J. Indian Inst. Sci.. Nov -Dcc. 1987, 67, pp. 429-438
¢ [ndian Institute of Science.

Algorithms for finding centers and medians of trees and
graphs on a parallel computation model”

PraNAY CHAUDHURIT
Department of Electronics and Electrical Communication Engincering, Indian Institute of Technology,
Kharagpur 721 302, Indua.

Abstract

This paper presents synchronized parallel algorithms for finding centers and medians of trees and graphs. The
computation model used is a shared memory single instruction stream, multiple data stream computer that
allows both read and write conflicts. Assuming that all the trees and graphs under investigation consist of n
nodes, the time bound achieved by the algorithm for trees is Oflog n) with n? processors whereas the same for
graphs is O(log d.log log n) with n*n/log log n] processors. where 4 is the graph diameter.

Key words: Parallel algorithms, graph, center, median, SM-SIMD computers, time complexity.

1. [Introduction

Centers and medians provide useful topological information about the concerned graph
and have applications in many real-life problems!. Dekel et af* proposed parallel
algorithms of O(log®n) time complexity with n* processors for finding centers and
medians of a graph on both cube-connected and perfect-shuffle computers. Recently,
Korach et al® have proposed algorithms for finding centers and medians of networks on
a distributed computation model in which the processors have no memory in common,
and can communicate only by exchanging messages. In this paper, we present
synchronized parallel algorithms for the problems of locating centers and medians of
trees and graphs.

The computation model used is a shared memory single instruction stream, multiple
data stream (SM-SIMD) computer. Simultaneous reading of several processors from the
same shared memory location is allowed; simultaneous writing in the same memory
location is also allowed provided all processors seek to write the same value. Such a
model of computation is used by several researchers*~7 for designing various parallel
algorithms.

The time bound achieved by the algorithm for finding centers and medians of a tree ls
O(log i) with n? processors whereas the same for finding centers and medians of a graph is
Otlog d. loglog n) using n?[n/log log n} processors, where n is the number of nodes of both
the tree and the graph, and d is the graph diameter.

"First presented at the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute
of Science, Bangalore, India, during December 11-13, 1986.
*Present address: Department of Computer Science. James Cook University, Towns Viile. Queensland 4811,

Australia. 429

430 PRANAY CHAUDHURI

2. Notation

Given a graph G=<V.E>, where [V] = n, we denote by

(1) d the diameter of G;

(2) 1(i,)) the length of the shortest path between nodes i and j, i, jeV;
(3) s(i)=max {I(i,))| je V] the separation number for i}’

(4) e={jls(j)=min {s()] ie ¥} } the set of centers of G:

(5) t{)= T I(i, j) the transmission number for ie b

ek
(6) m={jlt()=min [1()]ieV | } the st of medians of G:

In a rooted tree T{r)= <V, E,>, where re¥ is the root and |} = n, we denote by
(7) PR(i) the immediate predecessor or parent of ie b’ (it is assumed that PR(r)= o),
(8) L(i) the level of ieV, (it is assumed that L{r)=0);

(9) L the height of 7(r);
0) YCA(L, j) the youngest common ancestor of the pair i, je V.

(

For the definition of other graph theoretic terms used in this paper, see Christofides!.

3. Ceniers and medians of trees

The parailel algorithm for finding centers and medians of a rooted tree T(r)= <V, E>
proposed in this section uses an array A*(i), 1 <i<nel,, O0<k<L, in which each row |
contains a path from node i to root r in T{(r). Each entry of A*(i) gives the node number
of kth ancestor of i. The concept of such an array was first introduced by Savage®.

Definition 3.1. On the set of nodes of a rooted tree T(r) definc a function ‘4’ as follows:

AG) = {PR(t), VieV,Ai#r,
o, else.

Definition 3.2. On the set of nodes of a rooted tree 7(r) define a recursive function ‘A¥ as
foliows:
k1 (7 i :
A4 = {A(A (i), VieV Ak>0,
i, else

Theorem 3.3. Given a function 4 of a rooted tree T(r). it is possible to compute AMD),
I <i<n, 0<k<L, in Olog L) time with nl Pprocessors.
Proof.
Algorithm P:
Step 1: for i:1<i< ndo
A%iy:=1§ A’ (i) = PR(); od:

SYNCHRONIZED PARALLEL ALGORITHMS 431

Swep 2 forw:0<ws [logl]—1 do
Jor x:1<x<2% i11<igndo
ATy = AT(AN(DYY; od; od.

It is clear that Step | requires O(l} time with 2n processors while Step 2 can be
implemented in O(logL) time with nL processors. Combining the computational
complexities of both Steps 1 and 2 of algorithm P, the theorem clearly follows.

Once A(i), 1<i<n, 0<k<L is constructed, level L{i), YieV, can be obtained from
this array A*(i) as L(i) = min (k|4*(i) = rAO<k<L).

Theorem 3.4. Given the function A* of a rooted tree T(r}, it is possible to find level L(i),
YieV, in 0(1) time with n(L+ 1) processors.

Proof.
Algorithm Q:
Step I: for it1<ign, k:0g<k<L do
iff A%(1)=r then B(i,k):=1
) else B(i,k).=0; od;
Step 2: foridi<isn, k:0gk<L do
if k=0 then C(i,0): = B(i,0)
else C(i,k):=B(i,k}— B(i, k— 1); od;
Step 3: fori:l<isn k:0gk<L do
if C(i,k)=1 then L{i):=k; od.
It is obvious that each of the above steps requires 0(1) time with n(L+1) processors
and hence combining the computational complexities of all these steps of algorithm Q.
the theorem follows.

Theorem 3.5. Youngest common ancestors for all pairs of i, jeV, in a rooted tree T(r) can
be computed in O(log L) time with n® processors.

Proof.

Algorithm R:

Step 1: Construct array A*(i), 1<i<n, 0<k<L.

Step 2. Construct array D(1:n, 0: L) as follows:
200 DGk):=oc, 1<ign, O<k<L.
220 DU, LG)—k): =A%), 1 <i<n, O<k<L(i).
Step 3 for i:1<ign, ji1<j<ndo
(i,): = 0; h(i, j): = L+ 1; flag(i, j): = false;
while not flag(i, j) do
mii, j): = L UG)+ h(D)2k
if D(i,m{, j)) = D(j.m(i,])) then

432 PRANAY CHAUDITUR]

il DiLmgi, e s then RUL = mid, f)
else i DU.mti, ot bys= Dejomtiopt 1y
then 1L) = mlil b
else YOAU, o= Dyomd, 1k
flagti, ji 2 = trues fi fiy 1 od:od.

Step 1 requires Oflog L) time with nl. processors (Theorem 3.3) whereas array D(n
0: L) can be constructed in O{F) tme with n(f. 1 1) processors. Step 3 is a modified binary
search algorithm and considering all pairs of @, je 1, this step requires Otlog L) time with
n* processors. Therefore, the overall time complexity of algorithm Q is Oflog L) wilh »?*
processors, which proves the theorem.

The stepwise description of the parallel algorithm for finding centers and medians of a
tree is given below.

Algorithm TREF. CENTER AND MEDIAN:

[nput: Parent PR() for cach ieb’ in Tiry= <},

Output: Centers and medians of 7(r).

Step 1: Construct array A% 1 <

Step 2: Compute level L), Yie),

Step 30 Obtain for cach pair of nodes i, je 17, the youngest common ancestor YCA(ij).

Step 4: For cach pair of nodes i, je 1, compute {{i, j} using the relation
Hi gy = LUy + LOjy—2% LIYCA§G).

Step 5: Obtain s(iy= max [/(i,)| je ¥}, Yiel, and identily cach node ¢el as the center
of T{r}, provided s{c}= min {sii)] iel .
Step 60 Compule ()= £ [{i.j), Vie}, and idently cach node mel’, as the median of
ol
Tir). provided ((m) = min [1()]ie}’, .

Theorem 3.6, Algorithm TREE CENTER AND.
O(og n) with #* processors.,

Proof. The time complexity and processor requirement for cach step of algorithm
TREE..CENTER _AND_ MEDIAN arc summarised in Table I. From this, the
theorem clearly follows.

MEDIAN has i time complexity of

Table 1

Step 1 Otlog 1) il Thearem 3.3
Step 2 (1) Nt iy Theorem 3.4
Step 3 Olog 1)) n? Thearem 3.3
Step 4 Ol n* Trivial

Steps 5 and 6 Oflog m) nt Privial

SYNCHRONIZED PARALLEL ALGORITHMS 433

Algorithm TREE - CENTER _AND._MEDIAN is illustrated with the help of an

sxample in fig. L

Node ¢ll) Set of th)
{1 centers
of T(5
1 13 ks 1 & <8
2 2 8 5 2 3 22
2 3 = b4 3 3 12
4 4 2 P 4 & 2.8 22 3.5}
g 5 b4 3 3 12
3 8 3 % 3 4 18
7 7 5% 7 7 & 18
3 8 3 E4 8 4 18
(@) {b) (c)
FIG. 1. {a} An arbitrary rooted tree T(5) with n=8 (b) The array A} 1S/<8, O LA corresponding to

tree 7(5y, (c) Centers and medians of 7(5) computed by algorithm TREE _.CENTER _AND__MEDIAN.

4. Centers and medians of graphs

The most important task involved in finding the centers and medians of a graph G = < V.
E> is the computation of I(i,J), Vi, je¥. For this purpose, we propose a parallel
algorithm that computes (i,), ¥i. jeV n O(logd.loglogn) time with n? [n/loglogn]
processors. This algorithm basically generates n shortest-path (SP) spanning trees, each
rooted at the node i€V, and simultaneously computes the level of each node je I in each

SP spanning tree rooted at ieV.

4.1 Generating n SP spanning trees

We assume the graph G= <V, E> to be an equivalent directed graph (digraph) d_cno{ed
G'<V, E'>, where E'=E|{(},} YijeVs(ijeE}, without any change in ‘the
adjacency matrix or adjacency lists of G. With respect 1o the digraph G’_. a tree roo‘tec at
a node xe¥ containing all nodes of G’ reachable from x by an acyclic path of length
< 2% where k is an integer satsfying 0<k< MogdT. is denoted by T(x.k} which
preserves the SP property (SPP) defined as follows.

434 PRANAY CHAUDIIURI

Definition 4.1.1. Let y,z be a pair of nodes in the tree T(x, k) such that (y, z}eE” but (y, 5
does not belong to T(x, k). Then, the tree T(x, k) is said to possess the SPP if one of the
foliowing is true:

i LTk 2 LETR) 1

() LT k=25

where, L(z|T(x.k)) represents the level of a node = in T(x, k).

It is assumed that the digraph G’ is available in the form of its adjacency relations,
which in fact define the trees 7(x,0), ¥xeV. Initially, for cach xeV| the trees 7(),0),
YyeT(x,0) are merged with the tree 7{x,0) to produce a new tree 7(x,). This process of
tree merging is repeated for [logd | times finally producing the tree 7'(x, [logd1), for each
xe ¥, which is an SP spanning trec of G’ rooted at xel”. The tree merging is carried out in
such a4 manner that at any stage k, the tree T{x.k) which is obtained from the trees
Tix.k—1yand all T(y,k— 1), yeTix,k— 1), 0<k< [logd . preserves the SPP.

The detailed description of the algorithm for generating n SP spanning trees of G' is
given below, where PR(z|7T(x, k}) is used to denote the parent of 4 node = in T(x, k).
Algorithm SP ._SPANNING ... TREES:

Input: The trees 7(x,0), Vxe ¥, specified by
PR(»|T(x, 0) and L(y|T(x,0)), VyeV.
Output: The SP spanning trees T(x,[logd]). VxeV,
specified by PR(y|T(x,[logd])) and L(y{T(x,Tlogd])). YyeV.
1. k:=0;/* initialize */
2. while k<[logd(+ 1 do /* repeat lines 3 through 17[togd] times */
3. pr=0;
4. while p<[loglogn] do /* initialize matrices */
5. Jor each pairof x,y=1,2,..., ndo
6 Jor z={p[afloglogn]+ 1) to ((p-+1)[nloglogn]) do
7. if (2= X)A(PR(y|T(x, k1))t ¢) then
8 My, 2) o= L(y|T(x, k—1))
9. else if (zeT(x,k— 1)) A(PR(WT(z,k— 1)) @) then
10. ME(y, 2):= L\ T(x k= 1))+ L T(z, k= 1))
38 else MA(y,)= 03 od; od;
12. pi=p+1i, od;
13 for each pair of x, y=1,2,...., n do /* find the minimum of each row of each matnx
and define new trees */
14. find z,, such that Mi(y,z,)= min {M*(y,2)|z=1,2,...,n);
1s. PROYIT(x,K):= PROIT 2 k= 1)),
16. LT (x, k)y:= M~(y, z,.); od,
17 k:=k+1; od

SYNCHRONIZED PARALLEL ALGORITHMS 435

An algorithm for finding the maximum of # numbers on the same model as considered
in this paper is available®. It requires 0(n/p) time with p(1 <p <[n/log logn] processors.
Finding the minimum of a numbers is a logically equivalent problem to that of finding
the maximum and hence line 14 of algorithm SP__SPANNING_TREES can be
implemented in Olog logn) time with [a/log log#] processors. It can be verified easily that
the body of the main while-block (lines 3 through 17) of algorithm SP__SPANNING.._
TREES requires an exccution time of O(log logn) with n? ['n/log log n] processors. Since
the body of the main while-block is to be repeated for [logd] times, we have the

following.

Theorem 4.1.2. Algorithm SP_ SPANNING .. TREES requires O(logd.loglogn) time
with n? [n/log log 0] processors.

The arguments regarding the validity of the algorithm SP__SPANNING_TREES are as
follows. Since d is the diameter of the digraph G, every acyclic path between a pair of
nodes consists of at most d edges. Consequently, the tree T{x.[logd]) for each xel,
obtaincd as the output of the algorithm SP._SPANNING . TREES must consist of all
nodes of G'. Finally. it can be proved by induction that the tree T(x,[logd]) for cach

xel’, preserves the SPP.

42, Finding centers and medians

It follows from the property of the SP spanning tree of a graph G(or G') that the level of
anode je b, in a SP spanning tree rooted at a node iV, is the length of the shortest path
from i to j (ie. i, j)) in Glor). Once I(i,j), Vi, jeV is available, the rest of finding
centers and medians of a graph is straightforward. The following is a stepwise description
of the parallel algorithm for finding centers and medians of a graph.

Algorithm GRAPH . CENTER__AND_MEDIAN:
Input: The trees T(x,0), ¥ xe I, specified by

PRT(x,0)) and L(3[T(x.0)), Yyel.
Output: Centers and medians of G.
Generate n SP spanning Lrees, cach rooted at a node i€V, using algorithm SP._
SPANNING__TREES. For cach pair of nodes, i, je ¥, set 1(i, j):=L{j| TG, (logdT)).
¥, Viel. Mark cach node el as the center of G,
V.

Step 1:

Step 2 Obtain s(iy=max (i,))| je
provided s(¢)=min {s(i)| ie

Table 1Y
Step | Ologd. log log n) n?{nflog logn} Theorem 4.1.2
Step 2 0(log log n) nlnflog logn] Shiloach and
Viskhin*
2 Trivial

Step 3 O(logn) "

436 PRANAY CHAUDIIURI

Node [y s{

) Selof centers of G HO! Set of medians of G

9
8
(2,35 6) 6 ©)
9
7
7

oo o —
o MO PO NS @

(e)

FiG. 2 (a) A graph G: (b) SP spanning trees, each rooted at a node i=1.2..... 6 of G, generated at Step 1.0[
algorithm GRAPH__CENTER _AND__MEDIAN; {c} Centers and medians of G computed by algorithm
GRAPH __CENTER _.AND__MEDIAN,

SYNCHRONIZED PARALLEL ALGORITHMS 437

Step 3 Compute ()= 'L‘ lti.j). Viel. Mark cach node me) as the median of G.
r
provided t{m)=min {1{i}] ie 1"}

Theorent 4.2 \l"m‘ilhm GRAPH _CENTER_AND. _MEDIAN runs in Oflogd-lo,

log) time with 2= T log log] processors.

Proof. Table 11 summarises the time and processor bounds of cach step of algorithm
GRAPH_ CENTER__AND - MEDIAN. from which the theorem clearly follows.

Figure 2 illustrates algorithm GRAPH.__CENTER__AND__MEDIAN with the help

ol an example.

5. Closing remarks

Since algorithm TREE.. CENTER . AND. _MEDIAN does not require simullaneous
aeeess to the same memory tocation by several processors during write operation, this
algorithm also works on a SM SIMID computer without write conflict.

For digraphs two different separation numbers, namely, outseparation and inseparation
numbers are defined. As a result, for digraphs, two types of centers, referred to as
outcenters and incenters exist. Similarly, two different types of transmission numbers and
hence two Lypes of medians, ie., outmedians and inmediuns arc defined for digraphs’.
The paraliel algorithm GRAPH.._CENTER._AND._MEDIAN can easily be modified
for finding outeenters, incenters, outmedians and inmedians for digraphs.

An important outcome of this paper is a parallel algorithm that generates i SP
spanning trees of an undirected graph or a strongly connected digraph in Offogd. log log)
time with 1*[nfog logn) processors. Moreover as a direct consequence of algorithm
SP..SPANNING .. TREES the minimum depth spanning tree algorithm can be
developed. The existing parallel algorithm for the minimum depth spanning tree problem
due to Dekel of of? requires O(log? a} time and n? processors on both cube-connected and
perlect-shuffle computers.

The performance of a purallel afgorithm is usually measured in terms ol the cost of that
algorithm which is the produet between the parallel running time and the pumber of pro-
cessors used. Clearly the cost of the algorithm GRAPH__CENTER__AND __MEDIAN
for finding the centers and medians of gmph\ is a? logd, whereas for the same problem
the cost of Dekel ef al's® algorithm is n* fog® n. 1L may be noled that this problem can
also be solved in O(togn) parallel time by using Kucera's® all-pairs shortest paths
algorithm. Since Kucera's shortest paths algorithm requires #* processors the same will
be required by the algorithm for finding centers and medians of graphs and hence its cost
will be n* fog n unlike 1 logd as reported in this paper.

References
. P
L Curistornnis, N Graph theory: An algerithmic upproach, Academic Press. London, 1975,

438

t

DekKEL, E.
Nassimi, D. AND
Sanx., S,

KoracH, E.
RoTEM, DL aND
SANTORO. N,

s

SHILOACH, Y. AND
VisHRIN, UL

Es

KUCERa, L.

‘o

o

CHAUDHURL, P.

-

. CHAUDHURL P, anp
GHosH, R K.

. Savage. C. D.

oo

PRANAY CHAUDHURI

Purallel matrix and graph algorithms. S7456 J. Computing. 1981. 10, 637 6

Distributed algorithms for finding centers and medians 1n networks, 4CH
Trans. Progeamming Lanyudges Systems, 1984, 6, 380 401,

Finding the maximum, merging. and sorting in a parallel computation mod

JooAlgorihms, 1981, 2, 88 102,

Parallel computation and conflicts in memory access, Inf. Processing Ler,
1982, 14, 93 96,

An Oflogn) parallel algorithm for strong connectivity augmentatio
problem. Int. J. Compuicr Math. 1987, 22, 187 197.

Parallel algorithms for analyzing activity networks. Bir. 1986. 26, 418-429,

Parallel alyorithms for yraph theoretic problems. Ph. D. Thesis, CSL Rep
ACT-4, University of Illinois. 1977,

