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Abstract

This paper presents a general purpose expert system shell that incorporates mixed-initiative reasoning and the
Dempster-Shafer (D-S) scheme of evidence combination for inexact reasoning. Domain knowledge is stored in
the form of rules with associated belief values defined in the D-S framework. To structure the consultation
process, the knowledge base is implemented as a partitioned rule base. The reasoning component uses a
combination of forward and backward inferencing mechanisms, and controls a mixed initiative interaction with
the user. To provide a suitable framework for performing the D-S computations and to achieve efficiency in
propagating belief values during the chaining process, the rule base is compiled into a network. A rule editor
has also been designed to facilitate knowledge -base construction.
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1. Introduction

Expert systems are a class of computer programs that emulate the problem-solving sk.ills
of human experts in specialized domains. They differ from conventional programs which
use fixed algorithms for manipulating data, in that they can piece together a large
amount of fragmentary knowledge in the form of facts and judgemental rules used by
human experts, to solve a given problem’. They address problems pormally thought to
require the specialized knowledge of human experts for their solghon. Expert systems
have been successfully developed in fields such as medical diaggosxsz, equipment failure
diagnosis®, computer configuration®, mineral exploration’, and chemical data
interpretation®.

Earlier expert systems, such as MYCIN® and PROSPECT OR?’ for the most part were
developed from scratch using dialects of Lisp (e.g., MYCIN was developed in the
Interlisp environment). Developing an expert system from scratch is an enormous task,

"First presented at the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute
of Science, Bangalore, India, during December 11-13, 1986. ) ) ) ]
*This work was originally conducted by the authors at the Department of Computer Science, University of

South Carolina, Columbia, S.C. 29208.
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partly because the developers have to split their efforts between two major tasks:
(i) knowledge acquisition from experts, and (ii) designing knowledge manipulation
procedures. However, the development of earlier systems indicated that the inferencing
and knowledge representation components could be separated from the domain-specific
knowledge base and applied to a compietely differént task (For example, SACON’, a
system for structural analysis, and a number of other systems” were developed using
EMYCIN (essential MYCIN, i.e., MYCIN without its domain-specific knowledge base).
Such tools, or shells as they are sometimes called, facilitate rapid development of the
initial prototype of a knowledge-based system.

Currently, a number of software tools are available for knowledge engineering. They
fall into two categories: (i) skeletal systems extracted from previously built expert
systems, and (i) general-purpose languages developed specifically for the knowledge
engineering task. In a skeletal system, all domain-specific knowledge is stored in the
knowledge base in a predefined format, and operated on by an inference engine that is
very similar to the system from which it is extracted. Examples of skeletal systems are
EMYCIN® (derived from MYCIN), KAS® (derived from PROSPECTOR) and
EXPERT! (derived from CASNET). These tools are suitable for application domains
where the problem-solving structure and strategies are similar to the original system from
which these tools have been extracted. General-purpose languages are less constrained
than skeletal systems, and provide flexible programming environments because they are
not closely tied to any particular framework and allow for a wider variety of control
structures. Thus, they may be efficiently applied to a broader range of tasks, although
the process of developing the system may be more complicated. ROSIE!, OPS5%,
RLLY and HEARSAY-III" are examples of general-purpose programming languages
developed specifically for knowledge-based system development.

Most tools listed use the rule-based approach for knowledge representation, although
the format and structure of the rules differ. For example, EMYCIN uses object-
attribute-value triples, OPSS uses attribute-value pairs, and ROSIE uses deductive or
logic rules. In addition to rules, KAS uses semantic networks to represent classificatory
information in the domain, and ROSIE uses a declarative data base to store simple
English-like assertions. Uncertainty is also handled in a variety of ways: ROSIE and
OPSS have no in-built mechanisms for inexact reasoning. KAS uses an approximation of
the Bayesian conditional probability scheme, whereas EMYCIN and EXPERT use ad
hoc mechanisms. The inferencing mechanisms use either forward- or backward-chaining
strategies with the exception of KAS which uses a combined forward-backward strategy.
All the tools provide some facilities for knowledge acquisition in the form of rule editors,
and debugging and testing aids in the form of trace functions. However, none provide
more sophisticated debugging aids such as the ones developed in TEIRESIAS™. Some
of the newer tools, such as ART, KEE and LOOPS! are flexible hybrid tools, i.e., they
can be used to represent knowledge in several different ways, and can be applied to
several different paradigms. Table I summarizes the salient characteristics of a few of the
expert system shells that are in use now-a-days.

In this paper, we present MIDST (a Mixed Inferencing Dempster-Shafer Tool) that
incorporates inexact reasoning mechanisms based on the Dempster-Shafer evidence
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combination scheme. Qur discussion will concentrate more on the design and
implementation of the rule network, and the inferencing mechanism that combines
forward- and backward-chaining procedures to achieve & mixed-initiative dialogue with
the users of the system.

Section 2 of the paper briefly reviews and compares cxisting numerical schemes for
inexact reasoning. Section 3 presents the MIDST system architecture, and then discusses
in detail the inferencing mechanisms along with the underlying knowledge base
structures. Section 4 briefly cutlines some of-the knowledge-base construction aids
available in MIDST, and then discusscs the framework for acquiring belief functions
associated with the rules of the knowledge base. Section 5 presents the conclusions and
directions for future work.

2. Inexact reasoning

In complex domains, efficient problem solving often requires the use of judgemental
knowledge provided by human experts, which can often be conveniently represented as
ift-then rules. The uncertainty or judgemental naturc of the expert’s knowledge is
expressed by qualifying conclusions with terms such as likely, suggests, lends credence 10,
etc. Therefore, it becomes necessary for the knowledge engineer designing the system to
represent and reason with this uncertainty in the problem-soiving model. At least four
separate causes for uncertainty can be identified. The first, described above, is due to the
inherent uncertainty in expert-supplied heuristics. The second cause is related to the
reliability of information, L., the facts or data required for solving the problem may be
imprecise. The third cause for uncertainty in conclusions is that they are often based on
incomplete information. A fourth cause for uncertainty arises when problem-solving
information accumulated from multiple sources turns out to be contradictory. It is this
pervasive imprecision and uncertainty in the real world that requires the adoption of
inexact reasoning mechanisms in computer-aided decision making.

One approach to soiving this problem is by numeric modeling. This involves assigning
numerical values to the linguistic terms used to qualify the conclusions made in rules;
e.g., the value 0.6 may represent the phrase suggests. The problem now reduces to
interpreting these numbers in a suitable framework, and then defining appropriate
functions for combination of evidence in that framework.

The traditional approach to uncertain decision making has been the use of probability
theory and Bayes combination formula for conditional probabilities; well-known
examples of systems that employ Bayesian reasoning are PIP'S, CADUCEUS'®, and
PROSPECTOR?®. These systems interpret belief values as conditional probabilities, i.¢.,
the probability of observing the hypothesis on the right-hand side of a rule given the
evidence described on the left-hand side of the same rule. When multiple evidence
supports the same hypothesis the overall probability or likelihood of the hypothesis is
computed by applying Bayes’ formula. However, there are a number of problems
associated with the practical implementation of Bayesian schemes. Szolovits and
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pauker!” have shown that a direct implementation of Bayes’ formula leads to a very large
and unmanageable database even if simplifying assumptions such as independence of
individual obscervations are made even though they are hard to justify physically. Again,
in the probabilistic framework, the probability that a given hypothesis 4, is true, P(h;),
and the probability that f; is false, P (—4,), are linked by the formula:

P(hy+ P(—h) = 1. n

Thus, if P(4;) =0, we must have P(~ h;) = |. But when we have no a priori knowledge
regarding truth or falsity of A;, ignorance is difficult to represent. To work around this
problem, the assumption P(#;) = P(~ #,)=1/2, is often made in order to represent a
state of ignorance. However, when the number of possibilities increase to more than
two, Shafer'® has demonstrated, by simple examples, that the technique of assigning
equal probabilities can produce counter-intuitive results. Because of the distortions it
imposes on the problem. and because of its enormous data requirements, pure
probabilistic schemes tend to be successtul only in small, well-constrained problem
domains'”. Most real-life problems that involve complex decision making suffer from
insufficient data and imperfect knowledge, so a rigorous probabilistic analysis is not
possibie. To avoid some of the problems that come along with the application of a formal
probabilistic framework, ad hoc functions for the combinations of evidence have been
proposed. A well-known example is MYCIN?, a diagnostic expert system for selecting
antibiotic therapy for bacteremia. The system uses heuristic functions based on
confirmation theory or subjective probability, and the mechanism for evidence
combination conceived on purely intuitive grounds has proved to be a good
approximation to the intuitive methods used by doctors. Although this scheme was
originally proposed as an alternative to probability theory, Adams" has shown that
combining functions can be derived from probability theory with the assumption of
statistical independence.

The drawbacks of the Bayesian and ad hoc schemes like the one used in MYCIN bave
drawn attention to the Dempster-Shafer (D-S) theory in decision-making applications?.
The key advantages of this scheme are its abilities to allow belief to be assigned to subsets
of hypotheses from the space of possibilities (as opposed to singleton hypotheses in the
Bayesian framework), effectively represent the concept of ignorance in the reasoning
process, and model the narrowing of the hypotheses set with the accumulatiox_} of
cvidence. This provides a better model for the expert Teasoning process. Beli.cf functions
and their combining rule in the D-S theory are well suited to represent incremental
accumulation of evidence and the results of its aggregation. Shafer'® has shown that the
D-S approach includes the Bayesian and MYCIN evidence combination functif)r}s< as
special cases. In addition, it avoids the probabilistic restriction of eqn (1). The defmltfon
of a belief function, and the mathematical formulation of the evidence combination

scheme are presented next.

2.1 The Dempster-Shafer approach to inexact reasoning

The following discussion follows the notation used in Sfaafer“‘ and Gordon &
Shortliffe?®. The D-S formulation is based on a frame of discernment, 8, a set of
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propositions or hypotheses about the exclusive and exhaustive possibilities in the domain
under consideration. The notation 2¢ is used to denote the set of all subsets of ©.
Further discussion is based on two concepts that can be adopted for the representation of
evidence: the measure of belief committed exactly to a subset A of @ (ie., A € 2%) and
the rotal belief committed to A. Exact belief relates to the situation where an observed
evidence implies the subset of hypotheses, but this evidence does not provide any further
discriminating evidence between individual hypotheses in A. A function m:2° [0,1]is
called a basic probability assignment (bpa) whenever:

m(®)=0, and (2a)
2 m(A) =1 (2b)
Ace

where 22 is the set of all subsets of @. The quantity m(A) represents the measure of
belief that is committed exactly to A. In other words, a bpa represents the support a piece
of evidence provides to subsets of @. Condition (2a) reflects the fact that no belief ought
to be committed to @, the null hypothesis, while (2b) states the convention that one’s
total belief has to sum to less than or equal to one. The measure of rotal belief committed
to a subset A is defined as:

Bel(Ay= 3, m(B), )]

BCA

where the summation is conducted over all B that are subsets of A. A function Bel:

2% — [0,1] is called a belief function over ®, if it is given by (3) for some basic probability

assignment m. If (2b) sums to less than 1, then (1— £ m{(A)) defines a measure of
ACO

ignorance, denoted by m(®). In other words, m(®) is the extent to which the
observations provide no discriminating evidence among the hypothesis in the frame of
discernment, ©.

Judgemental rules provided by experts basically represent individual pieces of
evidence that imply subsets of hypotheses with confidence values that correspond to
measures of exact belief (details of rule structure are given in Section 3.1).
Corresponding to two different pieces of evidence e; and e, with bpas m and m;,
respectively, over the same frame of discernment; Dempster’s rule of orthogonal
products is applied to combine the effects of observing the two pieces of evidence and
compute a new bpa, m, that is given by:

> m(Ayma(B))

AN B=C,

- 3 my(A;)ma(B))
ANB, =@

m(Cy) =




AN EXPERT SYSTEM SHELL FOR MIXED INITIATIVE REASONING 471

where A, represents hypotheses subsets that are supported by e, B; represents
hypotheses subsets supported by e,, and Cy represents the hypotheses subsets that are
supported by the observation of both e, and e,. The denominator is a normalizing factor
to ensure that no belief is committed to the null hypothesis (condition 2a). More detailed
discussions on the Dempster-Shafer theory of evidence combination appear in Shafer’s

work*¥.

3. The MIDST system

As discussed earlier, a number of expert system development tools are available now a
days. A large number of these tools require the encoding of domain knowledge in the
form of pattern-action (or, antecedent-consequent) rules. Uncertainty representation in
the form of numbers in the interval [0,1] or [—1,1], and inexact reasoning methods have
also been incorporated into some of these systems. Current schemes are based on
approximate Bayesian methods (e.g., PROSPECTOR), or ad hoc schemes (e.g.,
MYCIN). Some others, such as FLOPS?!, use fuzzy reasoning techniques. However, to
date there are very few systems based on the D-S scheme in spite of its advantages
discussed in Section 2. Some of these advantages were demonstrated in a system called
OASES, developed for trouble-shooting production processes?>2*. In the rest of this
section and the next, we discuss the design and implementation of MIDST, our expert
system shell extracted from OASES.

Figure 1 illustrates the basic components of the MIDST system. The system designer or
the expert interacts through the system designer interface to create a knowledge base for
problem solving.. This interface provides two main functions. Via the rule editor the
system designer builds the domain knowledge base as a partitioned rule base. Facilities
are provided for creating, deleting and modifying partitions, and then creating, deleting
and modifying individual rules within partitions. The second function of the interface is
to provide debugging feedback to the system designer and expert during the system
development process. During system development after the system designer enters rules
for a partition or makes changes to them, the system is designed to analyse the rules and
determine if any rule is missing or is incomplete. We are still in the process of
implementing this functionality of the system along with other debugging techniques,
and, therefore, do not discuss them in this paper.

The rule editor performs the task of converting rules entered in an English-like format
into the Internal Lisp format required by MIDST. Uncertainty in the rules is rep}'esented
as exact belief functions in the D-S framework, and are extracted from the domain expert
employing a scheme we describe in Section 4. Rules are stored in the rule ba._ye, and
associated queries are stored in the query database. The network compiler compll_es Fhe
rules into a rule network which makes the inferencing process efficient. The compilation
of rules into a network is an expensive process, and is done off-line.

The task of interpreting the domain knowledge is performed by the inference engine

which is the heart of the MIDST system. MIDST incorporates a combined forward- and
backward-control structure in its reasonng mechanism. This allows the system to have
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Fic. 1. MIDST system architecture.

mixed-initiative control. A typical session starts with the system allowing the user to
volunteer information that might be relevant to the problem. This information is used by
the system to derive intermediate or partial conclusions. The system then assumes
control, and what typically follows is a cycle of questions and answers in which the
inference enginc selects a relevant piece of evidence to query the user about. Instead of
answering a question the user can take the initiative any time and volunteer additional
evidence, seek clarification, or request an explanation. This latter request is handled by
the explanation mechanism sub-system and takes one of two forms: (i) an explanation of
the reason for that particular question, or (ii) a summary of the principal conciusions of
the system at that point in the consultation. This task is essentially performed by
examining the history of the consultation. The ability of the system to examine the rule
network and produce explanations is quite important as it makes the inferencing
mechanism transparent to the user. Evidence combination is based on Dempster’s
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combining formula (eqn 4) presented in Section 2. In the rest of this section, we discuss
the structure of the knowledge base, the rule format, the design and implementation of
the rule network and the reasoning strategy employed in MIDST.

3.1 Knowledge-base structure

The knowledge base of MIDST is formulated as a partitioned rule base. The structure of
the rules (i.e., the rule language) as well as the partitions are designed to facilitate the
representation of domain knowledge, and incorporate uncertainty in terms of belief
functions in the D-S framework.

A rule links a pattern on its left hand side (LHS) to one or more conclusions and/or a
sequence of actions on its right hand side (RHS), ie., the LHS pattern represents
relevant evidence for the conclusions on the RHS. Single pieces of evidence are
represented as attribute-value pairs, and, in general, an LHS pattern is a conjunction of
pieces of evidence, (e.g., [(<process type> < continuous flow>) & (< problem
occurrence > < continual >) & (< insufficient capacity > <late in process flow >)]).
Actually, evidence in the LHS pattern of a rule can be one of two types:

(i) askable, corresponding to information that can be obtained by directly querying the
user (therefore, they have expert-supplied queries associated with them), or
(i) verifiable, corresponding to evidence obtained from rule firings. (They represent

intermediate conclusions in the chaining process).
Each conclusion on the RHS is a disjunctive set of hypotheses, where an individual
hypothesis is represented as an attribute-value pair. In addition to conclusions, the
system designer may also specify a sequence of forward-chaining actions on the RHS of a
rule. These actions are usually Lisp functions which permit the system designer to
perform additional computations, or incorporate overriding control constraints.

To accommodate uncertainty in the rule structure, the shell associates an expert
supplied belief value with every conclusion on the RHS. Belief values are modeled as a
bpa function in the D-S framework. Note that belief values may also be associated with
individual pieces of evidence in the LHS pattern. They may be derived from user input
for askable patterns or computed values for verifiable patterns. BF is a Lisp function that
computes the overall belief value for the LHS pattern of a rule. If multiple pieces of
evidence are involved, the belief value associated with the LHS pattern is the minimum
of the belief values of each piece of evidence on the LHS of the rule.

A rule from the OASES?? system illustrates the rule structure described above:
[(< process-type > < continuous flow>)bf, and
(< insufficient capacity > <late in process flow > ) bf,] —
{[(<cause> < process design>)0.5]
[(< cause> < (raw materials, technology, maintenance) > 0.3]}.
The expert may also supply evidence that negates the belief in a conclusion. For
example, in the GASES framework a rule stated in English is:
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if (continuous flow fiberglass manufacturing processy & {(molien glass viscosity is nor
nominal) & (all ingredient compaction ratios are within limits)
then (rule out bin level fluctuations as the cause for the raw material sourcing problem).

Such heuristic rules enable the expert to apply the process of elimination in the
diagnostic process. In the D-S framework, evidence against a hypothesis is treated as
evidence in favor of the negation of the hypothesis in the set theoretic sense. Therefore,
it © = { bin level fluctuations, inconsistency of raw materials, post-scale contamination}
then the above rule translates to:

if (continuous flow fiberglass manufacturing process) &
(molten glass viscosity is not nominal) &
(all ingredient compaction ratios are within limits)

then (inconsistency of raw materials or post-scale contamination is the cause for the raw
muaterial sourcing problem).

Facilities are provided for partitioning the knowledge base into separate chunks or
units. This may facilitate the modeling of the expert’s reasoning process. Conceptually,
partitions represent the breakdown of a complex problem-solving process into a
sequence of component subproblems. The division of the knowledge base into partitions
isan attempt to streamline and make efficient the inferencing mechanism by imposing a
structure on the problem-solving process. The partitioning approach also provides an
efficient way to model the expert’s reasoning process. As a result, the knowledge
acquisition process can be made more structured, thus making a little simpler, an
otherwise difficult task. Another benefit of partitioning, discussed later, is that it makes
the D-S scheme easier to implement and computationally more efficient.

An important feature of the expert system shell is the compilation of rules into a
network that makes the backward-chaining phase of the inferencing more efficient, and
provides a convenient means for implementing the chaining process in the D-S
framework. This compilation is done off-line and the resultant network is stored as a
multi-linked list. The rule network is described in greater detail next.

3.2 The rule network compiler

The MIDST rule compiler takes advantage of knowledge available from a static analysis
of the rule set to produce a more efficient representation for computational purposes.
Specifically, it constructs a Lisp structure that embodies a block of rules that bear on the
same diagnostic conclusion.

3.2.1 The rule network design

The rule network represents a compilation of individual rules, and links conclusions to
relevant evidence. Each sequential partition is compiled into a disjoint rule network. F;r
example, fig. 2(b) shows a portion of the rule network corresponding to rules in XX,
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{rule03
(({(<dist> <less_equal _200>>)) BF)
{({(<site of play> <shell>)
(<site of play> <margin>)) 0.8)) )

(rule04
({({<dist> <greater_200>)) BF)
(({{<site of play> <craton>)) 0.6)) )

(rule06
{((<move> <seaward>)
(<beds_dip> <seaward>)
(<beds_deepen> <seaward>>)
(<abrupt_change> <no>)) BF)
((<site of play> <margin>)) 0.7)) )

(rule18
(((<sed_finer> <seaward>)) BF)
{({(<beds..deepen> <seaward>)) 0.7)) )

(rule19
(((<sed_finer> <landward>)) BF)
{(({(<beds_deepen> <landward>)) 0.7)) )

(rule20
({((<sed_homogeneous> <seaward>)) BF)
({{({<beds_deepen> <seaward>>)) 0.7)) )

(rule21
{({{<fauna_deepens> <seaward>)) BF)
(((<beds_deepen> <seaward>)) 0.7)) )

(rule22
{{({(<reflectors_thin_&_dip> <seaward>)) BF)
((((<beds_dip> <seaward>>)) 0.6)) )

FiG. 2a. Some of the XX rules.

475

that deal with the identification of the site of a hydrocarbon play. The rules are listed in
fig. 2(a). Both conclusions and evidence are represented in the same conceptual
framework: attribute-value pairs. They form the nodes of the network. Rules relate
evidence patterns to conclusions, and appear as links in the network. Links have weights
associated with them. These weights are directly dependent on the amount of belief that
the evidence pattern provides for the particular conclusion it is linked to. Final
conclusions represent the top layer of nodes in the rule network. In fig. 2(b), the top
layer of the network represents the possible values of the site of a hydrocarbon play:
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Cofte of play>  <margin® Psne of play>  <shelf> J <site of play> <cratonr

07 - 06

<ists <greater 200>

[oF:]
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noves <beds._dip> tbeds_deepen [<abrupt_change>
<seawardy, <seaward) <seaward> o>

CEVEL 1] [ LEVEL 2]

<heds_dip>
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0.7 P
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{seaward>

<creflectors_thin_& _dp> [ l
<seaward> i

FiG. 2b.  Section of the rule network for XX.

’ 1 fauna_deepens>
seaward>

within the craton, on the continental shelf, and on the oceanic margin. In addition, there
are two other kinds of dummy nodes. The first is an AND node: a conclusion that
depends on a conjunction of evidences is linked to the evidence-nodes through this kind
of node. The second is a level node. Level nodes link two hypotheses spaces.
Conceptually, a hypothesis space is made up from the set of rules that verify the same
attribute. It should be noted that the conclusions in a hypothesis space many be final or
intermediate, and evidence may cither be askable or verifiable. In fig. 2(b), the nodes
enclosed in the dashed boxes represent hypothcses spaces. Nodes corresponding to
verifiable evidence patterns are linked to level. Evidence nodes corresponding to the
same attribute converge on to the same level-node. For example, in fig. 2(b) < beds_
deepen > is a verifiable attribute, and, therefore, all evidence nodes that support the
values of this attribute (seaward or landward) are linked to the same level-node. This
level node is also linked to the hypothesis space where a value for this attribute may be
derived. Thus, the overall structure of the rule network is that of hypotheses spaces
linked to each other through level-nodes.

In inferencing terminology, verifiable pieces of evidence represent intermediate
conclusions and their presence leads to chaining, or reasoning at multiple levels. To
handle chaining in the D-S framework each hypothesis space defines a separate frame of
discernment (®). This approach closely mirrors the method suggested by Gordon and
Shortliffe for implementing MYCIN® in this framework. The conceptual structures in
the knowledge base are the attribute-value pairs, and each verifiable attribute defines a
frame of discernment extending over the possible values of that attribute. An advantage
of such an implementation is that it maintains mutual exclusiveness of hypotheses and
independence of evidence, a requirement in the D-S framework.
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A shortcoming of the current nctwork implementation is that it does not completely
capture all the information contained in the rules. For example, the network does not
provide features to faithfully represent rules that have evidence-supporting multiple
hypotheses, or evidence that supports a set of hypotheses rather than a singleton
hypothesis. As a result, when the pattern on the LHS of a rule is instantiated, the actual
rule is invoked to generate new hypotheses and compute the new belief function. In
future, we will define additional dummy nodes to solve the above representation
problem. The network would then provide effective speed up both in the forward- and
backward-chaining modes of operation. However, in our current research the emphasis
was on developing efficient backward chaining and query-selection mechanisms, and the
current network configuration definitely achieves these objecives.

In summary, some of the salient features of the network implementation are:

(i) the presence of bidirectional links which permit casy traversal along the network
structure, and

(i) a table look-up mechanism that allows identification of nodes corresponding to an
attribute. This allows a single-step access to any node in the network.

The utilization of the network for efficient query and rulc sclection during backward
chaining, and propagation of belief values between hypotheses spaces is further
elaborated in the next section.

3.3 Inferencing/ Control structures

The inferencing mechanism has four main components: the evidence combination
scheme, the procedure for selecting the top-ranked hypothesis, the query-selection
mechanism that directs the user-system dialogue based on the top-ranked hypothesis,
and the top-level controller that is related to the selection of partitions within the rule
base. The system adopts a mixed-initiative form of control. Initially, the user may
provide facts and evidence that he/she considers relevant to the problem. The system
forward chains on this evidence, establishes intermediate conclusions, and then ranks
goal hypotheses based on some criteria, e.g, the belief values associated with each goal
hypothesis. The D-S scheme is used to update the belief values of hypotheses depending
on the evidence provided by the user. MIDST then goes into the backward-chaining
mode, identifies the top-ranked hypothesis and then the best question to ask Fhe user to
try and establish this hypothesis. If the user considers the current query to bz? u’rels?vant,
he/she may provide additional facts and evidence, unrelated to the query, which sw:Fches
the system back mto the forward-chaining mode. This approach illustrates mixed-
initiative control.

The overall flow of contro! for the inferencing mechanism is shown in fig. 3. The user
interface is directed by the ASKQ routine. In the initial step, the system goes thrqugh
questions in the top level partition (the partition that has an inmgl predetermined
sequence of queries similar to the ASKFIRST queries in MYCIN®), ang the user
responses are converted into appropriate evidence patterns and stored in working
memory. Depending on the responses, the partition controfier transfers control to an
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Fic. 3. The inference control structure. Fic. 4. Simple rule network.

appropriate partition. Forward chaining and evidence combination is performed by the
DEDUCE function. This establishes intermediate conclusions based on which the final
goal hypotheses are ranked. The function GETMAXH is invoked to pick the leading
hypothesis. Next the backward-chaining process is initiated, and CHOOSEQ selects
appropriate queries based on the top-ranked hypothesis. At each step, the exit condition
is checked by an EXITCHK function. Before querying the user for more information,
the system checks if, based on the current belief values, it can come to some definite
conclusions. Instead of having a standard overall EXITCHK. function, the shell allows
the system designer to define EXITCHK routines for every partition. For example, the
following conditions:

(1) the ignorance factor, m (@) is below a certain threshold,

(ii) the belief value committed to the top-icnked hypothesis exceeds a second
threshold, and

(iii) the difference in belief values between the two top hypotheses exceeds a third
threshold

were <_:hecked in the EXITCHK routine for the lower-level partitions of OASES® to
establ}sh }he leading hypothesis beyond doubt. As a justification, we observe that a
combination of the first two conditions ensure that further corroborating evidence would
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change the belief in the leading hypothesis only marginally, whereas the third condition
ensures that the belief in the leading hypothesis is sufficiently greater than any of the
other possibilities. Other EXITCHK conditions can be specified for individual levels.

3.3.1 ASKQ

As discussed earlier, user interactions are controlled by the ASKQ routine. This routine
generates queries and invokes a separately defined routine independent of the shell (user
interface in fig. 1) to interpret the uscr’s response. Depending on the sophistication of
the system interface this routine may incorporate some form of natural language
processing. The routine returns an evidence pattern or a set of evidence patterns
depending on the user’s response. These patterns are stored in the MIDST system
working memory. For example, in the OASES? system, the ASKQ routine incorporates
a module GENEV which is based on a combined ATT parser-keyword matching
approach. The user may provide a direct reply to the system query, or if he wishes to
specify other relevant information, he may do so in his response.

3.3.2. DEDUCE

This is the forward-chaining routine. The initial algorithm adopted for DEDUCE can be

described as follows:

1. HYPS « list of hypotheses sets and associated belief values.

2. Match the evidence pattern generated by the user-supplicd information with the
current active rule set.

3. Find all rules that have satisfied left-hand sides (this is. the instantiated set).

4. Trigger all rules in the instantiated set one by one, and update the belief values of the
hypothesis in HYPS using Dempster’s combination formula (The order in which rules
are fired is not important).

5. Perform all forward-chaining actions associated with the rule being fired.

This algorithm reflects the traditional forward-chaining approach where the interpreter
searches working memory, picks a set of rules that can be fired, makes a c_hoice anq fires
a rule which updates the contents of working memory. This process is repeated till no
rules can be fired. However. this straightforward approach could not be directly applied
to MIDST since this would result in a large amount of extra computation, as is illustrated
below. Consider a very simple example, with the following rules:

rulel:-if A then B, 0.6,
rule2: if C; then A, 0.4,
rule3: if C,, then A4, 0.5.

The portion of the network corresponding to these three rule.s is shown in fig. 4. If
working memory denotes that C; has been established with belief value = 1 then rule2
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derives A with belief = 0.5, and this results in an update of belief values of all hypotheses
in Level J frame of discernment. On propagation of belief in A, rulel derives B, and,
therefore, equation 4 can again be applied to update belief values of hypotheses in Level
I frame of discernment. Now, if at some later time C is established, rule2 will fire and
the belief in A (and other Level J hypotheses) will be updated, and this change in belief
will propagate to higher levels (say Level I), where belief values of all hypotheses will
have to be recomputed. However, evaluation of equation 4 is computationally
expensive, and it would be quite wasteful to repeat the entire computation every time the
belief in an already established hypothesis or evidence is updated. A number of schemes
have been proposed for making the belief function computations more efficient; the
better known examples are schemes proposed by Barnett®, an extension of Barnett’s
scheme proposed by Gordon and Shortliffe®, and then a more generalized scheme
proposed by Shenoy and Shafer”.

But none of these directly address the situation described, where changes in belief
values of hypotheses need to be propagated to higher levels so that belief values at these
levels may be updated. However, this involves complete recomputation of all belief
values at higher levels (which is computationally very expensive), whereas, ideally, the
belief values should be updated by incremental recomputation. The options thus left
open to us were, either to use some sort of approximation for incremental updating of
belief values at higher levels, or use some other technique to handle this situation. We
chose the latter. In order to prevent wasteful computations, belief values were not
transmitted between levels, till the EXITCHK conditions, described in Section 3.3, were
satisfied. Therefore, in the example above, the belief value for A would not be
propagated to the next level till it was established that there would be no significant
change in its belief value (either because of conditions (i) and (ii) in EXITCHK, or
because the system knows of no other evidence, i.e., rules, that can support the
hypothesis). However, within a level, the DEDUCE function operates as described in
the beginning of this section. In order to implement this scheme, local structures called
hypothesis-bases are defined for each hypothesis space. These structures store
intermediate beliefs in the hypotheses and once these beliefs achieve a ‘sufficient’ value,
or all rules associated with this level have been exhausted, they are added on to the
global evidence-base (working memory). The ‘sufficient’ criterion is defined by the
EXITCHK conditions. The modified algorithm that incorporates this change is described
below.

Do for all the newly acquired evidence patterns
1. Determine the level in the network where the evidence pattern is applicable.

2. Retrieve the local hypothesis-base of that level from the level-node in the network.
HYPS « list of hypotheses sets and associated belief values.

3. Do until no more rules can be fired.
a. Match the evidence pattern with the curren: atcive rule set.
b. Find all rules that have satisfied left-hand s ces (this is the instantiated set).
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c. Trigger all rules in the instantiated set one by one and update belief values of the
hypotheses in HYPS using Dempster’s combination formula (The order in which
rules are fired is not important).

d. Perform ali forward-chaining actions associated with the rules being fired.

4. For cvery level if the local HYPS satisfies the EXITCHK conditions, add this

HYPS to the global evidence-base and mark the corresponding level as solved.

333, GETMAXH

The function of the GETMAXH routine is to-determine the most promising (i.e. the top
ranked) hypothesis which the system then tries to establish by querying the user for more
information. The procedure adopted for doing this is as follows:

. Rank the hypothesis in the HYPS corresponding to the top-most level of reasoning in

the current active partition.
This ranking is done on the basis of the exact belief committed to the hypotheses.

2. Select hypothesis with maximum belief.
3. If this is a set, select hypothesis with maximum belief among the elements of the set.

3.3.4. CHOOSEQ

The query-selection mechanism is implemented by the routine CHOOSEQ. Given the
leading hypothesis which the system is trying to verify, CHOOSEQ examines the
network of compiled rules to find out which rule it needs to fire to increase belief in the
leading hypothesis. The network, as discussed earlier, links hypotheses to relevant
evidence patterns as described by the expert-supplied rules. If the most relevant pattern
is askable, CHOOSEQ returns the corresponding query to ASKQ. On the other hand, if
the pattern is verifiable, and the level associated with that attribute has not already been
solved (in the sense of step 4 of the modified DEDUCE algorithm in Section 3.3.2), then
CHOOSEQ calls itself recursively, invoking the corresponding lower level hypothesis
space and setting this pattern as the leading hypothesis which it will then try and estqblish
in this level. It is important to note that different frames of discernment are a§soc1ated
with different hypothesis spaces in the network. Also, the procedures for returning from
a level (hypothesis space) to the one it was invoked from depends on the E}_(ITCHK
conditions as discussed in Section 3.3. The next section presents an example to illustrate
the various features of the inferencing mechanism discussed above.

3.3.5. An example

This example, taken from the XX system”, illustrates the funtj‘tions of th_e five
components of the inferencing mechanism. The system i§ currently trying to estabhs_h the
site of a hydrocarbon play. Readers are referred to figs _2(a) and (b) thatldescnbf: a
section of the rules and the portion of the network that is relevant to the inferencing
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process being discussed. Initial evidence provided by the user results in the exact belief
function:

m({hyha}) =045, m(hy)=0.25, m(ha) = m(h3)=0.1

where h; = (< site of play> <margin >), hy=(< site of play> <shelf >), and
h3= (< site of play> <craton >). Based on these values, GETMAXH establishes hy
as the leading hypothesis, and CHOOSEQ is invoked to pick an appropriate query to
obtain more evidence in support of < margin > from the user. CHOOSEQ examines
the rule network (fig. 2(b)) and picks (< dist> <less_equal_200 >) as the best
evidence-node. Since this is an askable attribute, the system queries the user and
determines the distance of the play from the margin is less than 200 miles. This causes
rule 03 (fig. 2(a)) to fire and belief values get updated, according to eqn 4, as shown
below:

Moy {hy,h:} (0.8) ©(0.2))

m

{hy,ha) (0.45) {hy,h2} (0.36) {hy, h2} (0.09)
hy (0.25) hy (0.2) h, (0.05)

ky (0.1) h, (0.08) h, (0.02)

hs (0.1) @ (0.08) ks (0.02)

8 (0.1) {hi, by} (0.08) 0 (0.08)

The updated belief function is:
m({hy,hy})=0.576, m(h,) =0.272, m(h;)=0.109, and m(h3)=0.022.

The GETMAXH function again identifies 4, as the leading hypothesis. To further
increase belief in k;, CHOOSEQ determines that it will have to establish evidence
corresponding to the AND node in fig. 2(b), which involves establishing two verifiable
attributes. Let us assume that the system has established that there is no abrupt change in
slope, and as we move seaward the beds dip seaward. 1t now descends to Level 2 to
determine the direction of deepening of the beds. Again fig. 2(b) indicates a number of
askable evidence patterns to establish that beds deepen seaward. CHOOSEQ first selects
a query to determine the direction in which sediments become finer, and the user
responds seaward. This establishes the hypothesis (< beds_deepen> < seaward >)
with a belief value of 0.7. In a traditional system, additional rules would have been
triggered automatically, and belief values of the < site__of_play > attribute would have
been recomputed. However, in this case, establishing additional properties, such as
homogeneity of sediments and deepening of fauna would have increased belief in the
hypothesis (< beds_deepen> <seaward >), and would have resulted in different
belief values for the < site_ of__play > attribute.

In order to avoid repeated computation of belief values, which is expensive, the system
does not propagate belief values out of a hypothesis space till the EXITCHK conditions
are satisfied. In this example, the system continues to query the-user till the belief value
for (< beds_deepen>> < seaward >) becomes 0.96, and the EXITCHK condition is
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established. This value is then propagated to the higher level, where belief values are
updated in the site of play frame of discernment.

4. The system designer interface

This section summarizes mechanisms developed for MIDST to facilitate the task of
knowledge base creation and modification. Functions for structuring the overall
knowldege base as sequential partitions, entering and editing rules, and obtaining
queries for askable evidence are discussed. It is assumed that the system designer, by
prior interactions with the domain expert has designed the knowledge base partitions,
evidence patterns and hypotheses are already represented as attribute-value pairs, and
rules have been formulated in the format described in Section 3.1.

The system designer interface is implemented on APOLLO DN3000 and Sun 3
workstations, and runs under CommonLisp. This programming environment provides
support for the display and uvse of multiple windows on the screen. The salient
characteristics of the interface are: (i) a multiple window display, (ii) the use of special
templates to facilitate rule entry, and (jii) simple mouse-controlled operations that allow
the user to interact with the system in multiple windows simultaneously.

Creation of the domain knowledge base is performed in two distinct phases. In the first
phase, the rule editor captures the overall problem-solving methodology of the expert,
ie, it makes the system designer specify sequential partitions for each subtask of the
problem-solving process. The aim is to obtain sequential partitions (if any), and the
hierarchical relationship between them. The skeletal structure of the knowledge base is
displayed in the structure window. The process of defining the partitions and determining
the hierarchical or sequential order is guided by a question-answering session with the
system designer. After this phase is complete, the structure window is placed on one
corner of the screen, so that the system designer may refer to it if he wants.

In the second phase, the system designer first specifies the goals i.e., the list of ~fina1
conclusions for each partition, enters rules that link evidence patterns to conclusions,
and enters questions for evidence that is to be derived by directly querying the user.
MIDST provides the system designer the facility to switch between the two phases at any
time during the interaction. While entering rules for a partition, he may want to modify
the sequential partition structure, and then return to the process of entering rules fO{ t‘he
current partition. For the current partition in which rules are being §ntered, a partition
window displays the partition id, the final conclusions for that parmi_on, anq the L}Sp
form of the last rule that was entered. A rule template is displayed in the interaction
window, the window in which current interactions are occurring. Rules and the
associated belief values are entered into the template. The user is permitted to enter a
number in the interval [0,10] to express belief in conclusions. The basic purpose here isto
obtain a relative ranking of the conclusions. These values are then gonverted‘ to a belief
function in the Dempster-Shafer framework. For every individual piece of evidence, the
tule editor prompts the system designer for an associa_ted query..Thxs appears as a
separate template within the interaction window. The list of queries entered for the
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Fic. 5. Operations of the rule editor.

current partition stored in the query window. In addition, the system designer can open
up the query window to independently edit the queries.

Once the system designer has entered all the rules and the associated queries, the rule
editor separates all evidence patterns into askable and verifiable patterns. The verifiable
evidence patterns do not have queries associated with them, and thereby need to be
derived by firing rules. For each verifiable pattern there must be a set of rules whose
RHS contains this pattern. If no rule is found, the system designer is informed and he
either converts the evidence pattern to the askable type by providing a query, 0T he
enters rules that can be used to derive the pattern.
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The capabilities and sequence of operations of the current version of the rule editor
are summarized in fig. 5. The rule editor allows the system designer to add a new
knowledge base, modify an existing one or run a consultation to obtain debugging
feedback. This facility to run a consuitation is provided to the system designer to test the
knowledge base by running sample case studies. MIDST allows the entry of large
knowledge bases to be distributed over a number of sessions. The system designer can
run test cases to check the validity of newly entered or modified knowledge, thus making
it possible to do incremental debugging. The system designer can then go back to the
expert for more directed consultations and discussions to refine the knowledge base.

4.1. Adding a knowledge base

The three major structures that the system designer needs to specify in the knowledge
base are the sequential partitions, the rules within each partition and the queries
associated with askable attributes. MIDST begins by explaining to the system designer
the purposes and benefiis of partitions, and then interacts with the system designer to
obtain partitions and the relationships between partitions. As an example, consider the
system designer entering the domain knowledge base for the OASES system®. The rule
editor prompts are depicted in bold font and the system desigaer’s input is in italics.

Would you like to enter a new knowledge base?
yes

Enter a name for your knowledge base.

QASES

Would you like to partition the knowledge base?
yes

How many steps have you divided your problem-solving process into?
3

How many partitions do you need at step 12

1

Enter a name for the partition.

process type
How many partitions do you need at step 27

Enter names for the 5 partitions.

Separate the names by commas. ) )
continuous flow, batch flow, worker paced, machine paced, job shop )
To which partitions in step 2 is the partition process type in step 1 connected?

all.
This information is displayed to the system designer in a separate vyindow. (the structure
window). Window management is done from Common Lisp routines using underlying
operating system calls. Currently the partition information is d{splayed ina non?grap}'uc
mode; however, this display will be improved in future versions. Aﬁer relationships
between partitions in steps 2 and 3 have been obtained, the rule e.d‘1t0r enters the rule
entry phase to allow the system designer to enter rules for each partition. The designer is
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required to input the LHS pattern of a rule, and then the RHS conclusions, and the ryle
editor converts the rule into the internal Lisp format. When the system designer supplies
rules which negate a hypothesis, the appropriate conversion is done automatically. For
example, consider the system designer cntering an OASES rule:

Enter the attributes and values of the LHS pattern:
(separate attributes and values by a comma; one attribute-value pair per line)
machinery speed and size, not in good balance.

Enter the attributes and values of the RHS conclusions

(one conclusion per line; an attribute followed by a set of values

separated by commas)

cause, capacity planning, process design

cause, workforce, maintenance.
In order to extract the expert’s belief in the RHS conclusions. given the LHS evidence,
the rule editor prompts the system designer to rank the RIS conclusions on a scale of
0-10. Note here that the expert is not supplying an absolute support or belief value for
the conclusion, but is merely providing a rclative ranking based on his judgement.

Enter the relative ranking for the conclusion on a scale 0-~10.
93

A very desirable feature of the D-S framework for representing knowledge in uncertain
domains is the explicit definition and representation of ignorance. In formulating the
rule, the editor specifically queries the expert (system designer) about his belief in the
relevance of the LHS evidence, i.e., given that the system designer will be éxamining
other evidence for making conclusions in this frame of discernment, on a scale of 1-10 to
what extent does this contribute to making a final conclusion.

On a scale of 1-10 what is the relevance of this evidence in the overall
reasoning process?
&

From this, the system computes /m (&) for the belief function corresponding to this rule

tobe 0.2 (i.e., 1-8/10). The relative ranking supplied by the expert is then normalized to
vield the belief values (the m function) for the rule according to the equation:

1 —m(®)
B new = (6 ota X ————— ©)

2 (B ora

Using m (0)=0.2, rule editor formulates the following rule:
[(< machinery_speed_and_size > < not_in._good__balance >) BF] —
{{(<cause> < capacity_planning> <cause> < process.design>) 0.6]
[(<cause> < workforce™> < cause> < maintenance >) 0.2]}.
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The m (®) value along with the above values represents the measure of exact belief
function for this rule.

The rule in its Lisp form along with the associated belief values is displayed in a
separate window. For each new attribute entered in the LHS of a rule, the rule editor
queries the system designer for an associated query uniess one has already been entered.
This query is displayed in a second window. Thus, while the system designer is entering
rules, two separate windows (besides the interaction window) are open displaying all the
rules that bave been entered and all the associated queries. When the system designer
indicates that he has finished entering rules within a partition the rule editor asks him to
specify the ASKFIRST queries, if any, for that partition. Finally, rules specifying the
transfer of control from the current partition to the partitions it is linked at the next step
are obtained from the system designer.

4.2. Modifying the knowledge base

As fig. 5 indicates, facilities are provided in MIDST to modify the overall structure of the
knowledge base, the rules within partitions, and the associated queries. Modifying the
overall structure involves the addition or dcletion of partitions, and the addition,
deletion or modification of links between partitions. While deleting and adding
partitions, or deleting and adding links care needs to be exercised that the hierarchical
relationship of the existing partitions is not violated. When a new partition is added, the
rule editor automatically prompts the system designer to enter the rules within that
partition. The modified structure is again dispiayed to the system designer in the structure
window.

Modifying rules similarly involves the addition of new rules, the deletion of rules and
the modification of existing rules. In the current prototype no sophisticated editing
facilities are available. Therefore, in order to modify a rule the system designer is
required to enter the complete rule all over again. Facilities for changing part of a rule,
or changing only the belief values have not yet been implemented. Whenever the rule set
is modified, MIDST automatically recompiles the network and stores it for future use.
The systém designer can also modify queries (i.e., change the language of a qu‘ery), add
new queries (this may make a hitherto verifiable attribute into an gskable attnb.ute), or
delete an already existing query. The addition and deletion of gueries al§o requires that
the rule network be recompiled. Usually this recompilation is done. just t@forc_ the
system designer wants to run a consultation to see the effects of the modifications.

4.3. Running a consultation

This involves three steps as illustrated in fig. 5. The first step involves loading all the
knowledge base structures such as the rules, the queries and t.he rl}]e nglwork. In the
second step, the working memory structures and 1he.book—k«f.epmg fields in the “?twmfk
are appropriately initialized. The third step is the inferencing procedure described in

Section 3.3.
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5. Conclusions

In this paper, we have described the design and implementation of MIDST, an expert
system shell for mixed initiative reasoning. A primary achievement of our research hag
been the implementation of an efficient technique for incorporating the Dempster-
Shafer evidence combination scheme for inexact reasoning. This was accomplished by
compiling the domain rules into a rule network. We consider the design and
implementation of the network to be the major contribution of this research effort. The
network was used not only to speed up the backward-chaining process, but also to
partition the overall knowledge base into hypotheses spaces similar to a method
suggested by Gordon and Shortliffe®. In addition to computational advantages of a
smaller frame of discernment, the network allows implementation of the D-S scheme
without compromising the basic assumptions of independent pieces of evidence and a
mutually exclusive hypotheses set.The network provided an efficient and convenient
means of propagating belief values between levels. The compilation of the network is
done off line and the resultant network is stored in a file. The network construction
algorithm was designed in a manner that it runs in O(n) time: where n is the number of
rules in a partition®”. The rules and the network for individual partitions are stored in
separate files, and loaded only when a partition becomes active. This speeds up the
loading of large knowledge bases.

A second task addressed was the design and implementation of knowledge base
construction tools. Here, special attention was paid to effectively utilize features of the
underlying programming environment. The internal Lisp representation is made opaque
to the system designer, and the acquisition of belief values is based on a framework that
we hope experts will easily relate to. MIDST currently runs on Sun 3 and Apollo
DN3000 workstation under Common Lisp. Applications of MIDST currently underway
include porting OASES® and developing the XX system®*,

There are a number of tasks that we envision will improve the current version of
MIDST. They are:

1. Extensions to the rule editor to incorporate sophisticated editing facilities, provide
graphic displays and the ability to switch from the rule entry mode to a mode where
the system designer can run a consultation, modify rules and then switch back to the
rule entry mode. In addition, a TEIRESIAS™ type checking of the rules is also
envisaged.

2. The development of sophisticated explanation mechanisms and debugging aids.

3. Extending the network to facilitate its use during forward chaining. This can be done
by specifying additional dummy nodes.

4. The propagation of incremental belief values in the Dempster-Shafer framework.

- Extending GETMAXH so that it ranks hypotheses not on the basis of the absolute

belief but on the basis of the plausibility interval. This will necessitate the
generalization of computational techniques discussed by Shenoy and Shafer®.

- Develop tools that will aid the system designer in building specialized user interfaces.

th

(=2
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