
!,,dlan Inst. Sci., Sep1:Oct. 1987, 67, pp. 377-391 
o lnd;an Institute of Science. 

BISWAR~OP S A K K A K ~  AND V. V. ATI~ANI  
Drpartment of Electric:d Engineering. Indian Inrtitute of Technology, Bombay 400 076 

Abstract 

There we thrce part5 in this paper: (1) a rtatc-rcguiating problem a solved for a very-laqe-scale system 
(VLSS). The optimal-control laws are formulated with multiechelon-dynamical-hierarchical structure. A set of 
matrixcqustions which arises in forn~uhling optimal-control laws IS shown to be solvahl; in an alternative way; 
(2) the stability o i  u c h  fi,rmulatcd ~~i~ilt~ecl~elon-hler;lrcbicai structure is analysed; (3) the number of levels of 
hierdrchg necded i n  a rnulticchclon structure is c;~lculated as also the order of dynamic-state reguiator required. 

Key words: Large-mlc systcm, dccentralircd control. multiechclon hierarchy, coordinators, dynamic-state 
feedback, controllithility and ohservahility indicss. Pontryegm's maximum principle, Second method of 
L~apunov. 

1. Introduction and problem statement 

One of the earliest formal quantitative treatments of hierarchical (multilevel) has been 
presented by Mesarovic et all. Since then a great deal of work has been done in the 
field"'? Two schemes, goal-coordination' and interaction-prediction15, describe a 
'coordination' process in hierarchical systems. In these schemes, only two-level 
controllers and their coordinations are proposed. The goal-coordination principle is 
concerned with open-loop control of hierarchical systems, whereas interaction- 
prediction has both open- and closed-loop forms of optimal control. There is another 
method7-'.'" of closed-loop control of two-level hierarchical system which has linear 
state-feedback-control structure. In this method, a structural perturbation is employed 
through which the interactions among the subsystems are set to zero. This makes the 
system completely decomposed to subsystems so that local linear state-feedback-control 
laws can be generated. Because of structural perturbation, the performance criteria 
calculated are not the same as that for the overall system. ~undareshan '~  has shown that 
a class of interactions is said to be 'beneficial' if the performance criteria in decomposed 
case is greater than that in centralised case and the class of interactions is said to be 
'neutral' if the calculated performance criteria for both decomposed and centralised 
cases are the same. 

'Fiat presented at the Platinum Jubilee Conierence on Systems and Signal Processing held at the Indian 
Institute of Science, Bangalore, India, during December 11-13, 1986. 

address: Department of Electrical Engineering. G. S. Institute of Technology and Science, Indore 
452 w3. 
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Consider a very-large-scale time-invariant system described by 

where x E R" is the state, y E W' the output and u E R"' The illput vector. The matrices, 
A, B, and C have appropriate dimensions. The mathematical n~odeI o f  a VLSS given by 
( I )  can be written in another form as, 

where y is the total number of areas, x i €  W' the state, u, E Dm' the input to the lth-area 
large-scale system (LSS) and the matrices A,. A i k  and B, are of dimensions ( r r , x n , ) ,  
(n, X n k )  and (11, x mi). respectively, such that, 

B = block diag[B , , . . . ,By]  

where A E IWriX" and B E  I W n X ' " .  Thus a VLSS is decomposed into y areas, with the 
interactions amongst the area LSSs being indicated by the matrix Ark k =  l , . . . , Y ,  
I =  I.. . . , y  and k # 1. Such interaction matrix in any VLSS model is very sparse in nature, 
and therefore the interactions amongst the areas may be neglected. This enables us to 
have a simpler model of each area in the compact form as given below: 
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where xi E R"' is the State, ell E iW"" the input and yi E Wrl the output vector of lth-area 
large-scale system. The model (2) can be expressed in detailed form as1' 

where u,/ E Rm' is the input and yil ER'" the output of the ith-control station in the Ith 
area, such that 

with m, = 1 mil and ri = 1 rl l .  
i =  1 , = I  

The mathematical model for the dynamic coordinator for VLSS is, 

and that for lth-area LSS is. 

such that, 

A, = block diag(ACl ,. . . ,A,,)  and 

B,  = block diag(BCl ,. .. , B,,) (3b) 

where I = 1,. . . , y areas, x,. E R"' the state, u, E R m r  the input to the coordinator. 
Similarly, x c 1 E  R",' and u,, E Rtnd denotes the state and input to the Ith-area coordinator 
~espectively. The matrices A,, B,, ACi and Bc1 are of dimensions (n ,  X n d ,  (& x m d ,  
(%I x n , ~ )  and (n, I x rn,,). respectively. 

The mathematical model of the suprema] coordinator is also dynamic in nature and is 
given by 
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with t f 3  m 3  subject to constraints ( I ) ,  (3) and (4). 

2. Design of optimal-desentralised and hierarchical-sontro! laws 

The Hamiltonian for the above opt~misation problem is expressed as a function of states, 
pontrol inputs and costates as given in the following, 

Applying the set of necessary conditions for the Hamiltonian H to be minimum, which 
gives a set of costate equations and the following optimal-control laws: 

We now relate the costates p(t), p,.(r), p,, (t) as linear maps of system states x(tJ, 
coordinator states x,.(t) and supremal-coordinator states x,,.(t), such that the hierarchical- 
feedback system forms a multiechelon (pyramid) structure. That is, we let 



HIEKAKCfIICAL OPTlMAL CONTROL 38 l 

The solution or these nine matrix equations, (9a-c). (IOa-c), and (lla-c), gives the 
matrices. R ,  K , ,  H. If,, H ,,, F,, and F,,. 
Slructrlrcs of gain matrices: 

K = block d13g[KI .. . . . K y I n x , ,  
H, = block diag[H, [ . . .  . ,H,,],, .,,, 
F,, = diagonal matrix(n,, x n,,) 

K ,  = block diag[K, I ,. . . . K,,I,,,,,, 
H = block d iag[ l f l ,  .. .,H,] ,,,, 
HI; = [ti?, I .. . . .Hf.,l,,,, .,,, 
FC ~[~c~....,Fcyln,,xpt,. 

Matrices K ,  H ,  and F,,, are psitive.definile and symmetric in nature. The other 
matrices, K, ,  H, H,,. and F , ,  act as ohservabiliLy matrices for the information (states) to 
f h~  from one level to the other. I n  this multiechelon-hierarchioal structure. any two 
Consecutive levels only exchange information and the number of cotltrollers reduces as 
the levels go up. 
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Consider the  description oi ith-are;> LSS given by (2). (2a--c). Let p ,  = {p ,  . . . . ,p,, , ,) bc 
the see of controllability indices with respect Lo u, \=[ i r t~ . .  . . .u,,,,]' of the ith-control 
station in the ith area. Let k ,  = {$l,...,p~,,) he the sci of Iargcst indices with ; ,CD,,  
such that 

Then the minimum numbes of inputs influencing all the states of the ith-control station is 
k,.,, and the minimum number oE inputs required to  influence all the states of the lth area 
will be. 

Let r j , =  {q l , . . . ,q, ,} be the set of observability indice5 with respect to 
y,, = [y . . .y,,, ]'of thc ith-control station in the ith area. By similar reasoning as in the 
case of controllability, the minimum number of outputs rcquired to observe all the states 
of the Ith area will be. 

k,>,= 1 k,;. ( E b )  
, = I  

Thus, in the  sense of minimum information flow between the coordinator and the 
lth-area control stations, the minimum number of output states to be directed to the 
coordinator is k,, and the minimum number of inputs to be driven by the coordinator is 
kc,. 'Though t h e  order of the dynamic coordinator can be chosen arbitrarily the justified 
order in view of (13a) and (13b) can be taken as. 

kc!+ 
TIc,  = - 

2 
(14) 

where 11,) is the order of dynamic coordinator for the Ith area. 
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4, Sojution of matrix equations for gain matrices in the costate expressions 

~t is well-known that any linear time-invariant multivariable controllable-observable 
system can be equivalently transformed into controllable-observable companion 
canonical (phase variable) triple ( C , a ,  8 )  form, from which it can be noted that the 
columns of CT are orthogonal to the columns of 8 ,  that is CB = 0. Utilising this fact, the 
nine matrix equations. (9a-c), (1Oa-c) and (Ila-c), can be solved in an alternative way. 
The coordinator and the supremai-coordinator dynamics are in choice. Therefore, the 
input matrices. B, and B,,., and output matrices, Kc. F, and H,,., of the coordinator and 
the supremal-coordinator can be so chosen that the following becomes true. That is, 

The output matrix, N, can also be chosen so that H B  = 0, but because B is restricted 
(being a plant-input matrix), the relationship HB = 0 may not however come out to be 
true. If, HB # O  then ustally in the case of large-scale systems the result is extremely a 
sparse matrix and therefore may be neglected. Thus the nine matrix equations can be 
individually solved in the following manner: 

(a) solve (9a) to give K 
(b) solve (9b) to give K ,  
(c) solve (lob) to give H ,  
(d) solve (IOa) to give H 
(e) solve (1Oc) to give H,s, 
(f) solve ( l l c )  to give F,, 
(g) solve ( l l b )  to give F,. 

If HB ;f 0, then the steps, (c) and (d), are combined to give both H ,  and H a s  solutions. 
It is to note that steps (a) and (b) involve the dimension of VLSS, ie. n. This may be 
further simplified by employing SiUak's approach of disconnecting the area LSS, since 
the interaction matrices amongst the area LSSs are sparse. Thus the steps, (a) and (b), 
may be carried out for each area separately. Since one coordinator is allotted to each 
area and there is no interaction between the coordinators, therefore the steps, (c) to (e), 
are carried out for each coordinator separately. And in the end, the steps, (f) to (g), W e  
out only for one suprema1 unit. 

The gain matrices obtained as solutions of (9a-c), (IOa-c) and (lla-c) when 
substituted into (88-c) give the optimum-costate trajectory, using which through (6a-c). 
leads to optimum-control laws as follows, 
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With these optirnai-control !aws, the closed-loop decentralised and dynamical-hierar. 
chical VLSS becomes, 

where, S =  B K ' B '  

In equation (16a) the term, SKx(t), forms a decentralised closed-loop feedback, whereas 
the term, SK&,(t), indicates a hierarchical drive from one-level up. In equation (16b), 
:he term, S,H,x,(t), forms a closed-loop feedback to the dynamic coordinators situated 
at one-level ap above the VLSS. The terms. S,Hx(t) and S,H,,x,,(t), indicate drive 
from the VLSS and that from the supremal-dynamical coordinator, respectively. The 
suprema!-dqnamical coordinator is situated at one-level up above the dynamic 
coordinators. Thus, in (I&), the term, S,,F,,x,.(t), forms a closed-loop feedback to the 
suprema1 unit with the term, S,,F,x,(t), acting as a drive from the dynamic coordinators. 

It is now therefore quite evident that the closed-loop description given by (16a-c) 
shows a multiechelon-hierarchical structure of a VLSS. 

5. Stability analysis 

In this section we now study the asymptotic stability analysis of the hierarchical 
closed-loop system (16a-c). Let the Liapunov function be defined as, 

and the optimal-control laws be given by, 
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where, 

On the basis of this assumption the closed-loop n~ultiechelon-hierarchical structure 
becomes. 

Thus, using (19) ,  equation (17) may be written as, 

Then the value of the performance critetia for a trajectory starting at I( to) is given by 
v[,r(to), n,(ro), x, , ( t , , ) ] .  The total t1me derivative of I/(*) as given by (22) is, 

V ( E )  = dV(Y)/dt = ~ ( x ,  x ,  x,,) = -?'(a + FrRpjl. (24) 

Since. V ( F )  is quadratic in 2 ,  and because the dynamical-hierarchical-control system and 
the plant equations are linear, let V(?) be also given by a quadratic form. Thus, instead 
of minimising V(T),  we pick a quadratic form of V(Y) and find the corresponding li(z). 
Therefore, we haw,  

"here P is assumed to he any known pitive-definite matrix. Matrix t' consists of 
' 

Ordered-linear maps for the muitiechelon-hierarchi~al structure as given below. 
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where, K, H ,  end F,,. are positive-definite and symlnetric matrices and Kc, H, H,, and F ,  
act as observability matrices for the information to flow from one to another lcvel. The 
condition for the positive definiteness of maLrix P is given in Appcndix I. The time 
derivative of V(7) (25) is given below. 

Using (?;la-c) and (26) we get after substilution the following matrix equation: 

But V(T) is also equal to the ncgntiye integrand of the performance index (24); therefore, 
equating these two equations of V(Z) ,  for arbitrary Tr(r), we get the following matrix 
equations: 



$this stage, it is required to determine the unknown matrices p, Kc. A, PC, R;,, Fc and 
F,,, which are the dements of matrix P as given by (20). Because it is desired to find the 
control strategies as a filnc~ion of state variables, then $rough Hamilton-Jacobi 
formulalion it would nor bc impertinent to choose matrix P as given below: 

Men such a choice is being substituted in the set of equations (28a-c), (29a-C) and 
(30a-ch they reduce to the set of equations (9a-c), (IUa-c) and (lla-c), respectively. 
This leads to the original problem of solving the set otnine equations, the soiutions of 
which are given by (26). Thus, the decentralised and hierarchical-optimal-control laws 
given by (15a-c) do indeed stabilise the VLSS. 

6. Number of levels of hierarchy 

Depending upon the sparsity of interconnections in a VLSS, the number of area LSS can 
be decided. For each area, only one dynamic coordinator need to be designed. Thus the 
"Umber of areas is equal to the number of coordinators. The VLSS and the coordinator 
d!'nami~s are considered to be situated a t  levels 0 and 1 in the hierarchical Systems. It is 

quite evident that the total number of 1evels.excluding Ievel U, will be equal to the 
'Otd number of areas or coordinators. However, the number of levels in hierarchical 
Systems can be reduced. In the earlier section, it has already been discussed about the 
order of the coordinator being chosen. The order of the suprema: coordinator (at level 2) 
is a h  chosen in the same way by considering the controllability and ohservability indices 
at level 1. Thus no matter whatever be the number of coordinators at level 1, there can 
be only one suprema] coordinator at level 2. If the order of the supremal-dynamic 
"ordinator at level 2 becomes larger than the largest coordinator at level 1, then only 
One more level (i.e. level 3) is recommended. 
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Appendix P 

Matrix P consi,ting n l  ordered-linear maps lor the ~nultiecheion-hierarchical structure 
gwcn 111 (26) is I-eproduced hclow: 

where,  thc diagonal hi lxk elements, K ,  H, and F,,, are po~itive-detinite symmetric 
matrices and  rhc o f t - d i ; ~ ~ o n e l  block elements. K, ,  H. H,, and F,, are input-output maps 
herueen thc levels of hierarchy. These m a p p i n g  are indicated In the costate expressions 
[8:1-c). 

~!i i l ro ,rrrr :  Matrix P shown X ~ O Y C  ib said 10 he po51tivc-definite. 
i t  
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Proof: By partitioning matrix P we have, 

The determinant of matrix P is, 

For matrix P to be positive-definite det P > 0 which means, 

det 
H H,. 

K K, 
and Je t  1 = d e t [ ~ - ~ , - H ; ' ~ ] d e t  K > 0 

Because K is positive-definite and symmetric, it requires, 

det[K-K,.H:'H] > 0. (Ah) 

Thus, for matrix P to be positive-definite. both the conditions, (Aa) and (Ah). must be 
satisfied. 

Again, by partitioning matrix P in a different way, we have, 

Then the determinant of matrix P is, 

det P = det K - [ K c  0 ] 1:: -' [ ] } det K .  

For matrix P to be positive-definite, 

det P > 0. 
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Because K is positive-definite and symmetric, it requires, 

det [ K - [ K <  01 [: i" Fsc H s c ] - l  [:I}> 0 and 

dek [ 21 = d e t [ ~ , -  H.s ,eF,]det  H,  > 0 

Because H,  is positive-definite and symmetric, therefore 

Thus, for matrix P to be positive-definite, both the conditions, (Ba) and (Bb), must be 
satisfied. 

Therefore, for matrix P to be positive-definite either one of the pairs of conditions, 
(A) or (B), must be satisfied. 

Q.E.D. 




