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Abstract

nformation suffer from the following

Recently developed techniques for estimating surlace shape from shadi
drawback: Surface sfopes are estimated without ensuring thar those sfopes correspond o a valid surface. In this
paper, an existing iterative atgorithm is improved by projecting the surface slope estimates on 10 a valid set of
surlace slopes at cach iteration. Specifically, we require that the second partial derivatives of the surface do not
depend on the order in which differentiation is performed. The result is a more stable shape from shading
algorithm with a reduction in sensitivity to modeling errors and incomplete boundary conditions, Experimental

wsults are presented for simulated and real images.
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I. Intreduction

Shape from shading refers to the problem of determining the shape of a smooth surface
given a single image of that surface. One way to infer surface variations given a single
image is to model the observed image intensity in terms of the surface slopes and then
solve for the surface sfopes.

Let /(x.y) be the observed image intensity and z (x, y) be the unknown surface height
above the (x, y) plane. We express the relationship between image intensity and surface
slopes in the following form!2,

1(x,y) = R(z., 2y, B. 1. p)
where z. = gz/dx and z, = dz/dy are the surface slopes, § the illumination directioin
vector, [ the vector from the surface to the camera, and p the albedo or intrinsic reflecti-
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vity of the materials composing the surface. Atany point, (1u. ¥o). the reflectance map,
R.is assumed to be a function of the surface slopes and atbedo only at (x| v,). i.e. mul-
tiple reflections are ignored. We also assume that the albedo and the vectors 8 and ! are
known over the entire image, and R is spatially invariant. The imaging geometry is illus-
trated in fig. 1.

It is apparent from (1} that shape {from shading can be expressed as a problem of
solving a first-order nonlincar partial differential equation in x and v Early solutions! "3
were based on direct inversion of the differential equation (1) and served to demonstrate
the concept of shape from shading.

Unfortunately, an exact solution to the imaging equation (1) does not always exist, or
there may be an infinite number of solutions. In practice, modcling errors such as reflect-
ance map mismatch, imperfect knowledge of the light source. spatial and radiometric
quantization error, observation noise, and albedo variations are inevitable. Further,
boundary conditions arc generally not completely known and sometimes may not be
available at all. The existence and unigueness of a solution to (1} depends on all of these
factors. Hence, shape from shading is a very difficult problem in practice.

It is more practical to pose shape from shading as a constrained minimization problem
rather than purely an inversion problem. Brooks und Horn* proposed the approach of
selecting the surface estimate, Z(x,y), which minimizes the following cost function

Fi. 1. Imaging geometry.
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e=] JU-RG. 5P +A ¢L+22%422 ) dx ay, : @)

subject to certain constraints. The first term in the integrand is the squared error
between the observed image intensity and the image intensity predicted by substituting
the estimates (Z, , £,) into (1). This mean-squared error term allows for modeling errors
and noise. The second term in the integrand is a measure of quadratic variation in the
surface slopes, with A constant. This is a smoothness criterion which, in principle, assures
aunique smooth solution to (2) even when (1) does not possess a unique solution. It is
interesting to note that minimizing quadratic variation of the surface slopes is roughly
equivalent to minimizing the potential energy of the surface”.

Brooks and Horn* developed an algorithm to minimize e in (2) subject to the con-
straint that (Z,, £, ) satisfy known boundary conditions. The resulting algorithm vields
good results under very limited conditions. The major drawback of the Brooks and Horn
algorithm is that it does not take into account the interdependence of the functions z,
and z, but allows them to vary independently. If we allow (z, , z,.) to vary independently
then (1) may have an.infinite number of solutions even when boundary conditions are
completely known and there are no modeling errors. Similarly, the local approach
developed by Pentland® and later improved by Lee and Rosenfeld” does not require any
sort of global consistency of the slope estimates.

We have developed a simple solution to this problem by requiring that

Ziy (X, y) = 2,2 (xy), (3
for all (x, y) on the support of /, that is the second partial derivatives must be indepen-
dent of the order of differentiation. The only restriction this places on the surface is that
z{x,y) must be twice differentiable, as already assumed in using the cost function (2).
Conceptually, this simply enforces one of the basic tenets of the problem formulation.
The practical contribution of enforcing (3) is a more stable shape from shading algorithm
with a reduction in sensitivity to modeling errors and incomplete boundary conditions.

2. Shape from shading algorithm

There are many conceivable ways of enforcing (3). We have developed an approach
based on projecting the estimated surface slopes, (2,, £,), on to the surface slopes,
(2., Z,), satisfying (3) while minimizing the following distance measure

d{(Ze, ), (2es 5)) = | [Gm 20 (5,2, Y dx dy.

The surface height, £, is represented by a finite sum of orthonormal basis fgnctioqs
satisfying (3) and therefore satisfies (3) also. We have chosen to use the Fourier basis
functions {exp{jw,x +jw,y)}, since they simplify the minimization of (2) and allow
efficient computation using fast Fourier transform (FFT) techniques.

Q)

Using this approach the surface is represented by

2,y = 2 Clw)esplio )

@

(5
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where {C} are the coefficients of the Fourier series expansion of 2, and w = (w,, Wy} is
a two-dimensional index. For images of size N by N, { is normally [0,1,... N-1]x
[0,1...,.N~1] or a subset thereof. Now let C,, C,.C,,C, be the Fourier coefficients
for#,,%,,%, ., respectively. Then it is straightforward to show that (4) is minimized by
‘taking

Cla) =~ Cilw) ~jw, C\ (@) ®

2 2
- witwi

with the Fourier coefficients of the constrained surface slopes given by
Colw) = jw,C(w) and Cy(a) = jw, C(w).
Now for computer implementation some form of discretization is necessary. For
computational simplicity, assume that the surface slopes are circularly periodic and use

FFTs to evaluate the Fourier coefficients, €, and C),. With this discrete periodic formula-
tion, (4) is minimized by

_atw) Cl@) +afw) €, (@) @

C(Q) }a,,.[z—l-la_‘,lz

with
Cx(‘i’) = a,(w,) C(Q) and C»((‘.’) = a,v(wy) C(‘E)a

where a, and a, are the Fourier coefficients of the discrete differentiation operators in x
and y. Suppose we approximate the derivatives by finite central differences, e.g.

z(,m) = L[z +1,m)—z (I~ 1,m)] (8

and similarly for z,. For the central difference operator above we get a,(w,) = Lexp
{jwy} —%exp {=jw,}, and similarly a.(w.) = $exp {jw,} —Lexp {—jw.}.

A shape from shading algorithm is now described which minimizes (2) and also satis-
fies the discrete form of (3) and (4) at each iteration.

Using the finite difference approximations, the values of Z,(x,y) and 2, (x, y) which
minimize e are found iteratively by the following recursion for each point (x,y),

{Zf} =[f‘] +0U-R) [-2 R
2, Jk+1 2y Ik 0z,
[

5, K

at the {k+ 1)th iteration, where R and its partials are evaluated at [%,,%,]x. A1 18 2
constant inversely proportional to A in (2), [£,,%,], is a smoothed version of [Z,, Z,]c

and {Z,, 7] is obtained by substituting the raw estimates, [2,,2, ], into (7).
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The smoothing applied during each iteration is given by Brooks and Horn®

2,(l,m) = é [2,(l,m+1) +z.(l,m—1)
+2,(+1,m)+2,(I~1,m)]

1 ..
+ag (=1 m=D+z.(-1,m+1)

+EU+ 1, m+ )+E,0+lm—1)] (10)

and similarly for Z,. Note that this is just a discrete approximation to the Laplacian with
the center pixel left out. The rationale for smoothing [ 2. 2, ], is discussed thoroughly by
Tkeuchi and Horn® and Brooks and Horn®,

The iterative algorithm can be summarized as follows: smooth the previous slope esti-
mates using (10}, generate a new set of raw slope estimates using (9), and project the raw
slope estimates on to the nearest feasible solution using (7). The process is repeated until
the cost function either stops decreasing or becomes sufficiently small. Note that the
surface height is obtained by simply performing the inverse DFT of C(w) after the final
iteration.

3. Experimental results

The above algorithm was tested on synthetic imagery with and without known boundary
conditions and was also tested on real imagery. Figure 2 shows a partial sphere imbedded
in a plane, an image generated from that surface, the surface estimated given both the
image intensity and knowledge of the surface slopes around the border of the image, and
the estimated surface obtained from the shape from shading algorithm given only the
simulated image. This is in contrast with the earlier algorithm in Brooks and Horn*
which requires knowledge of the slopes where the sphere intersects the plane.

In fig. 3, a picture of the surface of the moon is shown along with a surface estimated
based on a guessed light source direction and an assumed reflectance map. Boundary
conditions are neither known nor guessed in advance and a reasonable surface estimate
is obtained. Finally in fig. 4 predicted images are synthesized for various imaging geo-
metries given only the original sphere and moon images. Here, the shape from s{ladmg
algorithm is applied to obtain a viewpoint—independent representation of the image.

4. Extensions

The algorithm used for enforcing integrability provides an integl_'ator that m_inimizes the
effects of local surface slope errors by combining all of the available data ina globally
consistent manner. Therefore, it may also be applied to other computer vision tec{]-
niques such as shape from texture and Pentland’s local shape from shading approach®.
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F1G. 2. Shape from shading results using simulated imagery: (A) shows the true surface shape, (B) shows an
image simulated from that surface, (€) is the surface cstimated by assuming that all surface slopes around the
border of the image are zero, (D) is the surface estimated with unknown boundary slopes.

The Fourier transform approach provides an efficient mechanism for including low-
resolution information from other sources, such as stereo-image pairs. If a low-resolution
surface estimate is indeed available, then the Fourier coefficients of the low-resolution
surface are substituted for the low-frequency Fourier coefficients of the shading-based
surface reconstruction € (@). This is most useful when complete boundary conditions are
not available and in applications where the observed image is noisy. The lowest-fre-
quency components of the surface are lost in the image formation process because image
intensity is a function of surface derivatives.

The algorithm presented in this paper has also been extended for application to SAR
imagery by using appropriate models for synthetic aperture radar (SAR) image coordi-
nate systems and reflectance maps. SAR image coordinates are approximated by an
orthographic projection of the surface height coordinates relative to a plane parallel to
the line-of-sight. The shape from shading problem formulation for conventional photo-
graphs represents image coordinates as an orthographic projection of the surface height
coordinates relative to a plane orthogonal to the line-of-sight. Hence, adaptation of the
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algorithm to the SAR image coordinates is straightforward. The arbitrary reflectance
map used in the shape from shading formulation allows us to simply substitute a reflec-
tance model for the SAR imagery. Typical SAR reflectance models have one or more
parameters that are not observable given the image intensity alone. When a low-surface
estimate is available along with the image intensity it is possible to estimate reflectance
map parameters and albedo.

5. Conclusions

A previously developed iterative shape from shading algorithm has been improved by
strictly enforcing integrability of the surface slopes obtained at each iteration. An efficient
computational approach was obtained using fast Fourier transforms. The resulting shape
from shading algorithm is more robust than the previous algorithms. It also provides an
additional mechanism for including data from other sources. The algorithm is suitable
for noisy imagery and has also been extended for application to SAR imagery.
With these developments, shape from shading should find use in some real-world.
remote-sensing applications. Practical applications for shape from shading are now being
examined. Effort is underway to gain a better understanding of the shape from shading
problem and to develop further improvements in numerical algorithms for its solution.
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Fic. 4. Predicted images for various imaging geometries given shape from shading results. The first row uses
the true sphere surface to predict the images, the second uses only the simulated sphere image from fig. 2, and
the third uses only the moon image from fig. 3. The first column js for illumination from the west at 10° above
the horizon, the second column has {liumination at 30° above the horizon, the third column has illumination at
45% above the horizon, and the fourth column has illumination from the northwest instead of directly from the
west.





