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Abstract 

This paper presents a general purpose expert system shell that incorporates m~xed-initiative reasoning and the 
Dem~ster-Shafer ID-S) scheme of evidence combination for inexact reasonine. Domain knowledee is stared in . . 
the form of rules wnh associated belief values defined in the D-S framework. To structure the consultation 
process, the knowledge base is implemented as a partitioned rule base. The reasoning component user a 
combination of forward and backward inkrencing mechanisms, and controls a mixed initiative interaction with 
the user. To  provide a suitable framework for performing the D-S computations and to achieve efficiency in 
propagatina behef values durine the chaining process, the rule base is com~iled into a network. A rule editor . . 
has also been designed to facilitate knowledge -base construction. 

Key words: Knowledge-based systems, inexact reasoning, Dempster-Shafer scheme, mixed mitiatirre 
reasoning. 

1. Introduction 

Expert systems are a class of computer programs that emulate the problem-solving skills 
of human experts in specialized domains. They differ from conventional programs which 
use fixed algorithms for manipulating data, in that they can piece together a large 
amount of fragmentary knowledge in the form of facts and judgemental rules used by 
human experts, to solve a given problem'. They address problems normally thought to 
require the specialized knowledge of human experts for their solution. Expert systems 
have been successfully developed in fields such as medical diagnosis2, equipment failure 
diagnosis3, computer configuration4, mineral exploratiod. and chemical data 
interpretationh. 

Earlier expert systems, such as MYCIN' and PROSPECTOR' for the most part were 
developed from scratch using dialects of Lisp (e.g., MYClN was developed in the 
Interlisp environment). Developing an expert system from scratch is an enormous task. 

'First presented at the platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute 
of Science, Bangalore, India, during December 11-13, 19%. 

'This work was originally conducted by the authors at the Department of Compiltcr Scicncc. Univcrs~ly of 
South Carolina. Columbia, S.C. 29208. 
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partly because the developers have to split their efforts between two major tasks: 
(i) knowledge acquisition from experts, and (ii) designing knowledge manipulation 
procedures. However, the development of earlier systems indicated that the inferenciq 
and knowledge representation components could be separated from the domain-specific 
knowledge base and applied to a completely different task (For example, SACON7, a 
system for structural analysis, and a number of ather systemsZ were developed using 
EMYCIN (essential MYCIN, i, e . ,  MYClN without its domain-specific knowledge base). 
Such tools, or shells as they are sometimes called. facilitate rapid development of the 
initial prototype of a knowledge-based system. 

Currently, a number of software tools are available for knowledge engineering. They 
fall into two categories: (i) skeletal systems extracted from previously built expert 
systems, and (ii) general-purpose languages developed specifically for the knowledge 
engineering task. In a skeletal system, all domain-specific knowledge is stored in the 
knowledge base in a predefined format, and operated on by an inference engine that is 
very similar to the system from which it is extracted. Examples of skeletal systems are 
EMYCIN' (derived from MYCIN), KASy (derived from PROSPECTOR) and 
EXPERT" (derived from CASNET). These tools are suitable for application domains 
where the problem-solving structure and strategies are similar to the original system from 
which these tools have been extracted. General-purpose languages are less constrained 
than skeletal systems, and provide flexible programming environments because they are 
not closely tied to any particular framework and allow for a wider variety of control 
structures. Thus, they may be efficiently applied to a broader range of tasks, although 
the process of developing the system may be more complicated. ROSIE", 0PS512, 
RLL' and HEARSAY-111" are examples of general-purpose programming languages 
developed specifically for knowledge-based system development. 

Most tools listed use the rule-based approach for knowledge representation, although 
the format and structure of the rules differ. For example, EMYCIN uses object- 
attribute-value triples. OPS5 uses attribute-value pairs, and ROSIE uses deductive or 
logic rules. In addition to rules, KAS uses semantic networks to represent classificatory 
information in the domain, and R O S E  uses a declarative data base to store simple 
English-like assertions. Uncertainty is also handled in a variety of ways: ROSIE and 
OPS5 have no in-built mechanisms for inexact reasoning. KAS uses an approximation of 
the Bayesian conditional probability scheme, whereas EMYCIN and EXPERT use ad 
hoc mechanisms. The inferencing mechanisms use either forward-or backward-chaining 
strategies with the exception of KAS which uses a combined forward-backward strategy. 
All the tools provide some facilities for knowledge acquisition in the form of rule editors, 
and debugging and testing aids in the form of trace functions. However, none provide 
more sophisticated debugging aids such as the ones developed in TEIRESIAS'~. Some 
of the newer tools, such as  ART. KEE and LOOPS' are flexible hybrid tools, i .e . ,  they 
can be used to represent knowledge in several different ways, and can be applied to 
several different paradigms. Table I summarizes the salient characteristics of a few of the 
expert system shells that are in use now-a-days. 

In this Paper. we present MIDST (a Mixed Inferencing Dempster-Shafer Tool) that 
incorporates inexact reasoning mechanisms based on the Dempster-Shafer evidence 



Table I 
Characterization of some expert system tools 

Name EXPERT EMYCIN KAS 

Debugging aids 

Production rules operating 
on propositions. 

Production mles operating 
on assueiative (object-altn- 
butt-value) tnpks.  

Behef values in the interval 
1-1, I]  attached to facts 
Values used as thresholds; 
no combination formula. 

Queshonoaire-driven (de- 
signer specified order lor 
data coUedioo). Systen. 
forward chains once aU 
data are gathered. Rules 
fired in prespedied order. 
No specific aids or editor 
for knowledge base con- 
struction. 

Trace facilitier Statistrcai 
hc t ions  that keep tabs an 
rule uiagc. 
Classification (diagnosis1 
p~emiptioo) problems, 

Certainty factor; a normali- 
zed probability t [- I ,  I] 
attached wlth every tnplc. 
Ad hoc combinallon for- 
mula. 

Backward chainmg, initnl 
goal is to determine the 
valuc of a top-level @xal- 
dttilbut~, 

agh-lcvel knowiedgs- 
bwed editor check! syntac. 
tic ~alldlt), contrad%clion 
and subrumplion 
Tracing faciliticl. HOW 
and WHY expianaflons. 

Consultatmn programs for 
dmgnosir. 

Production rules that link 
aatecedenls to conse- 
quents. Pmtioned reman- 
flc networks represent tax- 
anomical information bcai- 
ing on antecedent and can- 
Eequent rituatlons. 
Probabilistic Bayerian 
f iwenork.  Two lkeb- 
hood ratlor, measurer the 
deprec of sufficiency and 
necessity associated with 
each rule. 
Wed-initiative control, 
achieved by combining for- 
ward and backward charn- 
mg. 

Knowiedge-based edltor 
that operates directly on 
network structures 

Immediate feedhack an 
conwqucncec of changes to 
knowledge base. 
Consultatton environ- 
,nents. 

OPSS ROSlE 

Set of proposxtms acted 
u w n  bv mles General nL 

Production operating on 
lists of attribute-value 
pairs 

No bullt-m mechanism 

Forward charning, recog- 
rure-act c)reic Two conflict 
resolution strategies. Incor- 
porates an eificmt pattern 
match slgonthm 

No speclflc aids or edltor 
for knowledge base con- 
struetion. 

Trace and break facilitm 
to track intermediate steps 
in rcaxming. 
General programming en- 
vimnment. 

. . 
ary relations permitted. 
Enghsh-like ryntar 

No built-in mechanism. 

Forward or backward 
chaining. P o w e a  pattern 
matching strategies. 

No 'mowledge-based edi- 
or. Hard m add or m d f y  
rulos. Can use any text 
editor. 
Trace operations. Helpful 
error messages and error 
recovery. 
Constructing knowledge- 
baed Eptems. 

IhTERLISP FORTRAN WTERLISP MACLISP LISP 
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combination scheme. Our discusion will conccntrnlc morc on the design and 
implenientation of the rule network. and the inferencing mechanism that combines 
[onuiir&and backward-chaining procedures to achieve a mixed-inillatwe dialogue 
the users of the syhteln. 

Section 2 of the paper briefly reviews and compahcs existing nurncric;il schen~es for 
inexact reasoning. Section 3 presents the MIIPS'P' system architccrurc, and then discusses 
in detail the inferencing mechanisms along with the underlying knowledge hayc 
structures. Section 4 br~efly out!incs some o f  the knowledge-base construction aids 
available in MIDST, arid then discusses the framework for acquiring heiiet functions 

with the rules of the knowledge base Section 5 presents the conclusions and 
dir-ections tor furure work. 

2. Inexact reasoning 

In co~nplex domains, efficient problem solving often rcyuires the use of judgemental 
knowledge providcd by human experts, which can often he conveniently represented as 
if-then rules. 'The uncertainty or judgemental natarc oE the expcrt's knowledge is 
expresed by qualifying conclurions with terms such as likely, suggesrr, lutzds credence r o ,  
etc. Therefore, it becomes necessary for thc knowledgc engineer designing the system to 
represent and reason with this uncertainty in the problem-solving model. At least four 
separate causes for uncertainty can he identified. The first, described above, is due to thc 
inherent uncertainty in expert-supplied heuristics. The second cause Is related to the 
reliability of information, i . e . ,  the facts or data required for soiviny the problem may be 
imprecise. The third cause for uncertainty in conclusions is that they are often based on 
incomplete intormation. A fourth cauae for uncertainty arises when problem-solving 
information accumulated from multiple sources turns out to be contraclicto~y. It is this 
pervasive imprecision and uncertainty in the real world that requircs the adoption of 
inexact reasoning mechanisms in computer-aided decision making. 

One approach to solving this problem is by numeric modeling. This involves assigning 
numerical values to the linguistic terms used to qualify the conclusions made in rules: 
e.&, the value 0.6 may represent the phrasc suggests. The problem now reduces to 
interpreting these numbers in a suitable framework, and then defining appropriate 
functions for combination of evidence in that framework. 

The traditional approach to uncertain decision making has been the use of probability 
theory and Bayes combination formula for conditional probabilities; well-known 
examples of systems that employ Baycsian reasoning are  PIP'^, CADUCEUS'~. and 
PROSPECTORS. Thcse systems interpret belief values as conditional probabilities, ie.. 
the probability of ohserving the hypothesis on the right-hand side of a rule given the 
evidence described on the left-hand side of the same rule. When multiple evidence 
supports the same hypothesis the overall probability or likelihood of the hypothesib is 
computed by applying Bayes' formula. However, there are a number of problems 
associated with the practical implementation of Bayesian schemes. Szolovits and 
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pauker" have shown that a direct implementation of Rapes' formula leads to a very large 
and unmanageable database even if simplifying assumptions such as independence of 
individual observations are made even though they are hard to just tb physically. b a i n ,  
in the probabilistic framework, the probability that a given hypothesis h ,  is true, ~ ( h , ) ,  
and the probability that h ,  is false, P ( - h , ) ,  are linked by the formula: 

P(/lJ + P(- h,) = 1. (1) 
Thus, iFP(h,)  =O, we must have P(- h,) = I. Rut when we have no aprion' knowledge 
regarding truth or  falsity of h,, ignorance is difficult to represent. T o  work around this 
~roblem,  the assumption I'(h,)  = P(- h,) = 112, is often made in order to represent a 
state of ignorance. However, when the number of possibilities increase to more than 
two, ~ b a f e r ' % a s  demonstrated, by simple examples, that the technique of assigning 
equal probabilities can produce counter-intuitive results. Because of thc distortions it 
imposes on the problem. and because of its enormous data requirements, pure 
probabilistic schemes tend to be successful only in smal!, well-constrained problem 
domains17. Most real-life problems that involve complex decision makmg suffer from 
insufficient data and imperfect knowledge, so a rigoruus probabilistic analysis is not 
possible. T o  avoid sonlc of the problems that come along with the application of a formal 
probabilistic framework, ad hoc functions for the combinations of evidence have becn 
proposed. A well-known example is MYCIN2, a diagnostic expert system for selecting 
antibiotic therapy for bacteremia. The sy\iern uses heuristic functions based on 
confirmat~on theory or  subjective probability, and the mechanism for evidence 
combination conceived on  purely intuitive grounds has proved to be a good 
approximation to the intuitive methods used by doctors. Although this scheme was 
originally proposed as an alternative to probability theory,  dams'" has shown that 
comhining functions can be derived from probability theory with the assumption of 
statistical independence. 

The  drawbacks of the Baycsian and ad hoc schemes like the one used in MYCIN have 
drawn attention to  the Dempster-Shafer (D-S) theory in decision-making applications2". 
The key advantages of this scheme arc its abilities to allow belief to be assigned to subsets 
of hypotheses from the space of possibilities (as opposed to singleton hypotheses in the 
Bayesian framework), effectively repesent the concept of ignorance in the reasoning 
process, and  model the narrowing of the hypotheses set with the accumulation of 
cvidcnce. This provides a better model for the expert reasoning process. Belief functions 
and their combining rule in the D-S theory are well suited to represent incremental 
accumulation of evidence and the results of its aggregation. ~ h a f e r "  has shown that the 
D-S approach indudcs the Bayesian and MYCIN evidence cornhination functions as 
special cases. In addition, it avoids the probabilistic restriction of eqn (1). The definition 
of a belief function, and the mathematical formulation of the evidence combination 
schcme are presented next. 

2.1 The Uernpster-Shujer approach to inexact reclsonirrg 

The following discussion follows the notation used in Shafer" and Gordon & 
Shortliffe?'. The  D-S formulation is based on a frame of disccrnment, 8. a set of 
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or hyporheses about the exclusive and exhaustive possibilities in the domain 
under consideration. The notation 2@ is used to denote the set of all subsets of @. 

Further discussion is based on two concepts that can be adopted for the representation of 
evidence: the measure of belief committed exactly to a subset A of @ (i.e., A E 2@) and 
the total belief committed to  A. Exact belief relates to the situation where an observed 
evidence implies the subset of hypotheses, but this evidence does not provide any further 
discriminating evidence between individual hypotheses in A .  A function m:2" -, [0,1] is 
called a basic probability assignment (bpa) whenever: 

where 2" is the set of all subsets of O. The quantity m(A)  represents the measure of 
belief that is committed exactly to A.  In other words, a bpa represents the support a piece 
of evidence provides to subsets of O. Condition (2a) reflects the fact that no belief ought 
to be committed to '3, the null hypothesis, while (2b) states the convention that one's 
total belief has to sum to less than or equal to one. The measure of totul belief committed 
to a subset A is defined as: 

Bel(A) = 2 m(B)  , 
R C A  

(3) 

where the summation is conducted over all B that are subsets of A. A function Eel: 
2" + [0,1] is called a belieffunction over 8, if it is given by (3) for some basic probability 
assignment m. If (2b) sums to less than 1, then (1 - C m ( A ) )  defines a measure of 

A c e  

ignorance. denoted by m(O). In other words, m(O)  is the extent to which the 
observations provide no discriminating evidence among the hypothesis in the frame of 
discernment, 0 .  

Judgemental rules provided by experts basically represent individual pieces of 
evidence that imply subsets of hypotheses with confidence values that correspond to 
measures of exact belief (details of rule structure are given in Section 3.1). 
Corresponding to two different pieces of evidence el  and e2 with bpas m l  and m2, 
respectively, over the same frame of discernment. Dempster's rule of orthogonal 
products is applied to combine the effects of observing the two pieces of evidence and 
compute a new bpa, m, that is given by: 
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where A ,  represents hypotheses subsets that are supported by e , ,  B, represents 
hypotheses subsets supported by e2, and Ck represents the hypotheses subsets that are 
supported by the observation of both e l  and e2. The denominator is a normalizing factor 
to ensure that no belief is committed to the null hypothesis (condition 2a). More detailed 
discussions on the Dempster-Shafer theory of evidence combination appear in Shafer's 
work18. 

3. The MIDST system 

As discussed earlier, a number of expert system development tools are available now a 
days. A large number of these tools requi~e the encoding of domain knowledge in the 
form of pattern-action (or, antecedent-consequent) rules. Uncertainty representation in 
the form of numbers in the interval [0,1] or [-] ,I] ,  and inexact reasoning methods have 
also been incorporated into some of these systems. Current schemes are based on 
approxiqate Bayesian methods (e .g . ,  PROSPECTOR), or ad hoc schemes (e.g. ,  
MYCIN). Some others, such as FLOPS", use fuzzy reasoning techniques. However, to 
date there are very few systems based on the D-S scheme in spite of its advantages 
discussed in Section 2. Some of these advantages were demonstrated in a system called 
OASES, developed for trouble-shooting production processes'2~2i. In the rest of this 
section and the next, we discuss the design and implementation of MIDST, our expert 
system shell extracted from OASES. 

Figure 1 illustrates the basic components of the MIDST system. The system designer or 
the expert interacts through the system designer interface to create a knowledge base for 
problem solving.. This interface provides two main functions. Via the rule editor the 
system designer builds the domain knowledge base as a partitioned rule base. Facilities 
are provided for creating, deleting and modifying partitions, and then creating, deleting 
and modifying individual rules within partitions. The second function of the interface is 
to provide debugging feedback to the system designer and expert during the system 
development process. During system development after the system designer enters rules 
for a partition or makes changes to them, the system is designed to analyse the rules and 
determine if any rule is missing or is incomplete. We are still in the process of 
implementing this functionality of the system along with other debugging techniques, 
and, therefore, do not discuss them in this paper. 

The rule editor performs the task of converting rules entered in an English-like format 
into the Internal Lisp format required by MIDST. Uncertainty in the rules is represented 
as exact belief functions in the D-S framework, and are extracted from the domain expert 
employing a scheme we describe in Section 4. Rules are stored in the rule base, and 
associated queries are stored in the query database. The network compiler compiles the 
rules into a rule nerwork which makes the inferencing process efficient. The compilation 
of rules into a network is an expensive process, and is done off-line. 

The task of interpreting the domain knowledge is performed by the inference engine 
which is the heart of the MIDSTsystem. MIDST incorporates a combined forward- and 
backward-control structure in its reasoning mechanism. This allows the system to have 
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FIG. 1. MIDST system architcclure. 

mixed-initiative control. A typical session starts with the system allowing the user to 
volunteer information that might be relevant to the problem. This information is used by 
the system to derive intermediate or part~al conclusions. The system then assumes 
control, and what typically follows is a cycle of questions and answers in which the 
inference engine selects a relevant piece of evidence to query the user about. Instead of 
answering a question the user can take the initiative any time and volunteer additional 
evidence, seek clarification, or request an explanation. This latter request is handled by 
the explanation mechunism sub-system and takes one of two forms: (i) an explanation of 
the reason for that particular question. or (ii) a summary of the principal conclusions of 
the system at that pomt in the consoltation. This task is essentially performed 
examining the history of the consultation. The ability of  the system to examine the rule 
network and produce explanations is quite important as it rnakcs thc inferencing 
mechanism transparent to the user. Evidence combination is baaed on Dernpstcr's 
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combining formula (eqn 4) presented in Section 2. In the rest of this section, we discuss 
the structure of the knowledge base, the rule format, the design and implementation of 
the rule network and the reasoning strategy employed in MIDST. 

3.1 Knowledge-base structure 

The knowledge base of MIDST is formulated as a partitioned rule base. The structure of 
the rules (i.e., the rule language) as well as the partitions are designed to facilitate the 
representation of domain knowledge, and incorporate uncertainty in terms of belief 
functions in the D-S framework. 

A rule links a pattern on its left hand side (LHS) to one or more conclusions andlor a 
sequence of actions on its right hand side (RHS), i.e., the LHS pattern represents 
relevant evidence for the conclusions on the RHS. Single pieces of evidence are 
represented as attribute-value pairs, and, in general, an LHS pattern is a conjunction of 
pieces of evidence, (c.g., [(<process type > <continuous flow >) & (<problem 
occurrence > < continual >) & (< insuJficient capacity > <late in process flow > ) I ) .  
Actually, evidence in the LHS pattern of a rule can be one of two types: 

(i) askable, corresponding to information that can be obtained by directly querying the 
user (therefore, they have expert-supplied queries associated with them), or 

(ii) verifiable, corresponding to evidence obtained from rule firings. (They represent 
intermediate conclusions in the chaining process). 

Each conclusion on rhe RHS is a disjunctive set of hypotheses, where an individual 
hypothesis is represented as an attribute-value pair. In addition to conclusions, the 
system designer may also specify a sequence of forward-chaining actions on the RHS of a 
rule. These actions are usually Lisp functions which permit the system designer to 
perform additional computations, or incorporate overriding control constraints. 

To accommodate uncertainty in the rule structure, the shell associates an expert 
supplied belief value with every conclusion on the RHS. Belief values are modeled as a 
bpa function in the D-S framework. Note that belief values may also be associated with 
individual pieces of evidence in the LHS pattern. They may be derived from user input 
for askable patterns or computed values for verifiable patterns. BFis a Lisp function that 
Computes the overall belief value for the LHS pattern of a rule. If multiple pieces of 
evidence are involved, the belief value associated with the LHS pattern is the minimum 
of the belief values of each piece of evidence on the LHS of the rule. 

A rule from the O A S E S ~ ~ . ~ ~  system illustrates the rule structure described above: 

[(<process-iype > <continuous pow> ) bf, and 
(< insufficient capacity > <late in process flow > ) bfb] -+ 

{[(<cause > <process design >) 0.51 

[ ( <cause > < (raw materials, technology, mainfenance) 2 0.31 1 .  
The expert may also supply evidence that negates the belief in a conclusion. For 

example, in the OASES framework a rule stated in English is: 
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if (continuous flow fibrrgluss munulacturing process) & (molten glass viscosity is not 
nominal) & (all ingrrdiem conzpaction ratios are within limiis) 
then ( rde  out bin Ievelflucfnations as the cause for tile raw material s o u r ~ i n g , ~ r ~ b [ ~ ~ ) ,  

Such heuristic rules enable the expert to apply the process of elimination in the 
diagnostic process. In the D-S framework, evidence against a hypothesis is treated as 
evidence in favor of the negation of the hypothesis in the set theoretic sense. Therefore, 
if @ = (bin  level fluctuations, inconsistency qf ruw V I U ~ W ~ U ~ ,  post-scale contamination} 
then the above rule translates to: 

if (rontit~uous flow fiberglass manufacturing process) & 

(molten glass. viscosily is not nominal) & 

(all ingredient comp~ction ratios are within linriu) 

the11 (inconsistency of raw muterials or post-scule contamination is the causefor the mw 
material sourcing problem). 

Facilities are provided for partitioning the knowledge base into separate chunks or 
units. This may facilitate the modeling ol  the expert's reasoning process. Conceptually, 
partitions represent the breakdown of a complex problem-solving process into a 
sequence of component subprohlcms. The division o f  the knowledge base into partitions 
is an attempt to ctreamline and make efficient the inferencing niechanism by imposing a 
structure on the problem-solving process. The partitioning approach also provides an 
efficient way to model the expert's reasoning proccss. As a result, the knowledge 
acquisilion process can he made more structured, thus making a little simpler, an 
otherwise difficult task. Another benefit of partitioning, discussed later, is that it makes 
the D-S scheme easier to implement and computationally more efficient. 

A n  important feature of the expert system shell is the compilation of rules into a 
network that makes the backward-cbaining phase of the inferencing more efficient, and 
provides a convenient means for implementing the chaining process in the D-S 
framework. This compilation is done off-line and the p u l t a n t  network is stored as a 
multi-linked list. The rule network is described in greater detail next. 

3.2 The rule network compiler 

The MIDST rule compiler takes advantage of knowledge available from a static analysis 
of the  rule set to produce a more efficient representation for computational purposes. 
Specifically, it constructs a Lisp structure that embodies a block of rules that bear on the 
same diagnostic conclusion. 

3.2.1 The rule network design 

The rule network represents a compilation of ~ndividual rules, and links conclusions to 
relevant evidence. Each sequential partition is compiled into a disjoint rule network. For 
example, fig. 203) shows a portion of the rule network corresponding to rules in xxZJ, 
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(rule03 
(((<dist> <less-equa1200>)) BF) 
([[[<site of play> <shelf>) 

(<site of play> <margin>)) 0.8)) ) 

(rule04 
(((<dist> <greater-ZOO>)) BF) 
((((<site of play> <craton>)) 0.6)) ) 

(rule06 
(((<move> <seaward>) 

(<beds-dip> <seaward>) 
(<beds-deepen> <seaward>) 
(<abrupt-change> <no>)) BF) 

((<site of play> <margin>)) 0.7)) ) 

(rule18 
(((<sedfiner> <seaward>)) BF) 
((((<beds-deepen> <seaward>)) 0.7)) ) 

(rule19 
(((<sedfiner> <landward>)) BF) 
((((<beds-deepen> <landward>)) 0.7)) ) 

(rule20 
(((<sed_homogeneous> <seaward>)) BF) 
((((<beds-deepen> <seaward>)) 0.7)) ) 

(rule21 
(((<fauna-deepens> <seaward>)) BF) 
((((<beds-deepen> <seaward>)) 0.7)) ) 

(rule22 
(((<reflectors-thin-&-dip> <seaward>)) BF) 
((((<beds-dip> <seaward>)) 0.6)) ) 

FIG. 2a.  Some of the XX rules. 

that deal with the identification of the site of a hydrocarbon play. The rules are listed in 
fig. 2(a). Both conclusions and evidence are represented in the same conceptual 
framework: attribute-value pairs. They form the nodes of the network. Rules relate 
evidence patterns to conclusions, and appear as links in the network. Links have weights 
associated with them. These weights are directly dependent on the amount of belief that 
the evidence pattern provides for the particular conclusion it is linked to. Final 
conclusions represent the top layer of nodes in the rule network. In fig. 2(b), the top 
layer of the network represents the possible values of the site of a hydrocarbon play: 
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-.-~-~ 

1 0 6  

: < r e f l e c t o r s _ t h m 4 4 l p ,  
: ~ i e d w a r d ,  . . ................................................... 

FK. 2h. Sccuon oi :he rule netwurl, tot XX. 

within the cruton, on the conrbienml shy ,  uand on rile ocrunlc murgbz. In addition, there 
are two other kinds of  dritwny ~iodes. The first is an AND node: a conclusion that 
depends on a conjunction of evidences is linked to thc evidence-nodes through this kind 
o f  node. The second is a level node. Level nodes link two hypotheses spaces. 
Conceptually, a hypothesis bpace is made up from the set of rules that verify the same 
attrihute. It should be noted that the conclusions in a hypothesis space many ba final or 
intermediate, and evidence may cithcr be askable or verifiable. In fig. 2(b), the nodes 
enclosed in the dashed boxes represent hypothcscs spaces. Nodes corresponding to 
verifiable evidence patterns are linked to levcl. Evidence nodes corresponding to the 
same attribute convcrge on to the same level-node. For example, in fig. 2(b) < beds- 
deepen > is a verifiable attnbute, and, theretorc, all evidence nodes that support the 
values of this attribute (seaward or lundwurd) are linked to the same level-node. This 
level node is also linked to the hypothesis space where a value for this attribute may be 
derived. Thus, the overall structure of the rule network is that of hypotheses spaces 
linked to each other through level-nodes. 

In inferencing terminology, reritrable pieces of evidcnce represent intermediate 
conclusions and their presence leads to chaining or reasoning at multiple levels. TO 
handle chaining in the D-S framework each liypothcsis space defines a separate frame of 
discernment (6)). This approach closely mirrors the method suggested by Gordon and 
Shortliffe for implemcnting MYCIN2" in t h ~ s  framework. The conceptual structures in 
the knowledge base are the attribute-value pairs, and each verifiable attribute defines a 
frame of discernment extendmg over the possible values o f  that attribute. An advantage 
of such an implementation is that it maintains mutual exclusiveness of hypotheses and 
independence of evidence, a requirement in the D-S framework. 
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A shortcoming of the current nclwork implementation is that it doe7 not completely 
capture all the informatm contained in the rules. For example, the network does 11ot 
provide featurcs to faithfully represent rules that have evidence-supporting multiple 
hypotheses. or evidence that $upports a set of hypotheses rather than a singleton 
hypothesis. As a result, when the pattern on the LHS of a rule is instantiated, the actual 
rule is invoked to generate new hypotheses and compute the new belief function. In 
future, we will define additional dummy nodes to solve the above representation 
problem. The network would then provide effective speed up both in the forward- and 
backward-chaining modcs of operation. However. in oui current research the emphasis 
was on developing efkient  backward chaining and quer:,-selection mechan~sms, and the 
current network configuration definitely achieves these objecives. 

In summary, somc of the salient features of the network implementation are: 

(i) the presence of bidirectional links which permit easy traversal along the network 
structure, and 

(ii) a table look-up mechanism that allows identitication of nodes corresponding to an 
attribute. This allows a single-step access to any node in the network. 

The utilizaiion of the network for efficient query and rule selection during backward 
chaining, and propagation of bcllef values between hypotheses spaces is further 
elaborated in the ne'st section. 

3.3 InferencinglControl structures 

The inferencing mechanism has four main components: the evidence combination 
schemc. the procedure for selecting the top-ranked hypothesis, the query-selection 
mechanism that directs the user-system dialogue based on the top-ranked hypothesis, 
and the top-level controller that is related to the selection of partitions within the rule 
base. The system adopts a mixed-initiative form of control. Initially, the user may 
provide facts and evidence that helshe considers relevant to the problem. The system 
forward chains on this evidence. establishes intermediate conclusions, and then ranks 
goal hypotheses based on some criteria, eg,  the belief values associated with each goal 
hypothesis. The D-S scheme is used to update the belief values of hypotheses depending 
on the evidence provided by the user. MIDST then goes into the backward-chaining 
mode, identifies the top-ranked hypothesis and then the best question to ask the user to 
try and establish this hypothesis. If the user considers the current query to be irrelevant, 
helshe may provide additional facts and evidence, unrelated to the query, which switches 
the system back into the forward-chaining mode. This approach illustrates miseti- 
initiative control. 

The overall flow of control for the inferencing mechanism is shown in fig. 3. The user 
interface is directed by the ASKQ routine. In the initial step, the system goes through 
questions in the top level partition (the partition that has an initial predeterm~ned 
sequence of queries similar to the ASKFIRST queries in MYCIN*), and the user 
responses are converted into appropriate evidence patterns and stored in working 
memory. Depending on the responses, the partition controller transfers control to an 



478 GAUTAM BISWAS AND T. S. ANAND 

1 1 
LLYfL I 

B 

i > 

ho. 3. The inference control structure. FIG. 4. Simple rule network. 

appropriate partition. Forward chaining and evidence combination is performed by the 
DEDUCE function. This establishes intermediate conclusions based on which the final 
goal hypotheses are ranked. The function GETMAXH is invoked to pick the leading 
hypothesis. Next the backward-chaining process is initiated, and CHOOSEQ selects 
appropriate queries based on the top-ranked hypothesis. At each step, the exit condition 
is checked by an EXITCHK function. Before querying the user for more information, 
the system checks if, based on the current belief values, it can come to some definite 
conclusions. Instead of having a standard overall EXlTCHK function, the shell allows 
the system designer to define EXITCHK routines for every partition. For example, the 
following conditions: 

(i) the ignorance factor, m (O) is below a certain threshold, 

(ii) the belief value committed to the top-~czked hypothesis exceeds a second 
threshold, and 

(iii) the difference in belief values between the two top hypotheses exceeds a third 
threshold 

were checked in the EXITCHK routine for the lower-level partitions of OASES'~ to 
establish the leading hypothesis beyond doubt. As a justification, we observe that a 
combination of the first two conditions ensure that further corroborating evidence would 
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change the belief in the leading hypothesis only marginally, whereas the third condition 
enwres that the belief in the leading hypothesis is sufficiently greater than any of the 
other possibilities. Other EXITCWK conditions can be specified for individual levels. 

As discussed eariier. user interactions are controlled by the ASK0 routine. This routine 
generates queries and invokes a separately defined routine indcpendent of the shell (user 
interface in fig. 1) to interpret the user's response. Depending on the sophisticatih of 
the system interface this routine may incorporate some form of natural language 
proccssing. The routine returns an evldence pattern or a set of evidence patterns 
depending on the user's response. These patterns are stored in the MIDST systcm 
working memory. For example, in the OASES2' system, the ASKQ routine incorporates 
a module GENEV which is based on a combined ATT parser-keyword matching 
approach. The user may provide a direct reply to the system query, or if he wishes to 
specify other relevant information, he may do so in his response. 

3.3.2. DEDUCE 

This is the forward-chaining routine. The initial algorithm adopted for DEDUCE can be 
describcd as follows: 

1. HYPS t list of hypotheses sets and associated belief values. 

2. Match the evidence pattern generated by the user-supplied information with the 
current active rule set. 

3. Find all rules that have satisfied left-hand sides (this is. the instantiated set) 

4. Trigger all rules in the instantiated set one by one, and update the belief values of the 
hypothesis in HYPS using Dempster's combination formula (The order in which rules 
are fired is not important). 

5. Perfom all forward-chaining actions associated with the rule being fired. 

This algorithm reflects the traditional forward-chaining approach where the interpreter 
searches working memory, picks a set of rules that can be fired, makes a choice and fires 
a rule which updates the contents of workmg memory. This process is repeated till no 
rules can be fired. However, this straightforward approach could not be directly applied 
to MIDST since this would result in a large amount of extra computation, as is illustrated 
below. Consider a very simple example, with the following rules: 

rulel:  if A then B ,  0.6, 
rule2: if Cr then A,  0.4, 

rule3: if CZ, then A ,  0.5. 

The portion of the network corresponding to these three rules is shown in fig. 4. If 
working memory denotes that C2 has been established with belief value = 1 then rule:! 
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derives A with belief = 0.5, and this results in an update of belief values of all hypotheses 
in Level J frame of discernment. On propagation of belief in A,  rule1 derives B, and, 
therefore, equation 4 can again be applied to update belief values of hypotheses in Level 
I frame of discernment. Now, if at some later time CI is established, rule2 will fire and 
the belief in A (and other Level J hypotheses) will be updated, and this change in belief 
will propagate to higher levels (say Level I) ,  where belief values of all hypotheses will 
have to be recomputed. However, evaluation of equation 4 is computationally 
expensive, and it would be quite wasteful to repeat the entire computation every time the 
belief in an already established hypothesis or evidence is updated. A number of schemes 
have been proposed for making the belief function computations more efficient; the 
better known examples are schemes proposed by Barnett*', an extension of Barnett's 
scheme proposed by Gordon and Shortliffezo, and then a more generalized scheme 
~ roposed  by Shenoy and shaferz6. 

But none of these directly address the situation described, where changes in belief 
values of hypotheses need to be propagated to higher levels so that belief values at these 
levels may be updated. However, this involves complete recomputation of all belief 
values at higher levels (which is computationally very expensive), whereas, ideally, the 
belief values should be updated by incremental recomputation. The options thus left 
open to us were, either t o  use some sort of approximation for incremental updating of 
belief values at higher Levels, or use some other technique to handle this situation. We 
chose the latter. In order to prevent wasteful computations, belief values were not 
transmitted between levels, till the EXITCHK conditions, described in Section 3.3, were 
satisfied. Therefore, in the example above, the belief value for A would not be 
propagated to  the next level till it was established that there would be no significant 
change in its belief value (either because of conditions (i) and (ii) in EXITCHK, or 
because the system knows of no other evidence, i .e . ,  rules, that can support the 
hypothesis). However, within a level, the DEDUCE function operates as described in 
the beginning of this section. In order to implement this scheme, local structures called 
hypothesis-bases are defined for each hypothesis space. These structures store 
intermediate beliefs in the hypotheses and once these beliefs achieve a 'sufficient' value, 
or all rules associated with this level have been exhausted, they are added on to the 
global evidence-base (working memory). The 'sufficient' criterion is defined by the 
EXITCHK conditions. The modified algorithm that incorporates this change is described 
below. 

DO for all the newly acquired evidence patterns 

1. Determine the level in the network where the evidence pattern is applicable. 
2. Retrieve the local hypothesis-base of that level from the level-node in the network. 

HYPS +list of hypotheses sets and associated belief values. 
3. Do until no more rules can be fired. 

a. Match the evidence pattern with the current atcive rule set. 
b. Find all rules that have satisfied left-hand s'c'es (this is the instantiated set). 
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c. Trigger all rules in thc instantiated set one by one and update belief values of the 
hypotheses in HYPS wing Dempster's combination formula (The order in which 
rules arc iircd i.; not important). 

d. Perform all forward-chaining actions associated with the rules being fired. 

4. For cvery levcl if the local HYPS satisfies the EXITCHK conditions, add this 
HYPS to the global evidence-base and mark the corresponding level as solved. 

3.3.3. GETMAXH 

The function of thc GEI'MAXM routine is to.determine the most promising ( i . e .  the top 
ranked) hypothes~s which the system then tries to establish by qucrymg thc user for more 
information. The procedure adopted for doing thls is as follows: 

1 .  Rank the hypothesis in the HYPS corresponding to the top-most level of reasoning in 
the current active partition. 
This ranking is done on the basis of the exact behef committed to the hypotheses. 

2. Select hypothcsis with maximum belief 

3. If this is a set, sclect hypothesis with maximum belief among the elements of the set. 

The query-selection mechanism is implemented by the routine CHOOSEQ. Given the 
leading hypothesis which the system is trying to ver~fy, CHOOSEQ examines the 
network of compiled rules to find out which rule it needs to fire to increase belief in the 
ledding hypothesis. The network, as discussed earlier, links hypotheses to relevant 
evidence patterns as described by the expert-supplied rules. If thz most relevant pattern 
IS askable, CHOOSEQ returns the corresponding query to ASKQ. On the other hand, if 
the pattern is verifiable, and the level associated with that attribute has not already been 
solved (in the sense of step 4 of the modified DEDUCE algorithm in Section 3.3.2). then 
CHOOSEQ calls itself recursively, invoking the corresponding lower level hypothesis 
space and setting this pattcrn as the lead~ng hypothesis which it will then try and establish 
in this Icvel. It is important to note that different frames of discernment are associated 
with different hypothesis spaces in the network. Also, the procedures for returning from 
a level (hypothesis space) to the onc it was invoked from depends on the EXITCHK 
conditions as discussed jn Section 3.3.  The next sect~on presents an example to illustrate 
the various features of the inferencing mechanism discussed abovc. 

This example, taken from the XY sy~tern2', ~llustrates the functions of the five 
Components of the inferencing mechanism. The system is currently trying to establish the 
site of a hydrocarbon play. Readers are referred to figs 2(a) and (b) that describe a 
section of the rule5 and the portion of the network that is relcvant to the inferencing 
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process being discussed. Initial evidence provided by the user results in the exact belief 
function: 

m ( ( h , , h 2 } )  = 0.45, m ( h l )  = 0.25, m(h2)  = m ( h 3 )  = 0.1 

where h ,  = (<  site of play> <margin >), h~ = (< site of play> <shelf >), and 
h3 = (< site of play> <craton >). Based on these values, GETMAXH establishes h,  
as the leading hypothesis, and CHOOSEQ is invoked to pick an appropriate query to 
obtain more evidence in support of < margin > from the user. CHOOSEQ examines 
the rule network (fig. 2(b)) and picks (< dist> <less-equal-200 >) as the best 
evidence-node. Since this is an askable attribute, the system queries the user and 
determines the distance of the play from tbe margin is less than 200 miles. This causes 
rule 03 (fig. 2(a)) to fire and belief values get updated, according to eqn 4, as shown 
below: 

The updated belief function is: 

m ( . { h l , h Z } )  = 0.576, m ( h , )  = 0.272, m ( h Z )  = 0.109, and m(h , )  = 0.022. 

The GETMAXH function again identifies h ,  as the leading hypothesis. To further 
increase belief in h , ,  CHOOSEQ determines that it will have to establish evidence 
corresponding to the AND node in fig. 2(b), which involves establishing two verifiable 
attributes. Let us assume that the system has established that there is no abrupt change in 
slope, and as we move seaward the beds dip seaward. It now descends to Level 2 to 
determine the direction of deepening of the beds. Again fig. 2(b) indicates a number of 
askable evidence patterns to establish that bed.  deepen seaward. CHOOSEQ first selects 
a query to determine the direction in which sediments become finer, and the user 
responds seaward. This establishes the hypothesis (< beds-deepen> <seaward 2) 
with a belief value of 0.7. In a traditional system, additional rules would have been 
triggered automatically, and belief values of the < site-of-play > attribute would have 
been recomputed. However, in this case, establishing additional properties, such as 
homogeneity of sediments and deepening of fauna would have increased belief in the 
hypothesis (< beds-deepen> (seaward >), and would have resulted in different 
belief values for the < site-otplay > attribute. 

In order to avoid repeated computation of belief values, which is expensive, the system 
does not propagate belief values out of a hypothesis space till the EXITCHK conditions 
are satisfied. In this example, the system continues to query theuser till the belief value 
for (< beds-deepen> <seaward >) becomes 0.96, and the EXITCHK condition is 
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established. This value is then propagated to the higher level, where belief values are 
updated in the site of' pluy frame of discernment. 

4. The system designer interface 

This section summarizes mechanisms developed for MIDST to facilitate the task of 
knowledgc base creation and modification. Functions for structuring the overall 
knowldege base as sequential partitions, entering and editing rules, and obtaining 
queries for askable evidence are discussed. It is assumed that the system designer, by 
prior interactions with the domain expert has designed the knowledge base partitions, 
evidence patterns and hypotheses are already represented as attribute-value pairs, and 
rules have been formulated in the format described in Section 3.1. 

The system designer interface is implemented on APOLLO DN3000 and Sun 3 
workstations, and runs under CommonLisp. This programming environment provides 
support for the display and use of multiple windows on the screen. The salient 
characteristics of the interface are: (i) a multiple window display, (ii) the use of special 
templates to facilitate rule entry, and (iii) simple mouse-controlled operations that allow 
the user to  interact with the system in multiple windows simultaneously. 

Creation of the domain knowledge base is performed in two distinct phases. In the first 
phase, the rule editor captures the overall problem-solving methodology of the expert, 
i.e, it makes the system designer specify sequential partitions for each subtask of the 
problem-solving process. The aim is to obtain sequential partitions (if any), and the 
hierarchical relationship between them. The skeletal structure of the knowledge base is 
displayed in the structure window. The process of defining the partitions and determining 
the hierarchical o r  sequential order is guided by a question-answering session with the 
system designer. After this phase is complete, the structure window is placed on one 
corner of the screen, so that the system designer may refer to it if he wants. 

In the second phase. the system designer first specifies the goals i.e., the list of final 
conclusions for each  arti it ion, enters rules that link evidence patterns to conclusions, 
and enters questions for evidence that is to be derived by directly querying the user. 
MIDST provides the system designer the facility to switch between the two phases at any 
time during the interaction. While entering rules for a partition, he may want to modify 
the sequential partition structure, and then return to the process of entering rules for the 
current partition. For the current partition in which rules are being entered, a partition 
window displays the partition id, the final conclusions for that partition, and the Lisp 
form of the last rule that was entered. A rule template is displayed in the interaction 
window, the window in which current interactions are occurring. Rules and the 
associated belief values are entered into the template. The user is permitted to enter a 
number in the interval [0,10] to express belief in conclusions. The basic purpose here is to 
obtain a relative ranking of the conclusions. These values are then converted to a belief 
function in the ~ e ~ p s t e r - s h a f e r  framework. For every individual piece of evidence, the 
rule editor prompts the system designer for an associated query. This appears as a 
separate template within the interaction window. The list of queries entered for the 
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FIG. 5. Operations of the rule editor. 

current partition stored in the query window. In addition, the system designer can open 
up the query window to  independently edit the queries. 

Once the system designer has entered all the rules and the associated queries, the rule 
editor separates all evidence patterns into askable and verifiable patterns. The verifiable 
evidence patterns do  not have queries associated with them, and thereby need to be 
derived by firing rules. For each verifiable pattern there must be a set of rules whose 
RHS contains this pattern. If no rule is found, the system designer is informed and he 
either converts the evidence pattern to the askable type by providing a query, or he 
enters rules that can be  used to derive the pattern. 
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The capabilities and sequence of operations of the current version of the rule editor 
are summarized in fig. 5. The rule editor allows the system designer to add a new 
knowledge base, modify an existing one or run a consultation to obtain debugging 
feedback. This facility to run a consultation is provided to the system designer to test the 
knowledge base by running sample case studies. MIDST allows the entry of large 
knowledge bases to be distributed over a number of sessions. The system designer can 
run test cases to check the validity of newly entered or modified knowledge, thus making 
it possible to do incremental debugging. The system designer can then go back to the 
expert for more directed consultations and discussions to refine the knowledge base. 

4.1. Adding a knowledge base 

The three major structures that the system designer needs to specify in the knowledge 
base are the sequential partitions, the rules within each partition and the queries 
associated with askable attributes. MIDST begins by explaining to the system designer 
the purposes and benefits of partitions, and then interacts with the system designer to 
obtain partitions and the relationships between partitions. As an example, consider the 
system designer entering the domain knowledge base for the OASES system". The rule 
editor prompts are depicted in bold font and the system designer's input is in italics. 

Would you like to enter a new knowledge base? 
yes 
Enter a name for your knowledge base. 
OASES 
Would you like to partition the knowledge base? 
yes 
Bow many steps have you divided your problem-solving process into? 
3 
Bow many partitions do you need at step I? 
I 
Enter a name for the partition. 
process type 
How many partitions do you need at step 2? 
5 
Enter names for the 5 partitions. 
Separate the names by commas. 
continuous flow, batch flow, worker paced, machine paced, job shop 
TO which partitions in step 2 is the partition process type in step 1 connected? 
all. 

This information is displayed to the system designer in a separate window (the structure 
window). Window management is done from Common Lisp routines using underlying 
operating system calls. Currently the partition information is displayed in a non-graphic 
mode; however, this display will be improved in future versions. After relationships 
between partitions in steps 2 and 3 have been obtained, the rule editor enters the rule 
entry phase to allow the system designer to enter rules for each partition. The designer is 
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required to input thc LHS pattern of a rule, and then the KHS conclusions. and the rule 
editor converts the rule into the internal Lisp fo~mat .  When the system designer supplies 
rules which negate a hypothesis, thc appropriate conversion is donc automatically, F~~ 
example, consider thc system dcjigner entering an OASES rule: 

Enter the attributes and values of the 'i,HS patkkna: 
(separate attributes and values by a colalma; one attribute-value pair per line) 
machinery peed und sizr, not if1 good h a h c c .  

Enter the attributes and values of the MAS conclusions 
(one conclusion per line; an attribute FoNowcd by a set of values 
separated by commas) 
cause, cul~aoty plaiirut~g, prorcs.:" de.~igt~ 
cause. workforcr, m u i ~ l t n o n c ( ~ .  

In order to extract the expcrt'h h c k t  In the IlHS conclu\ions. given the LHS evidence, 
the rule editor prompts the system designel- to rank thc Ri  IS conclusions on a scale of 
0-10. Note hcrc that thc cxpert is not supplying a n  ahrolute support or belief value for 
the conclusion, but 1s rnescly provid~ng ;I rolativc ranking hirsed on his judgement. 

Enter the relative ranking for the concllusion on a scale 0-10. 
Y 3 

A very desirable feature of the D-S framcwork tor rcprcsenting knowledge in uncertain 
domains is the explicit dcfinition and representation of Ignorance. In formulating the 
rule, the editor specifically queries the cxperl (systcm dcsigncr) about his belief in the 
relevance of the LHS evidence, i.e., given that the system designcr will be examining 
other evidence for making conclusions in this frame of discernment, on a scale of 1-10 to 
what extent does this cohrihule to m:iking n final conclusion. 

On a scale of 1-10 what is the relevance of this evidence in the overall 
reasoning process? 
8 

From this, the system computes 1n ((+) for  the belief functmn corresponding to this rule 
to be 0.2 ( i . e . .  I-8/10). Thc relative runking supplied hy the expert is then normalized to 
yield the belief values (the m lunctmn) tor the rule according to the equation: 

Using m (0) =0.2,  rule editor formulates the following rule: 

[(< machinery-speed-anLsizc > < not-in.._good .. balance >) RF] -. 
{ [(i causes < capacity-planning> <cause > .= process.design >) 0.61 
[(<cause> <workforce> <cause > <maintenance> ) 0.21 j .  
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The m (O) value along with the abovc values represents the measure of exact belief 
function for this rule. 

The rule in its Lisp form along with the associated helief values is displayed in a 
separate window. For each new attribute entered in the LHS of a rule, the rule editor 
queries the system designer for an associated query unless one has already been entered. 
This query is displayed in a second window. Thus, whilc the system designer is entering 
rules, two separate windows (besides the intcraction window) are open displaying all the 
rules that have been entered and all the associated queries. When the system designer 
indicates that he has finished entering rules within a partition the rule editor asks him to 
specify the ASKFIRST queries, ~f any. for that partition. Finally, rules specifying the 
transfer of control from the current partition to the partitions it is linked at thc next step 
are obtained from the system designer. 

4.2. ModiJying the knowlmdge base 

AS fig. 5 indicates, Btcilities are provided in MIDST to modify the overall structure of the 
knowledge base, the rules within partitions, and the associated queries. Modifying the 
overall structure involves the addition or dclction of partitions, and the addition, 
deletion o r  modification of links between partitions. While deleting and adding 
partitions, o r  deleting and adding links care needs to be exercised that the hierarchical 
relationship of the existing partitions is not violated. When a new partition is added,the 
rule editor aulomatically prompts the system designer to enter the rules within that 
partition.The modified structure is again displayed to the system designer in the structure 
window. 

Modifying rules similarly involves the addition of new rules, the deletion of rules and 
the modification of existing rules. In the current prototype no sophisticated editing 
facilities are available. Therefore, in order to modify a rulc the system designer is 
required to enter the complete rule all over again. Facilities for changing part of a rule, 
or changing only the belief values have not yet been implemented. Whenever the rule set 
is modified, MIDST automatically recompiles the network and stores it for future use. 
The system designer can also modify queries (i.e., change the langllage of a query), add 
new queries (this may make a hitherto verifiable attribute into an askable attribute), or 
delete an already existing query. The addition and deletion of queries also requires that 
the rule network be recompiled, Usually this recompllation is done, just before the 
system designer wants to run a consultation to see the effects of the modifications. 

4.3. Runrring a consultation 

This involves three steps as illustrated in fig. 5. The first step involves loading all the 
knowledge base structures such as the rules, the queries and the rule network. In the 
second step, the working memory structures and the book-keeping fields in the network 
are appropriately initialized. The third step is the inferencing procedure described in 
Section 3.3. 
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jn this paper, we have described the design and implementation of MIDST, an expert 
system shell for mixed initiative reasoning. A primary achievement of our research has 
been the implementation of an efficient technique for incorporating the Dempster. 
Shafer evidence combination scheme for inexact reasoning. This was accomplished by 
compiling the domain rules into a rule network. We consider the design and 
implementation of the network to be the major contribution of this research effort. ~h~ 
network was used not only to speed up the backward-chaining process, but also to 
partition the overall knowledge base into hypotheses spaces similar to a method 
suggested by Gordon and ~hortliffe~". In addition to computational advantages of a 
smaller frame of discernment, the network allows implementation of the D-S scheme 
without compromising the basic assumptions of independent pieces of evidence and a 
mutually exclusive hypotheses set.The network provided an efficient and convenient 
means of propagating belief values between levels. The compilation of the network is 
done off line and the resultant network is stored in a file. The network construction 
algorithm was designed in a manner that it runs in O(n) time; where n is the number of 
rules in a partition27. The rules and the network for individual partitions are stored in 
separate files, and loaded only when a partition becomes active. This speeds up the 
loading of large knowledge bases. 

A second task addressed was the design and implementation of knowledge base 
construction tools. Here, special attention was paid to effectively utilize features of the 
underlying programming environment. The internal Lisp representation is made opaque 
to the system designer, and the acquisition of belief values is based on a framework that 
we hope experts will easily relate to. MIDST currently runs on Sun 3 and Apollo 
DN3000 workstation under Common Lisp. Applications of MIDST currently underway 
include porting OASESz3 and developing the XX systemz4. 

There are a number of tasks that we envision will improve the current version of 
MIDST. They are: 

1. Extensions to the rule editor to incorporate sophisticated editing facilities, provide 
graphic displays and the ability to switch from the rule entry mode to a mode where 
the system designer can run a consultation, modify rules and then switch back to the 
rule entry mode. In addition, a TEIRESIAS'4 type checking of the rules is also 
envisaged. 

2. The development of sophisticated explanation mechanisms and debugging aids. 
3. Extending the network to facilitate its use during forward chaining. This can be done 

by specifying additional dummy nodes. 

4. The propagation of incremental belief values in the Dempster-Shafer framework. 
5 .  Extending GETMAXH so that it ranks hypotheses not on the basis of the absolute 

belief but on the basis of the plausibility interval. This will necessitate the 
generalization of computational techniques discussed by Shenoy and ShaferZ6. 

6 .  Develop tools that will aid the system designer in building specialized user interfaces. 
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