I, Indian Inst. Sci., Nov.—-Dec. 1987, 67, pp. 413-422.
© Indian Institute of Science.

Design of fast pipelined arithmetic units in VLSI®

SHISHPAL RAwWAT, PORAS T. BaLSARA AND MARY JANE IRWIN
Department of Computer Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Abstract

Inthis paper we propose a constant time pipelined adder and multiplier. Traditionally, efficient carry-look-
ahead adders concentrate on making the design regular so that it can be laid out in VLSI. This paper looks at
the construction of constant time adders that are regular and technology independent. However, the constant
can be made larger or smaller and depends on the area used. The absolute delay is still O(log n) and area used
is O(n logn). Actual layout of a processor is shown in NMOS following the Mead and Conway design rules.

Key words: Pipelined adder, carry-took ahead, VLSI, layout.

1. Introduction

Adders are fundamental units in any ALU design. Multipliers are found in all special
purpose fioating point processors. The major delay in any design so far has been due to
carry propagation. The proposed implementations are a mixture of pipelining and carry-
look-ahead principles. First, we will teview the carry-look-ahead scheme and then
describe the working and layout of our design. We will show that our design is free of any
input/output restrictions to achieve optimal area and time. Our design has been used in
the design of a digital image filtering scheme with success. It is extremely useful in situa-
tions that require lots of additions or multiplications in real time. Latency is not the

major concern, throughput is.

L1 Pipelining

Pipelines are ensemble of simpler arithmetic units called segments which work together
in an assembly line fashion. Each segment takes output of the previous segment,
processes it and then sends it to the next segment. The segments are isolated f.rom one
another by latches (registers). They are very well suited for iterative or recursive algo-

rithms. .

1.2 Carry-look-ahead adder
Let G 18y 3...a0 and b, _1b,,_5...by be two n-bit binary numbers; and s, .. 18, —2...5 be
their sum. The carry-look-ahead adder uses the following scheme:

¢ =gi+pic_1 8= aDbiBci,

“First presented at the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute
of Science, Bangalore, India, during December 11-13, 1986. 413

414 SHISHPAL RAWAT ¢y af

Fic. 1. Block diagram of a conventiopal carry-look-ahcad adder.
where,
g = 4;.b;, the generate signal,
p. = a;+ b;, the propagate signal.
The basic units have been designed as described by Ngai and Irwin'. The block diagram

in fig. 1 shows a conventional carry-look-ahead adder and Table I summarises the 1/O
signals for this adder.

Equations for these blocks are formulated in complementary logic due to the nature of
basic NMOS gates. Different blocking factors result in different speeds and sizes for
individual P, BC and BG units'. The number of inputs to a primitive block of BC unit
defines the blocking factor at that level. It is not necessary to maintain the same blocking

factor throughout. Typical size and speed for BC units with different blocking factors are
given in Table IL

2. Computational model

Our model assumes the existence of complex NMOS gates with a constant fan-in (4) and
a constant fan-out (max. 4). This can be reaffirmed by looking at the design of all our

Table 1
/O signals for adder shown in fig. 1

Unit Input Qutput

P 4;s, bs and carry ¢;_, from BC P, and G; to a BC, and sum bits with internal
look jahead.

BC

Pis, Gys from Ps or other BCs and ¢;., from P, G, to the next BC or BG and carry ouf
BG or other BCs signals to BCs or the Ps
¢ and P;s, G;s from BCs Carry out signals to BCs

DESIGN OF FAST PIPELINED ARITHMETIC UNITS IN VLSI 415

Table T
Typical blocking factors,

size and speed

Blocking ~ Area Time
factor (B) AXA nsec
2 88 x 68 5

3 152 % 127 g

4 196 % 141 125

basic units, described later in this paper. We assume that the wires do not involve any
computational delay. This is justifiable for most of our interconnections since the major
delay is encouraged in the gate rise and fall times. For extremely long wires (although in
our design no wire is longer than O (log n) length) we can assume the existence of drivers
that take up less than 10% of the area®. We shall concentrate on measuring the area,
rather than the number of gates in order to account for interconnections as well. Gates
are assumed to have a constant area and wires constant width. Thus, we can assume that
our P, BC and BG units occupy constant area since the interconnections within the units

are straightforward and of constant length.

3. Pipelined adder

We were concerned that the adder designed using the general blocking scheme (ﬁ_g. 1)
might not satisfy the timing requirements for our application. This led to the pipelining
of various computational stages (fig. 2). The main concern as stated earlier is the

throughput ; latency is not of much importance.
Ablock diagram of a typical pipelined adder unit is shown in fig. 2. Equations for each
of the above stages are well known®”’.

However, one problem that remains to be handled is that of interconnecting these
units. One should note that the P and G signals produced in the PG stage are needed at

Table IHX

1/O signals for pipelined adder

Unit Input Output

PG a;s b;s and carry input ¢o P;s and G5 to 2 BPG unit

BPG P;s and G;s from previous BPG/PG units Block P;s and G,s signals to other BPG or BG
units

BG Block P;s and G;s from BPG units Block carry signals to CP units

cp Block C;s, P;s and G Block C;s to S units

SUM Block C;s, Pis and G Generate individual ¢;s an.” §;s using internai
) carry look ahead

416 SHISHPAL RAWAT o1 al

a b a b a b a b

= b

LATCH

r LATCH
[
m BPG 1
[— LATCH ‘;]
E ! i
r— LATCH]
,
e |

i |
l LatcH T
L= *
%
r A

6. 2. Block diagram of the pipefined adder.

DESIGN OF FAST PIPELINED ARITHMETIC UNITS IN VLSI 417

the very end to produce the carries for S;s. We also have to carry the input operands a
and b through the pipe to perform other necessary computations. Our filtering appli-
cation required that min, max and pass operations be also implemented. Clearly the total

data path is O(n).
Let B be the blocking factor and n be the number of bits per operand.
Total number of input signals = 2n,

Number of signals carried from stage 1
n n
= (E)PS + (E) Gs.
Total number of signals carried until the BG unit

2n 1 1 2n 1 1
=m+Z 1+ +—+...) =2n+ = —_
n B(BT > ” Bl] <2n<1+B~1)
(-3)
ie., the larger the blocking factor, the smaller the number of signals that are to be
carried through. For B = 3 the data path width is 3n.

During the bottom half of the adder pipe, ie. when the carries are generated we can
see that for every P and G used, only one carry signal is produced, since,

Ci=PCi +Gy
This implies that the width of the data path can only shrink.

4. Layout

Ifone is not careful, interconnections can really consume a ot of area on silicon. In the
following paragraphs we suggest a method to layout the above mentioned pipelined
adder (for B = 2) in area n logn. Clearly, the number of stages in the above design is
approximately 2 logn. The layout algorithm described below, specifies the horizontal

spacing required.

Algorithm 4.1 Designadder (n)
(Assume that n is a power of two; 2 is chosen as the blocking factor)

If (n>2) then
begin

Designadder <-g),
Provide horizontal spacing of 2 log(2n)

Designadder (%) ;

418 STHSHPAL RAWAT ef al

end

else

Design the basic 2-bit Carry-Look-Ahead Adder
End {Designadder}

The above algorithm provides for the extra space required by P and G signals exactly
from the stage where they are generated. No global signals other than Vdd, Gnd and
Clock are required at any stage. Wires need to be routed to the nearest neighbors only.
A layout of 64-bit pipelined adder with a blocking factor of 2 is shown in fig. 3,

4.1 Area ond time measures

We now show that algorithm 4.1 causes the horizontal dimension of the adder to stay
0O(n). Let, the extra length for expansion needed to carry additional signals at each stage
be L(n), them,

L(n) = 2L(§) +2log2n

L(n) = kn—2logn—6 can be shown by elementary summation techniques.
Thus, we have (for the adder),

Totallength @ O(n)
Depth . O(logn)
Area ¢ O(n logn)
Delay O(logn)

Pipelined delay : G(1)

Figure 4 depicts a partial layout of a video processor® which uses a pipelined CLA
adder.

C D) g

[18 bits] 3 [T8 Bits —
o e f e, e
@ * g (5@ T] o [TEEs N EATETR g
Egl 00 @08 @A,E [FH 08 EFeE B0 E5C

Fic. 3. Layout scheme for a 32-bit pipelined adder (8 = 2).

DESIGN OF FAST PIPELINED ARITHMETIC UNITS IN VLSI 419

e i

Fic. 4. Layout of a processor which uses a pipelined CLA adder.

4.2 Tradeoffs for speed

1. Blocking factor can be varied for various combinations of areas and times.

. The as and bs need not be carried all the way through the pipeline. However, if we
carry (¢ b) instead of @ and b, initial Ps and Gs have to be carried through so that
individual sum bits can be generated. This will speed up the last stage but increase the
dimension, namely, the length of the adder by n and seems unnecessary. We can
achieve some Jatency speed up by generating Ps and Gs or exored as and bs at any
stage before coming to the final stage. However, each of these must be considered
with respect to the area that will be occupied.

[

5. Pipelined multiplier

The above mentioned concept of pipelined adder can be further cxtend_ed to desi'gn_ an
O(1) pipelined multiplier. Figure 5 shows a block diagram of such a pipelined multiplier.
The adders shown in this figure have some front-end logic in order to enable them to

generate partial products.
Let the ith multiplicand (n bit) be,
A=A, A An
and the ith multiplier (m bit) be
B = B Bin—1---Bn

42 SHISHPAL RAWAT o of

2
B o
Bl 1
a
o |
S N e B
IT I1

l LATCH J
2

l ﬂn. o o Rl
. o e aee ans ceen
; B

I P2
5}
Rn. s e Ri

s e o
B B
m m m—1)|

umit.delay D =clog n I

(min-1) m 1
Fi. 5. Block diagram of a pipelined multiplier.

DESIGN OF FAST PIPELINED ARITHMETIC UNITS IN VLSI 421

then the partial product at stage k—1 of A’ and B’ ig
Phoy = PuPy ... Py (=n+k-1).

In this discussion a stage refers to 1 adder stage. At stage k the partial product must be
increased by an amount equal to A’ B, If B;, happens to be zero, the partial product
need only be shifted (left shift}.

From the block diagram in fig. 5 one can observe that the partial product at every
stage is available after an O{logr) delay. This puts a restriction on the time at which the
next multiplier bit has to arrive and so, the multiplier bit at the /th stage is skewed in
time ((—1)*logn). A large number of buffers will be needed if the external logic
supplies the operand data bits in parallel. :

A large number of multiplications can be done in average O(1) time if the latency can
be tolerated. The first product, A'x B is available after a time delay of O(m logn),
after which, all the subsequent products are available after a delay of one clock pulse.

Multiplier recoding can be used to reduce the number of stages by half with minimal
addition of logic.

6. Ceonclusions

Once the pipeline is full, the sum/product bits from our arithmetic units are obtained in
constant time irrespective of the length of the input operands. This makes it very appro-
priate for applications in which a stream of data is to bc processed continuously at a high
speed. In the pipelined adder the constant delay is the delay of the slowest stage in the
pipeline and that is much smaller than the delay of an entire carry-look-ahead adder.

The AT? product for our adder is O(n log®r) which compares favorably with the
Brent and Kung adder® which is O(n log? n). However, the word width in their adder has
to be n/logn to achieve the mentioned AT product. Our design is free of such restric-
tions. For any general n our adder does significantly better than serial adders mentioned
by Mead and Conway?, and is nearly optimal. Its pipelined delay of O(1) though, can be
really put to good use in a pipelined architecture.

This design will be quite useful in data flow type architecture where a scheduler can
keep these units busy. If at any point the pipe is broken because of insufficient data, the
pipeline does not have to be flushed in order to be restarted.

References

1. NGar, T. F. anp Area-time efficient carry look ahead adders, Proc. of the Arith-7 Conf.,
Trwmn, M. J. Urbana-Champagne, June 1985.

2. Meap, C. A. AND Introduction to VLSI systems, Addison-Wesley, 1980.
Conway, L. A,

3. Waser, S. anD Introduction to arithmetic for digital systems designers, Holt, Rinebart &

Frynn, M. J. Winston, 1983.

W

o

~

®

i)

_HAMacHER, V.,

VRANESIC, Z. AND
Zaky, S.

. Brent, R. P anp

Kunc, H. T.

. Naat, T. F.,

Trwin, M. L Anp
Rawar, 8.

Bayoumi, M.,
JuLLien, G. AND

Irwin, M. 3,
Rawar, S.,
Baisara, P. T. AND
Mckowiak, T.

SHISHPAL RAWAY or of

Cornpeter organization, MeGraw-Hill, 1984,

A regitar layout for paraflel adders, TEEE Trans., 1982, C-31, 260264,

Area time efficicnt carry Jookahead adder, J. Parcilel Distributed Compy-
fing 3 Nov. [985, 02108,

An area time efficient NMOS adder integration, VLSI J., 1983, 1.
Design and {implenmentation of a video processor, Techoical Report 1985,

Deptt of Computer Science, Penn. State University, University Park,
PA 16802,

