_{i}$, such that

$$
\begin{aligned}
& n_{i l}=\sum_{i=1}^{k_{i l}} \hat{p}_{i} \text { and } \\
& n_{i}=\sum_{i=1}^{\nu} n_{i l}=\sum_{i=1}^{\nu} \sum_{j=1}^{k_{1 i}} \hat{p}_{j} .
\end{aligned}
$$

Then the minimum number of inputs influencing all the states of the ith-control station is $k_{c i}$, and the minimum number of inpurs required to influence all the states of the l th area will be,

$$
\begin{equation*}
k_{c i}=\sum_{i=1}^{\nu} k_{c i} \tag{13a}
\end{equation*}
$$

Let $\bar{q}_{i}=\left\{q_{1}, \ldots, q_{r_{i}}\right\}$ be the set of observability indices with respect to $y_{i I}=\left[y_{1}, \ldots, y_{r_{1}}\right]^{T}$ of the i th-control station in the $/$ th area. By similar reasoning as in the case of controllability, the minimum number of outputs required to observe all the states of the l th area will be,

$$
\begin{equation*}
k_{i l}=\sum_{i=1}^{\nu} k_{o i} \tag{13b}
\end{equation*}
$$

Thus, in the sense of minimum information flow between the coordinator and the l th-area control stations, the minimum number of output states to be directed to the coordinator is $k_{\text {ol }}$ and the minimum number of inputs to be driven by the coordinator is $k_{c l}$. Though the order of the dynamic coordinator can be chosen arbitrarily the justified order in view of (13a) and (13b) can be taken as,

$$
\begin{equation*}
n_{c l}=\frac{k_{c l}+k_{o l}}{2}+1 \tag{14}
\end{equation*}
$$

where $n_{c l}$ is the order of dynamic coordinator for the lth area.

4. Solution of matrix equations for gain matrices in the costate expressions

It is well-known that any linear time-invariant multivariable controllable-observable system can be equivalently transformed into controllable-observable companion canonical (phase variable) triple ($\hat{C}, \hat{A}, \hat{B}$) form, from which it can be noted that the columns of \mathcal{C}^{T} are orthogonal to the columns of \hat{B}, that is $\hat{C} \hat{B}=0$. Utilising this fact, the nine matrix equations, $(9 a-c),(10 a-c)$ and $(11 a-c)$, can be solved in an alternative way. The coordinator and the supremal-coordinator dynamics are in choice. Therefore, the input matrices, B_{c} and $B_{s c}$, and output matrices, K_{c}, F_{c} and $H_{s c}$, of the coordinator and the supremal-coordinator can be so chosen that the following becomes true. That is,

$$
K_{c} B_{c}=0, F_{c} B_{c}=0, H_{s c} B_{s c}=0
$$

The output matrix, H, can also be chosen so that $H B=0$, but because B is restricted (being a plant-input matrix), the relationship $H B=0$ may not however come out to be true. If, $H B \neq 0$ then usually in the case of large-scale systems the result is extremely a sparse matrix and therefore may be neglected. Thus the nine matrix equations can be individually solved in the following manner:
(a) solve (9a) to give K
(b) solve (9b) to give $K_{\text {c }}$
(c) solve (10b) to give H_{c}
(d) solve (10a) to give H
(e) solve (10c) to give $H_{s c}$
(f) solve (11c) to give $F_{s c}$
(g) solve (11b) to give F_{c}.

If $H B \neq 0$, then the steps, (c) and (d), are combined to give both H_{c} and H as solutions. It is to note that steps (a) and (b) involve the dimension of VLSS, i.e. n. This may be further simplified by employing Siljak's approach of disconnecting the area LSS, since the interaction matrices amongst the area LSSs are sparse. Thus the steps, (a) and (b), may be carried out for each area separately. Since one coordinator is allotted to each area and there is no interaction between the coordinators, therefore the steps, (c) to (e), are carried out for each coordinator separately. And in the end, the steps, (f) to (g), give out only for one supremal unit.
The gain matrices obtained as solutions of ($9 a-c$), ($10 \mathrm{a}-\mathrm{c}$) and ($11 \mathrm{a}-\mathrm{c}$) when substituted into ($8 \mathrm{a}-\mathrm{c}$) give the optimum-costate trajectory, using which through ($6 \mathrm{a}-\mathrm{c}$), leads to optimum-control laws as follows,

$$
\begin{align*}
& u(t)=-R^{-1} B^{T} K x(t)-R^{-1} B^{T} K_{c} x_{c}(t) \tag{15a}\\
& u_{c}(t)=-R_{c}^{-1} B_{c}^{T} H x(t)-R_{c}^{-1} B_{c}^{T} H_{c} x_{c}(t)-R_{c}^{-1} B_{c}^{T} H_{s c} x_{s c}(t) \tag{15b}\\
& u_{s c}(t)=-R_{s c}^{-1} B_{s c}^{T} F_{c} x_{c}(t)-R_{s c}^{-1} B_{s c}^{T} F_{s c} x_{s c}(t) . \tag{15c}
\end{align*}
$$

With these optimal-control laws, the closed-loop decentralised and dynamical-hierarchical VLSS becomes.

$$
\begin{align*}
& \dot{x}(t)=(A-S K) x(t)-S K_{c} x_{c}(t) \tag{16a}\\
& \dot{x}_{c}(t)=-S_{c} H x(t)+\left(A_{c}-S_{c} H_{c}\right) x_{c}(t)-S_{c} H_{s c} x_{s c}(t), \tag{16b}\\
& \dot{x}_{s c}(t)=-S_{s c} F_{c} x_{c}(t)+\left(A_{s c}-S_{s c} F_{s c}\right) x_{s c}(t) \tag{16c}
\end{align*}
$$

where, $S=B R^{-1} B^{T}$

$$
\begin{align*}
& S_{c}=B_{c} R_{c}^{-1} B_{c}^{T} \\
& S_{s c}=B_{s c} R_{s c}^{-1} B_{s c}^{T} \tag{16d}
\end{align*}
$$

In equation (16a) the term, $S K x(t)$, forms a decentralised closed-loop feedback, whereas the term, $S K_{c} x_{c}(t)$, indicates a hierarchical drive from one-level up. In equation (16b), the term, $S_{c} H_{c} x_{c}(t)$, forms a closed-loop feedback to the dynamic coordinators situated at one-level up above the VLSS. The terms, $S_{c} H x(t)$ and $S_{c} H_{s c} x_{s c}(t)$, indicate drive from the VLSS and that from the supremal-dynamical coordinator, respectively. The supremal-dynamical coordinator is situated at one-level up above the dynamic coordinators. Thus, in (16 c), the term, $S_{s c} F_{s c} x_{s c}(t)$, forms a closed-loop feedback to the supremal unit with the term, $S_{s c} F_{c} x_{c}(t)$, acting as a drive from the dynamic coordinators.

It is now therefore quite evident that the closed-loop description given by ($16 \mathrm{a}-\mathrm{c}$) shows a multiechelon-hierarchical structure of a VLSS.

5. Stability analysis

In this section we now study the asymptotic stability analysis of the hierarchical closed-loop system ($16 \mathrm{a}-\mathrm{c}$). Let the Liapunov function be defined as,

$$
V[\bar{x}(t)]=\int_{1}^{\infty}\left\{\bar{x}^{T}\left[\begin{array}{lll}
Q & & 0 \tag{17}\\
& Q_{c} & \\
0 & & Q_{s c}
\end{array}\right] \bar{x}+\bar{u}^{T}\left[\begin{array}{ccc}
R & & 0 \\
& R_{c} & \\
0 & & R_{s c}
\end{array}\right] \bar{u}\right\} \mathrm{d} t
$$

where,

$$
\begin{align*}
& \bar{x}^{T}=\left[x^{T}, x_{c}^{T}, x_{s c}^{T}\right] \\
& \bar{u}^{T}=\left[u^{T}, u_{c}^{T}, u_{s c}^{T}\right] \tag{18}
\end{align*}
$$

and the optimal-control laws be given by,

$$
\begin{equation*}
\bar{u}(\bar{x})=\bar{P} \bar{x} \tag{19}
\end{equation*}
$$

where,

$$
\bar{P}=\left[\begin{array}{ccc}
\bar{K} & \bar{K}_{c} & 0 \tag{20}\\
\bar{H} & \bar{H}_{c} & \bar{H}_{s c} \\
0 & \bar{F}_{c} & \bar{F}_{s c}
\end{array}\right]
$$

On the basis of this assumption the closed-loop multiechelon-hierarchical structure becomes,

$$
\begin{align*}
& \dot{x}(t)=(A-B \bar{K}) x(t)-B \bar{K}_{c} x_{c}(t) \tag{21a}\\
& \dot{x}_{c}(t)=-B_{c} \bar{H} x(t)+\left(A_{c}-B_{c} \bar{H}_{c}\right) x_{c}(t)-B_{c} \bar{H}_{s c} x_{x c}(t) \tag{21b}\\
& \dot{x}_{s c}(t)=-B_{s c} \bar{F}_{c} x_{c}(t)+\left(A_{s c}-B_{s c} \widetilde{F}_{s c}\right) x_{s c}(t) \tag{21c}
\end{align*}
$$

Thus, using (19), equation (17) may be written as,

$$
\begin{equation*}
V[\bar{x}(t)]=\int_{t}^{\infty} \bar{x}^{T}\left[\overline{\mathrm{Q}}+\overline{\mathrm{P}}^{\mathrm{T}} \overline{\mathrm{R}} \overline{\mathrm{P}}\right] x \mathrm{~d} t \tag{22}
\end{equation*}
$$

where,

$$
\bar{Q}=\left[\begin{array}{ccc}
Q & & 0 \tag{23}\\
0 & Q_{c} & \\
Q_{s v}
\end{array}\right], \quad \bar{R}=\left[\begin{array}{ccc}
\mathrm{R} & & 0 \\
& R_{c} & \\
0 & & R_{s c}
\end{array}\right]
$$

Then the value of the performance criteria for a trajectory starting at $\vec{x}\left(t_{0}\right)$ is given by $V\left[x\left(t_{0}\right), x_{c}\left(t_{0}\right), x_{s c}\left(t_{0}\right)\right]$. The total time detivative of $V(\bar{x})$ as given by (22) is,

$$
\begin{equation*}
\dot{V}(\bar{x})=\mathrm{d} V(\bar{x}) / \mathrm{d} t=\dot{V}\left(x, x_{c}, x_{s c}\right)=-\bar{x}^{T}\left(\bar{Q}+\bar{P}^{T} \bar{R} \bar{P}\right) \bar{x} \tag{24}
\end{equation*}
$$

Since, $\dot{V}(\bar{x})$ is quadratic in \bar{x}, and because the dynamical-hierarchical-control system and the plant equations are linear, let $V(\bar{x})$ be also given by a quadratic form. Thus, instead of minimising $V(\bar{x})$, we pick a quadratic form of $V(\bar{x})$ and find the corresponding $\bar{u}(\bar{x})$. Therefore, we have,

$$
\begin{equation*}
V(\bar{x})=\bar{x}^{T} P \bar{x} \tag{25}
\end{equation*}
$$

where P is assumed to be any known positive-definite matrix. Matrix P consists of ordered-lincar maps for the multiechelon-hierarchical structure as given below.

$$
P=\left[\begin{array}{lll}
K & K_{c} & 0 \tag{26}\\
H & H_{c} & H_{s c} \\
0 & F_{c} & E_{s c}
\end{array}\right]
$$

where, K, H_{c} and $F_{s c}$ are positive-definte and symmetric matrices and $K_{c}, H, H_{s c}$ and F_{c} act as observability matrices for the information to flow from one to another level. The condition for the positive definiteness of matrix P is given in Appendix. I. The time derivative of $V(\bar{x})$ (25) is given below.

$$
\dot{V}(\bar{x})=\dot{\bar{x}}^{T} p \bar{x}+\bar{x}^{T} P \dot{\bar{x}}
$$

Using (21a-c) and (26) we get after substilution the following matrix equation:

$$
\begin{aligned}
& \dot{V}(\bar{x})=\bar{x}^{T}\left[\begin{array}{lll}
(A-B \bar{K})^{T} & -\bar{H}^{T} B_{c}^{T} & 0 \\
-\bar{K}_{c}^{T} B^{T} & \left(A_{c}-B_{c} \bar{H}_{c}\right)^{r} & -\bar{F}_{c}^{T} B_{s c}^{r} \\
0 & -\bar{H}_{s c}^{T} B_{c}^{T} & \left(A_{s c}-B_{s c} \bar{F}_{s c}\right)^{T}
\end{array}\right]\left[\begin{array}{ccc}
K & K_{c} & 0 \\
H & H_{c} & H_{s c} \\
0 & F_{c} & F_{s c}
\end{array}\right] \bar{x} \\
& +\bar{x}^{T}\left[\begin{array}{lll}
K & K_{c} & 0 \\
H & H_{c} & H_{s c} \\
0 & F_{c} & F_{s c}
\end{array}\right]\left[\begin{array}{lll}
(A-B \bar{K}) & -B \bar{K}_{c} & 0 \\
-B_{c} \bar{H} & \left(A_{c}-B_{c} \bar{H}_{c}\right) & -B_{c} \bar{H}_{s c} \\
0 & -B_{s c} \bar{F}_{c} & \left(A_{s c}-B_{s c} \bar{F}_{s c}\right)
\end{array}\right] \bar{x} .
\end{aligned}
$$

But $\dot{V}(\bar{x})$ is also equal to the negative integrand of the performance index (24); therefore, equating these two equations of $V(\bar{x})$, for arbitrary $\bar{x}(c)$, we get the following matrix equations:

$$
\begin{array}{r}
\begin{array}{r}
A^{T} K+K A-\bar{K}^{T} B^{T} K-K B \tilde{K}+Q+\bar{K}^{T} R \bar{K}-\bar{H}^{T} B_{c}^{T} H+ \\
\bar{H}^{T} R_{c} \bar{H}-K_{c} B_{c} \bar{H}=0 ; \\
A^{T} K_{c}+K_{c} A_{c}-\bar{K}^{T} B^{T} K_{c}-K B \bar{K}_{c}+\bar{K}^{T} R \bar{K}_{c}-\bar{H}^{T} B_{c}^{T} H_{c}- \\
K_{c} B_{c} \bar{H}+\bar{H}^{T} R_{c} \bar{H}_{c}=0 ; \\
-\bar{H}^{T} B_{c}^{T} H_{s c}+\bar{H}^{T} R_{c} \bar{H}_{s c}-K_{c} B_{c} \bar{H}_{s c}=0 ; \\
A_{c}^{T} H+H A-\bar{H}_{c}^{T} B_{c}^{T} H-H_{c} B_{c} \bar{H}+\bar{H}_{c}^{T} R_{c} \bar{H}-\bar{K}_{c}^{T} B^{T} K+ \\
\bar{K}_{c}^{T} R \bar{K}-H B \bar{K}=0 ; \\
A_{c}^{T} H_{c}+H_{c} A_{c}-\bar{H}_{c}^{T} B_{c}^{T} H_{c}-H_{c} B_{c} \bar{H}_{c}+\bar{H}_{c}^{T} R_{c} \bar{H}_{c}+Q_{c}-\bar{K}_{c}^{T} B^{T} K_{c}+ \\
\bar{K}_{c}^{T} R \bar{K}_{c}-\bar{F}_{c}^{T} B_{s c}^{T} F_{c}+\bar{F}_{c}^{T} R_{s c} \bar{F}_{c}-H B \bar{K}_{c}-H_{s c} B_{s c} \bar{F}_{c}=0 ;
\end{array}
\end{array}
$$

畨

$$
\begin{align*}
& A_{c}^{T} H_{s c}+H_{s c} A_{s c}-\bar{H}_{c}^{T} B_{c}^{T} H_{s c}+\bar{H}_{c}^{T} R_{c} \bar{H}_{s c}-H_{c} B_{c} \bar{H}_{x c}-\bar{F}_{c}^{T} B_{s c}^{T} F_{s c}+ \\
& \bar{F}_{c} R_{s c} \bar{F}_{s c}-H_{s c} B_{s c} \bar{F}_{s c}=0 ; \tag{29c}\\
& -\vec{H}_{s c}^{X} B_{c}^{\Gamma} H+\bar{H}_{s c}^{T} \vec{R}_{c} \bar{H}-F_{c} B_{c} \vec{H}=0 ; \tag{30x}\\
& A_{s c}^{T} F_{c}+F_{c} A_{c}-\bar{F}_{s c}^{T} B_{s c}^{T} F_{c}+\bar{F}_{s c}^{T} R_{s c} \bar{F}_{c}-F_{s c} B_{s c} \bar{F}_{c}-\bar{H}_{s c}^{T} B_{c}^{T} H_{c}+ \\
& \bar{H}_{s c}^{T} R_{c} \bar{H}_{c}-F_{c} B_{c} \bar{H}_{c}=0 ; \tag{30b}\\
& A_{s c}^{T} F_{s c}+F_{s c} A_{s c}-\bar{F}_{s c}^{T} B_{s c}^{T} F_{s c}-F_{s c} B_{s c} \bar{F}_{s c}+\bar{F}_{s c}^{T} R_{s c} \bar{F}_{s c}+Q_{s c}+ \\
& \vec{H}_{s c}^{T} R_{c} \bar{H}_{s c}-\bar{H}_{s c}^{T} B_{c}^{T} H_{s c}-F_{c} B_{c} \bar{H}_{s c}=0 . \tag{30c}
\end{align*}
$$

At this stage, it is required to determine the unknown matrices $\bar{K}, \vec{K}_{c}, \bar{H}, \bar{H}_{c}, \bar{H}_{s c}, \dot{\bar{F}}$ and $\bar{F}_{s c}$, which are the elements of matrix \bar{P} as given by (20). Because it is desired to find the control strategies as a function of state variables, then through Hamilton-Jacobi formulation it would not be impertinent to choose matrix \bar{P} as given below:

$$
\bar{P}=\left[\begin{array}{lll}
R^{-i} B^{T} & 0 & 0 \\
0 & R_{c}^{-1} B_{c}^{T} & 0 \\
0 & 0 & R_{s c}^{-1} B_{s c}^{T}
\end{array}\right] P
$$

When such a choice is being substituted in the set of equations (28a-c), $(29 a-c)$ and (30a-c), they reduce to the set of equations ($9 \mathrm{a}-\mathrm{c}$) , (10a-c) and ($11 \mathrm{a}-\mathrm{c}$), respectively. This leads to the original problem of solving the set of nine equations, the solutions of which are given by (26). Thus, the decentralised and herarchical-optimal-control laws given by ($15 \mathrm{a}-\mathrm{c}$) do indeed stabilise the VLSS.

6. Nuriber of levels of hierarchy

Depending upon the sparsity of interconnections in a VLSS, the number of area LSS can be decided. For each area, only one dynamic coordinator need to be designed. Thus the number of areas is equal to the number of coordinators. The VLSS and the coordinator dynamics are considered to be situated at levels 0 and 1 in the hierarchical systems. It is now quite evident that the total number of levels. excluding level 0 , will be equal to the total number of areas or coordinators. However, the number of levels in hierarchical systems can be reduced. In the earlier section, it has already been discussed about the order of the coordinator being chosen. The order of the supremal coordinator (at level 2) is also chosen in the same way by considering the controllability and observability indices at level 1 . Thus no matter whatever be the number of coordinators at level 1 , there can be only one supremal coordinator at level 2. If the order of the supremal-dynamic coordinator at level 2 becomes larger than the largest coordinator at level 1 , then only one more level (i.e. level 3) is recommended.

7. Conclusion

The problem of designing dynamic controllers for berarchical-feedback control of very-large-scale systems has been solved. The levels of hierarchy to exist is shown to be more than one. The multicchelon-hierarchical structure is formed through costate equations, which leads to solving the nine matrix equations ($9 \mathrm{a}-\mathrm{c})$, ($10 \mathrm{a}-\mathrm{c}$) and (11a-c), to give teedback-coefficient matrices as solutions. The lth-area LSS description (2) achieved by neglecting the interconnections among the area $i . S S$ is shown to serve two purposes: (a) to ease solving the first (wo. (9a), (9), matrix equations, and (b) to give the number of area LSS as also the number of dynamic coordnators required. The well-known properties of controliable-observable companion foms have been utilised to simplify the solution algorithm for the nine nonlincar-matrix cquations. Further, the order of the dynamic coordinators can be decided as whem in section ? through controllability and observability indices. In the stability analysis, it has been shown that there exists a non-symmetric positive-definite matrix P inrough which hierarchical-dynamical-optimal control laws do stabilise the VLSS. The number of levels of berarchy is being shown to depend upon the largest order at a certain level and the complexity in handling the states at that level.

References

1. M1:Sarovit, M.D. Macko. D. and Takafara, Y.	Theory of hichurchicul mulutrel symems, Academic Pres, 1970.
2. Schorfithe, J.D. AND Lasidon, L.S.	Decentralised piant control. SEA Trans. 196t, 5, 175-183.
3. Geithrion, A.M.	Elemens of large sate mathembical progemming: Part I: Concepts, Part If: Synthesis of algorithms and hibliography, Mat Si. 197t. 14, 672-691.
4. PEarson J.D.	Dynamic decomposition mehniques, in opionisatom methods for harge wale sustems with applicalons. Wismer. D. A. (ed.). NoGraw-till. 1471.
5. Schomemer, J.D.	Statuc matilevel systems, in Oprimation methods for ferge wale swient
6. SMITI, N.H. ANO Satt, A.P.	An introduction do bierachical swaces theory. Compaters Elect Engus. 1973, 1, 55-71.
7. Silsak, D.D. AND, Su indaresilan, M.K.	On hierarchical optimal control of large scale systems. Proc, hid Asilomar Conf. (ircuiss, Sisems, rompmom. $1974,495-5(0)$.
8. Sulak, D.D. And Sundareshan, M.K.	A multilevel optimisumon of large-scate dynamic systems. WEEE Trans. 1976, $\mathrm{AC}-2 \mathrm{~A}, 79$ - 84.
9. Shamk, D.D. AND Slendarishan, M.K.	Large seale systems: oprimisabilin und reliability, Internal Report. Department of Electrical Enginceriog, University of California, Berkeley, 1976.
10. Benemenista, A. Bernharb, P. and Coher. A.	On the decomposition of stochastic control prohkms, /RIA Res. Rep., No. 187. France. 1976.

11. COHEN, A, ANL
jol.NNi), \boldsymbol{G}
12. Sandleli. N.R. Ik., Varatya, P. Aflans. M. AND Saronovi M. (i.
13. Sincilt. M.G. AND「ॉ7! 」, A.
14. Singila. M. G.
15. Taksataka, Y.

Coordination methods by the predicion principle in large dynamic constained optimation problems. Proe. FFAC Symp. darge scale systems: Theory Appl., Udine, Italy, 1976.

Survey ol decontralized wontrol methods for large sale systems, IEEE Tram, 197s, AC-23, $10 \mathrm{~K}-128$.

Systems: Decomposition, optimisaion and control, Pergamon Press, 1978.

Dyamical hierarchical contro'. Nomb-Holland. 198is.
A muthered soructure for a cless of dynamical optimisation problems. M.S Thesis, Case Western Reserve University, Cleveland, Ohio. USA, 1965.

Generation of multikel control and estimation schemes for large scale systems: A perturbational approach, IEEE Trans, , $1977.5 \mathrm{MC}-7,1 \neq 152$.
17. Wanti, S.H. ants Davison, EJ.

On the stabilization of decentralised controi systems. FEEE Trans., 1973, $A C-18,47 .-478$

Appendix I

Matrix P consisting of ordered-linear maps for the multiechelon-hierarchical structure given in (26) is reproduced below:

$$
P=\left[\begin{array}{lll}
K & K_{c} & 0 \\
H & H_{c} & H_{c c} \\
0 & F_{c} & F_{4}
\end{array}\right]
$$

where, the diagonal block elements, K, H_{c} and $F_{s c^{*}}$ are positive-definite symmetric matrices and the off-diagonal block elements, $K_{c}, H, H_{\text {sr }}$ and F_{C}, are input-output maps between the levels of hierarchy. These mappings are indicated in the costate expressions ($8 \mathrm{a}-\mathrm{c}$).

Theorem: Matrix P shown above is said to be positive-definite,
if
$\operatorname{det}\left\{\left[\begin{array}{ll}K & K_{c} \\ H & H_{c}\end{array}\right]-\left[\begin{array}{l}0 \\ H_{, c}\end{array}\right] F_{c}^{-1}\left[0 \quad F_{c}\right]\right\}>0$
and det $\left[K-K_{4} H_{r}^{-1} H\right]>0$;
$O R$ if
$\operatorname{det}\left\{K-[K, 0]\left[\begin{array}{cc}H_{c} & H_{w} \\ F_{c} & F_{w}\end{array}\right]^{-1}\left[\begin{array}{l}H \\ 0\end{array}\right]\right\}>0$
and det $\left[H_{c}-H_{a} F_{\mathrm{w}}^{-1} F_{\mathrm{c}}\right]>0$.

Proof: By partitioning matrix P we have,

$$
P=\left[\begin{array}{lll}
K & K_{c} & 0 \\
H & H_{c} & H_{s c} \\
0 & F_{c} & F_{s c}
\end{array}\right] .
$$

The determinant of matrix P is,

$$
\operatorname{det} P=\operatorname{det}\left\{\left[\begin{array}{ll}
K & K_{c} \\
H & H_{c}
\end{array}\right]-\left[\begin{array}{l}
0 \\
H_{s c}
\end{array}\right]^{\left.F_{s c}^{-1}\left[\begin{array}{ll}
0 & F_{c}
\end{array}\right]\right\} \operatorname{det}\left[\begin{array}{ll}
K & K_{c} \\
H & H_{c}
\end{array}\right] ~}\right.
$$

For matrix P to be positive-definite $\operatorname{det} P>0$ which means,

$$
\operatorname{det}\left\{\left[\begin{array}{ll}
K & K_{c} \tag{Aa}\\
H & H_{c}
\end{array}\right]-\left[\begin{array}{l}
0 \\
H_{s c}
\end{array}\right]^{\left.F_{s c}^{-1}\left[\begin{array}{ll}
{[} & F_{c}
\end{array}\right]\right\}>0 ; ~}\right.
$$

and $\operatorname{det}\left[\begin{array}{cc}K & K_{c} \\ H & H_{c}\end{array}\right]=\operatorname{det}\left[K-K_{c} H_{c}^{-1} \mathrm{H}\right] \operatorname{det} K>0$.

Because K is positive-definite and symmetric, it requires,

$$
\begin{equation*}
\operatorname{det}\left[K-K_{c} H_{c}^{-1} H\right]>0 \tag{Ab}
\end{equation*}
$$

Thus, for matrix P to be positive-definite, both the conditions, (Aa) and (Ab), must be satisfied.

Again, by partitioning matrix P in a different way, we have,

$$
P=\left[\begin{array}{ccc}
K & K_{c} & 0 \\
H & H_{c} & H_{s c} \\
0 & F_{r} & F_{s c}
\end{array}\right]
$$

Then the determinant of matrix P is,

$$
\operatorname{det} P=\operatorname{det}\left\{K-\left[\begin{array}{ll}
K_{c} & 0
\end{array}\right]\left[\begin{array}{cc}
H_{c} & H_{s c} \tag{Ba}\\
F_{c} & F_{s c}
\end{array}\right]^{-1}\left[\begin{array}{l}
H \\
0
\end{array}\right]\right\} \operatorname{det} K .
$$

For matrix P to be positive-definite,
det $P>0$.

Because K is positive-definite and symmetric, it requires,

$$
\begin{align*}
& \operatorname{det}\left\{K-\left[\begin{array}{ll}
K_{c} & 0
\end{array}\right]\left[\begin{array}{cc}
H_{c} & H_{s c} \\
F_{c} & F_{s c}
\end{array}\right]^{-1}\left[\begin{array}{l}
H \\
0
\end{array}\right]\right\}>0 \text { and } \tag{Ba}\\
& \operatorname{det}\left[\begin{array}{cc}
H_{c} & H_{s c} \\
F_{c} & F_{s c}
\end{array}\right]=\operatorname{det}\left[H_{c}-H_{s c} F_{s c}^{-1} F_{c}\right] \operatorname{det} H_{c}>0 .
\end{align*}
$$

Because H_{c} is positive-definite and symmetric, therefore

$$
\begin{equation*}
\operatorname{det}\left[H_{c}-H_{s c} F_{s c}^{\sim} F_{c}\right]>0 . \tag{Bb}
\end{equation*}
$$

Thus, for matrix P to be positive-definite, both the conditions, (Ba) and (Bb), must be satisfied.

Therefore, for matrix P to be positive-definite either one of the pairs of conditions, (A) or (B), must be satisfied.
Q.E.D.

[^0]: ${ }^{7}$ First presented at the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute of Science, Bangalore, India, during December 11-13, 1986.
 \ddagger Present address: Department of Electrical Engineering, G. S. Institute of Technology and Science, Indore 452003.

