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~ l ccmuy  dwc lupcd  t i .~hnquc\  l o r  e\:liii;!ling~uiIc~cc \h.~pc from \h.~d~ng~nrol-o,.it~ao wifcr  from the Iollowtng 
draahach: Surface slope, xi. v\trmi\tcd without emuring th;u t h o x  \lope\ currcyxmd to a valtd surfdce I n  this 
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wrl:se l o p e \  at  u c h  twr.m,m hpcc~ttc;~lly. wc rcqulre 1hu1 the \en,nd pilrti.d dcrhvauvcr of t b ~  wrldcc i l u  not 
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rC\uIt\ are prescntcil for simi~l;tted and rc,d magm 

I .  Introduction 

Shape from shading refers to the problem of determinmg the shape of a smooth surface 
given ;I single imagc of that SUI-facc. One way to infer surface variations given a single 
Image is t o  model the observed Image ~ntensity in tcrms of the surface slopes and then 
~ l v e  lor the surface slope$. 

Let I ( x . y )  be the observed image intensity and z ( x , y )  be the unknown surface height 
h v c  the ( x ,  ,v) planc. We express the rc1;rtionship between image tntensiry and surface 
slopes in the following form'.', 

l(x.4.) = K ( z z ,  z , ,  p. I ,  p)  (1) 

ushere Z .  -- &lax  ;lnd i, = d r / d y  the surface slopes, P the illumination direction 
vector. 1 the vector from the surface to the camera. and p the albedo or intrinstc reflecti- 



[i is apparent from ( 1 )  thai shape fro111 s h a d ~ n g  can hc  e x p r c w d  as a pi&[en, 
solvirlg a first-order norilinear partie! d~ i i e rcn t i a l  equat ion in I ;inJ i.. Early so!ut ions '  ' 
were based o n  d l ~ c c t  inversion of the drttsrential equdtion ( I  ) ilncl served to demonstnte 
the concept ol' sllape from sh:iding. 

Unforiunateiy, ;in exact colution to  the imi~ginp cquat lon ( I )  does not always exist, or 
there may hc an rnfinitc number  of solutionr. In practice. lrlodciing errors such as ~eflect. 
a x e  map mianiatch, imperfect knowledge oi  the light source. sp;itial ,ind radiometric 
quantizat~on error. observation noise. and a l h c d i ~  \ a r~a t io i l s  a re  inevitable. Further. 
boundary cw~di t ions  a rc  generally not completely known and wrneilmes may not bc 
ava~ lah le  a l  all. T h e  e r i s re i~cc  and uniqueness o f  a \oiuticln to  ( I )  depend\  on 311 of these 
f;~ctol-s. Hence,  shape f'rorn \h;iding is A w r y  difficult problem in pr;~ctice 

It is more practical to posc shape from \hading as a constlained minrmization problem 
rather  ihan purely a n  inversion prohlem. Brooks slid Horn' propowd the approach of 
selecting the surface estimatc. ;(.r.)i), which in in~mizcs  the following cost lunction 
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E =I J ( I - ~ ( 4 , .  $))'+A . ( i ~ + 2 i & + i & ) d x  dy, (2) 
subject to certain constraints. The first term in the integrand is the squared error 
between the observed image intensity and the image intensity predicted by substituting 
the estimates (2,. f,.) into (1) .  This mean-squared error term allows for modeling errors 
and noise. The second term in the integrand is a measure of quadratic variation in the 
surface slopes, with A constant. This is a smoothness criterion which, in principle, assures 
a unique smooth solution to (2) even when (1) does not possess a unique solution. It is 
interesting to note that minimizing quadratic variation of the surface slopes is roughly 
equivalent to minimizing the potential energy of the surface'. 

Brooks and Horn4 developed an algorithm to minimize E in (2) subject to the con- 
straint that (2, , 2,) satisfy known boundary conditions. The resulting algorithm yields 
good results under very limited conditions. The major drawback of the Brooks and Horn 
algorithm is that it does not take into account the interdependence of the functions zx 
and 2, but allows them to vary independently. If we allow (r, , z,.) to vary independently 
then (1) may have a n  infinite number of solutions even when boundary conditions are 
completely known and there are no modeling errors. Similarly, the local approach 
developed by Pcntland" and later improved by Lee and Rosenfeld7 does not require any 
sort of global consistency of the slope estimates. 

We have dcveloped a simple solution to this problem by requiring that 

Z~."(X,Y) = z>:(x.Y)~ (3) 

for all (x, y )  on the support of I, that is the second partial derivatives must be indepen- 
dent of the order of differentiation. The only restriction this places on the surface is that 
z ( x , y )  must be twice differentiable, as already assumed in using the cost function (2). 
Conceptually, this simply enforces one of the basic tenets of the problem formulation. 
The practical contribution of enforcing (3) is a more stable shape from shading algorithm 
with a reduction in sensitivity to modeling errors and incomplete boundary conditions. 

2 .  Shape from shading algorithm 

There are many conceivable ways of enforcing (3). We have developed an approach 
based on projecting the estimated surface slopes, (i,, is), on to the surface slopes, 
(i,, i,), satisfying (3) while minimizing the following distance measure 

d{(&,  i y ) ,  (2r ,  2.")) = j  ~ ( ~ x - f x ) 2 + ( ~ . p - ~ v ) 2 ~ d ~ ~  (4) 

The surface height, 2, is represented by a finite sum of orthonormal basis functions 
satisfying (3) and therefore satisfies (3) also. We have chosen to use the Fourier basis 
functions { e ~ ~ ( j w , x + j ~ ~ y ) } ,  since they simplify the mmimization of (2) and allow 
efficient computation using fast Fourier transform (FFT) techniques. 

Using this approach the surface is represented by 



4d2 ROBERT T. FRANKOT AND RAMA CHELLAPPA 

where ( d }  are the coefficients of the Fourier series expansion of i, and g = (w ,  , w,.) is 
a two-dimensional index. For images of size N by N .  fl 1s normally [ O , l , .  . ., N- l] 
[o, 1. . . , . N- I] or a subset thereof. Now let c., ',. C.s, C.r :,, 6, be the Fourier coefficients 
for  2, ,i,. , i,, i, , respectively. Then it is straightforward to show that ( 4 )  is minimized by 
taking 

with the Fourier coefficients of the constrained surface slopes given by 

d,(@) = jw,i'(g) and C,(g)  = jw, C ( g )  

Now for computer implementation some form of discretization is necessary. For 
computational simplicity, assume that the surface slopes are circularly periodic and use 
FFTs to evaluate the Fourier coefficients. ex and C,. . With this discrete periodic formula- 
tion, ( 4 )  is minimized by 

with 

C,(O) = a X ( w x )  and c.v(w) = a,(w,) c(w), 
where a, and a ,  are the Fourier coefficients of the discrete differentiation operators in x 
and y. Suppose we approximate the derivatives by finite central differences, e.g. 

z,(I,m) = i [ z ( l + l , m ) - z ( 1 - l , m ) ]  (8) 

and similarly for z,. For the central difference operator above we get a,(w,) = f exp 
( jw , } - f  exp {-jw,}, and similarly a,(w,) = exp {jw,} -$exp {-A}. 

A shape from shading algorithm is now described which minimizes ( 2 )  and also satis- 
fies the discrete form of (3) and (4) at each iteration. 

Using the finite difference approximations, the values of i,(x, y) and i, ( x ,  y )  which 
minimize E are found iteratively by the following recursion for each point ( x , y ) ,  

at the (k+ l)th iteration, where R and its partials are evaluated at [ i , , t , ] k , A ~  is a 
constant inversely p10po~ional to A in (2 ) ,  [t,,$,]k is a smoothed version of [i,,i,]fil., 
and [h.iYlx is obtained by substituting the raw estimates, [i,, & , I k : . ,  into (7). 
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The smoothing applied during each iteration is given by Brooks and Horn.' 

and similarly for 2,. Note that this is just a discrete approximation to the Laplacian with 
the center pixel left out .The rationale for smoothing [i, ,&I, is d~scussed thoroughly by 
lkeuchi and  HornX and Brooks and Horn4. 

The iterative algorithm can he summarized as follows: smooth the previous slope esti- 
mates using (10). generate a new set of raw slope estimates using (9) ,  and project the raw 
slope estimates on  to  the nearest feasible solution using (7). The process is repeated until 
the cost function either stops decreasing or becomes sufficiently small. Note that the 
surface height is obtained by simply performing the inverse D F T  of C(g) after the final 
iteration. 

3. Experimental results 

The above algorithm was tested on  synthetic imagery with and without known boundary 
conditions and  was also tested on real imagery. Figure 2 shows a partial sphere imbedded 
in a plane, a n  image generated from that surface, the surface estimated given both the 
image intensity and knowledge of the surface slopes around the border of the image, and 
the estimated surface obtained from the shape from shading algorithm given only the 
simulated image. This is in contrast with the earlier algorithm in Brooks and Horn" 
which requires knowledge of the slopes where the sphere intersects the plane. 

In fig. 3, a picture of the surface of the moon is shown along with a surface estimated 
based on  a guessed light source direction and an assumed reflectance map. Boundary 
conditions a re  neither known nor guessed in advance and a reasonable surface estimate 
1s obtained. Finally in fig. 4 predicted images are synthesized for various imaging geo- 
metries given only the original sphere and moon images. Here, the shape from shading 
algorithm is applied to obtain a viewpoint-independent representation of the image. 

4. Extensions 

The algorithm used for enforcing integrability provides an integrator that minimizes the 
effects of local surface slope errors by combining all of the available data in a globally 
Consistent manner. Therefore, it may also be applied to other computer vision tech- 
niques such as shape from texture and Pentland's local shape from shading approach". 
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FIG. 2. Shape from shading results using s~mulalcd irnagci-y: ( A )  show, thc true surincc qhupe, (B) shows an 
image simulated from that surface, (C) is the surfacc ~.stim;ltcd hy :~ssuming t h ~  all surtace \lopes around the 
border of the image are zero. (D) is thc surface estirn;~letl with unknown hountidry slopcs 

The Fourier transform approach provides an efficient mechanism for including low- 
resolution information from other sources, such as stereo-image pairs. if a low-resolution 
surface estimate is indeed available, then the Fourier coefficients of the low-resolution 
surface are substituted for the low-frequency Fourier coefficients of the shading-based 
surface reconstruction C&J). This is most useful when complete boundary conditions are 
not available and in applications where the observed image is noisy. The lowest-fie- 
quency components of the surface are lost in the image formation process because image 
intensity is a function of surface derivatives. 

The algorithm presented in this paper has also been extended for application to SAX 
imagery by using appropriate models for synthetic aperture radar (SAR) image coordi- 
nate systems and reflectance maps. SAR image coordinates are approximated by an 
orthographic projection of the surface height coordinates relative to a plane parallel to 
the line-of-sight. The shape from shading problem formulation for conventional photo- 
graphs represents image coordinates as an orthographic projection of the surface height 
coordinates relative to a plane orthogonal to the line-of-sight. Hence, adaptation of the 
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algorithm to the SAR image coordinates is straightforward. The arbitrary reflectance 
map used in the shape from shading formulation allows us to simply substitute a reflec- 
tance model for the SAR imagery. Typical SAR reflectance models have one or more 
parameters that are not observable given the image intensity alone. When a low-surface 
estimate is available along with the image intensity it is possible to estimate reflectance 
map parameters and albedo. 

5. Conclusions 

A previously developed iterative shape from shading algorithm has been improved by 
strictly enforcing integrability of the surface slopes obtained at each iteration. An efficient 
computational approach was obtained using fast Fourier transforms. The resulting shape 
from shading algorithm is more robust than the previous algorithms. It also provides an 
additional mechanism for including data from other sources. The algorithm is suitable 
for noisy imagery and has also been extended for application to SAR imagery. 

With these developments, shape from shading should find use in some real-world. 
remote-sensing applications. Practical applications for shape from shading are now being 
examined. Effort is underway to gain a better understanding of the shape from shading 
problem and to develop further improvements in numerical algorithms for its solution. 
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C ~ l G .  4. Predicred images for various imaging geometries given shapc from shadmg results. The first row uses 
the true sphere surface to predict the images, the second uses only the simulated sphere image from fig. 2,  and 
the third uses only the moon image from fig. 3 The first column is for illumination from the wcst at 10" above 
the horizon, the second column has illurnmation at 30" above the horizon, the third column has illumination at 
45" above the horizon, and the fourth column has illumination from the northwest instead of directly from the 
*est 




