
1. f i d m Inst. Sci., Nov.-Dec. 1987. 67, pp 465-490.
0 Indian Institute of Science.

GAUTAM BISWAS
Department of Computer Science, Box 1688. Station B, Vanderbllt University, Nashville. TN 35235, U.S.A.

AND

Philips Laboratories. North American Philips Corporation, 345 Scarborough Road, Briarcliff Manor,
NY 10520. U.S.A.

Abstract

This paper presents a general purpose expert system shell that incorporates m~xed-initiative reasoning and the
Dem~ster-Shafer ID-S) scheme of evidence combination for inexact reasonine. Domain knowledee is stared in . .
the form of rules wnh associated belief values defined in the D-S framework. To structure the consultation
process, the knowledge base is implemented as a partitioned rule base. The reasoning component user a
combination of forward and backward inkrencing mechanisms, and controls a mixed initiative interaction with
the user. To provide a suitable framework for performing the D-S computations and to achieve efficiency in
propagatina behef values durine the chaining process, the rule base is com~iled into a network. A rule editor . .
has also been designed to facilitate knowledge -base construction.

Key words: Knowledge-based systems, inexact reasoning, Dempster-Shafer scheme, mixed mitiatirre
reasoning.

1. Introduction

Expert systems are a class of computer programs that emulate the problem-solving skills
of human experts in specialized domains. They differ from conventional programs which
use fixed algorithms for manipulating data, in that they can piece together a large
amount of fragmentary knowledge in the form of facts and judgemental rules used by
human experts, to solve a given problem'. They address problems normally thought to
require the specialized knowledge of human experts for their solution. Expert systems
have been successfully developed in fields such as medical diagnosis2, equipment failure
diagnosis3, computer configuration4, mineral exploratiod. and chemical data
interpretationh.

Earlier expert systems, such as MYCIN' and PROSPECTOR' for the most part were
developed from scratch using dialects of Lisp (e.g., MYClN was developed in the
Interlisp environment). Developing an expert system from scratch is an enormous task.

'First presented at the platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute
of Science, Bangalore, India, during December 11-13, 19%.

'This work was originally conducted by the authors at the Department of Compiltcr Scicncc. Univcrs~ly of
South Carolina. Columbia, S.C. 29208.

465

466 GAUTAM BlSWAS AND T. S . ANAND

partly because the developers have to split their efforts between two major tasks:
(i) knowledge acquisition from experts, and (ii) designing knowledge manipulation
procedures. However, the development of earlier systems indicated that the inferenciq
and knowledge representation components could be separated from the domain-specific
knowledge base and applied to a completely different task (For example, SACON7, a
system for structural analysis, and a number of ather systemsZ were developed using
EMYCIN (essential MYCIN, i, e . , MYClN without its domain-specific knowledge base).
Such tools, or shells as they are sometimes called. facilitate rapid development of the
initial prototype of a knowledge-based system.

Currently, a number of software tools are available for knowledge engineering. They
fall into two categories: (i) skeletal systems extracted from previously built expert
systems, and (ii) general-purpose languages developed specifically for the knowledge
engineering task. In a skeletal system, all domain-specific knowledge is stored in the
knowledge base in a predefined format, and operated on by an inference engine that is
very similar to the system from which it is extracted. Examples of skeletal systems are
EMYCIN' (derived from MYCIN), KASy (derived from PROSPECTOR) and
EXPERT" (derived from CASNET). These tools are suitable for application domains
where the problem-solving structure and strategies are similar to the original system from
which these tools have been extracted. General-purpose languages are less constrained
than skeletal systems, and provide flexible programming environments because they are
not closely tied to any particular framework and allow for a wider variety of control
structures. Thus, they may be efficiently applied to a broader range of tasks, although
the process of developing the system may be more complicated. ROSIE", 0PS512,
RLL' and HEARSAY-111" are examples of general-purpose programming languages
developed specifically for knowledge-based system development.

Most tools listed use the rule-based approach for knowledge representation, although
the format and structure of the rules differ. For example, EMYCIN uses object-
attribute-value triples. OPS5 uses attribute-value pairs, and ROSIE uses deductive or
logic rules. In addition to rules, KAS uses semantic networks to represent classificatory
information in the domain, and R O S E uses a declarative data base to store simple
English-like assertions. Uncertainty is also handled in a variety of ways: ROSIE and
OPS5 have no in-built mechanisms for inexact reasoning. KAS uses an approximation of
the Bayesian conditional probability scheme, whereas EMYCIN and EXPERT use ad
hoc mechanisms. The inferencing mechanisms use either forward-or backward-chaining
strategies with the exception of KAS which uses a combined forward-backward strategy.
All the tools provide some facilities for knowledge acquisition in the form of rule editors,
and debugging and testing aids in the form of trace functions. However, none provide
more sophisticated debugging aids such as the ones developed in TEIRESIAS'~. Some
of the newer tools, such as ART. KEE and LOOPS' are flexible hybrid tools, i .e . , they
can be used to represent knowledge in several different ways, and can be applied to
several different paradigms. Table I summarizes the salient characteristics of a few of the
expert system shells that are in use now-a-days.

In this Paper. we present MIDST (a Mixed Inferencing Dempster-Shafer Tool) that
incorporates inexact reasoning mechanisms based on the Dempster-Shafer evidence

Table I
Characterization of some expert system tools

Name EXPERT EMYCIN KAS

Debugging aids

Production rules operating
on propositions.

Production mles operating
on assueiative (object-altn-
butt-value) tnpks.

Behef values in the interval
1-1, I] attached to facts
Values used as thresholds;
no combination formula.

Queshonoaire-driven (de-
signer specified order lor
data coUedioo). Systen.
forward chains once aU
data are gathered. Rules
fired in prespedied order.
No specific aids or editor
for knowledge base con-
struction.

Trace facilitier Statistrcai
hc t ions that keep tabs an
rule uiagc.
Classification (diagnosis1
p~emiptioo) problems,

Certainty factor; a normali-
zed probability t [- I , I]
attached wlth every tnplc.
Ad hoc combinallon for-
mula.

Backward chainmg, initnl
goal is to determine the
valuc of a top-level @xal-
dttilbut~,

agh-lcvel knowiedgs-
bwed editor check! syntac.
tic ~alldlt), contrad%clion
and subrumplion
Tracing faciliticl. HOW
and WHY expianaflons.

Consultatmn programs for
dmgnosir.

Production rules that link
aatecedenls to conse-
quents. Pmtioned reman-
flc networks represent tax-
anomical information bcai-
ing on antecedent and can-
Eequent rituatlons.
Probabilistic Bayerian
f iwenork. Two lkeb-
hood ratlor, measurer the
deprec of sufficiency and
necessity associated with
each rule.
Wed-initiative control,
achieved by combining for-
ward and backward charn-
mg.

Knowiedge-based edltor
that operates directly on
network structures

Immediate feedhack an
conwqucncec of changes to
knowledge base.
Consultatton environ-
,nents.

OPSS ROSlE

Set of proposxtms acted
u w n bv mles General nL

Production operating on
lists of attribute-value
pairs

No bullt-m mechanism

Forward charning, recog-
rure-act c)reic Two conflict
resolution strategies. Incor-
porates an eificmt pattern
match slgonthm

No speclflc aids or edltor
for knowledge base con-
struetion.

Trace and break facilitm
to track intermediate steps
in rcaxming.
General programming en-
vimnment.

. .
ary relations permitted.
Enghsh-like ryntar

No built-in mechanism.

Forward or backward
chaining. P o w e a pattern
matching strategies.

No 'mowledge-based edi-
or. Hard m add or m d f y
rulos. Can use any text
editor.
Trace operations. Helpful
error messages and error
recovery.
Constructing knowledge-
baed Eptems.

IhTERLISP FORTRAN WTERLISP MACLISP LISP

4h8 GALITAM RBSWAS A N D 7' S . ANAND

combination scheme. Our discusion will conccntrnlc morc on the design and
implenientation of the rule network. and the inferencing mechanism that combines
[onuiir&and backward-chaining procedures to achieve a mixed-inillatwe dialogue
the users of the syhteln.

Section 2 of the paper briefly reviews and compahcs existing nurncric;il schen~es for
inexact reasoning. Section 3 presents the MIIPS'P' system architccrurc, and then discusses
in detail the inferencing mechanisms along with the underlying knowledge hayc
structures. Section 4 br~efly out!incs some o f the knowledge-base construction aids
available in MIDST, arid then discusses the framework for acquiring heiiet functions

with the rules of the knowledge base Section 5 presents the conclusions and
dir-ections tor furure work.

2. Inexact reasoning

In co~nplex domains, efficient problem solving often rcyuires the use of judgemental
knowledge providcd by human experts, which can often he conveniently represented as
if-then rules. 'The uncertainty or judgemental natarc oE the expcrt's knowledge is
expresed by qualifying conclurions with terms such as likely, suggesrr, lutzds credence r o ,
etc. Therefore, it becomes necessary for thc knowledgc engineer designing the system to
represent and reason with this uncertainty in the problem-solving model. At least four
separate causes for uncertainty can he identified. The first, described above, is due to thc
inherent uncertainty in expert-supplied heuristics. The second cause Is related to the
reliability of information, i . e . , the facts or data required for soiviny the problem may be
imprecise. The third cause for uncertainty in conclusions is that they are often based on
incomplete intormation. A fourth cauae for uncertainty arises when problem-solving
information accumulated from multiple sources turns out to be contraclicto~y. It is this
pervasive imprecision and uncertainty in the real world that requircs the adoption of
inexact reasoning mechanisms in computer-aided decision making.

One approach to solving this problem is by numeric modeling. This involves assigning
numerical values to the linguistic terms used to qualify the conclusions made in rules:
e.&, the value 0.6 may represent the phrasc suggests. The problem now reduces to
interpreting these numbers in a suitable framework, and then defining appropriate
functions for combination of evidence in that framework.

The traditional approach to uncertain decision making has been the use of probability
theory and Bayes combination formula for conditional probabilities; well-known
examples of systems that employ Baycsian reasoning are PIP'^, CADUCEUS'~. and
PROSPECTORS. Thcse systems interpret belief values as conditional probabilities, ie..
the probability of ohserving the hypothesis on the right-hand side of a rule given the
evidence described on the left-hand side of the same rule. When multiple evidence
supports the same hypothesis the overall probability or likelihood of the hypothesib is
computed by applying Bayes' formula. However, there are a number of problems
associated with the practical implementation of Bayesian schemes. Szolovits and

AN EXPER i SYSTEM SHELL FOR MIXED INITIATIVE REASONING 469

pauker" have shown that a direct implementation of Rapes' formula leads to a very large
and unmanageable database even if simplifying assumptions such as independence of
individual observations are made even though they are hard to just tb physically. b a i n ,
in the probabilistic framework, the probability that a given hypothesis h , is true, ~ (h ,) ,
and the probability that h , is false, P (- h ,) , are linked by the formula:

P(/lJ + P(- h,) = 1. (1)
Thus, iFP(h,) =O, we must have P(- h,) = I. Rut when we have no aprion' knowledge
regarding truth or falsity of h,, ignorance is difficult to represent. T o work around this
~roblem, the assumption I'(h,) = P(- h,) = 112, is often made in order to represent a
state of ignorance. However, when the number of possibilities increase to more than
two, ~ b a f e r ' % a s demonstrated, by simple examples, that the technique of assigning
equal probabilities can produce counter-intuitive results. Because of thc distortions it
imposes on the problem. and because of its enormous data requirements, pure
probabilistic schemes tend to be successful only in smal!, well-constrained problem
domains17. Most real-life problems that involve complex decision makmg suffer from
insufficient data and imperfect knowledge, so a rigoruus probabilistic analysis is not
possible. T o avoid sonlc of the problems that come along with the application of a formal
probabilistic framework, ad hoc functions for the combinations of evidence have becn
proposed. A well-known example is MYCIN2, a diagnostic expert system for selecting
antibiotic therapy for bacteremia. The sy\iern uses heuristic functions based on
confirmat~on theory or subjective probability, and the mechanism for evidence
combination conceived on purely intuitive grounds has proved to be a good
approximation to the intuitive methods used by doctors. Although this scheme was
originally proposed as an alternative to probability theory, dams'" has shown that
comhining functions can be derived from probability theory with the assumption of
statistical independence.

The drawbacks of the Baycsian and ad hoc schemes like the one used in MYCIN have
drawn attention to the Dempster-Shafer (D-S) theory in decision-making applications2".
The key advantages of this scheme arc its abilities to allow belief to be assigned to subsets
of hypotheses from the space of possibilities (as opposed to singleton hypotheses in the
Bayesian framework), effectively repesent the concept of ignorance in the reasoning
process, and model the narrowing of the hypotheses set with the accumulation of
cvidcnce. This provides a better model for the expert reasoning process. Belief functions
and their combining rule in the D-S theory are well suited to represent incremental
accumulation of evidence and the results of its aggregation. ~ h a f e r " has shown that the
D-S approach indudcs the Bayesian and MYCIN evidence cornhination functions as
special cases. In addition, it avoids the probabilistic restriction of eqn (1). The definition
of a belief function, and the mathematical formulation of the evidence combination
schcme are presented next.

2.1 The Uernpster-Shujer approach to inexact reclsonirrg

The following discussion follows the notation used in Shafer" and Gordon &
Shortliffe?'. The D-S formulation is based on a frame of disccrnment, 8. a set of

470 G A U T A M BISWAS A N D T . S . A N A N D

or hyporheses about the exclusive and exhaustive possibilities in the domain
under consideration. The notation 2@ is used to denote the set of all subsets of @.

Further discussion is based on two concepts that can be adopted for the representation of
evidence: the measure of belief committed exactly to a subset A of @ (i.e., A E 2@) and
the total belief committed to A. Exact belief relates to the situation where an observed
evidence implies the subset of hypotheses, but this evidence does not provide any further
discriminating evidence between individual hypotheses in A . A function m:2" -, [0,1] is
called a basic probability assignment (bpa) whenever:

where 2" is the set of all subsets of O. The quantity m(A) represents the measure of
belief that is committed exactly to A. In other words, a bpa represents the support a piece
of evidence provides to subsets of O. Condition (2a) reflects the fact that no belief ought
to be committed to '3, the null hypothesis, while (2b) states the convention that one's
total belief has to sum to less than or equal to one. The measure of totul belief committed
to a subset A is defined as:

Bel(A) = 2 m(B) ,
R C A

(3)

where the summation is conducted over all B that are subsets of A. A function Eel:
2" + [0,1] is called a belieffunction over 8, if it is given by (3) for some basic probability
assignment m. If (2b) sums to less than 1, then (1 - C m (A)) defines a measure of

A c e

ignorance. denoted by m(O). In other words, m(O) is the extent to which the
observations provide no discriminating evidence among the hypothesis in the frame of
discernment, 0 .

Judgemental rules provided by experts basically represent individual pieces of
evidence that imply subsets of hypotheses with confidence values that correspond to
measures of exact belief (details of rule structure are given in Section 3.1).
Corresponding to two different pieces of evidence el and e2 with bpas m l and m2,
respectively, over the same frame of discernment. Dempster's rule of orthogonal
products is applied to combine the effects of observing the two pieces of evidence and
compute a new bpa, m, that is given by:

AN EXPERT SYSTEM SHELL FOR MIXED INITIATIVE REASONING 471

where A , represents hypotheses subsets that are supported by e , , B, represents
hypotheses subsets supported by e2, and Ck represents the hypotheses subsets that are
supported by the observation of both e l and e2. The denominator is a normalizing factor
to ensure that no belief is committed to the null hypothesis (condition 2a). More detailed
discussions on the Dempster-Shafer theory of evidence combination appear in Shafer's
work18.

3. The MIDST system

As discussed earlier, a number of expert system development tools are available now a
days. A large number of these tools requi~e the encoding of domain knowledge in the
form of pattern-action (or, antecedent-consequent) rules. Uncertainty representation in
the form of numbers in the interval [0,1] or [-] ,I] , and inexact reasoning methods have
also been incorporated into some of these systems. Current schemes are based on
approxiqate Bayesian methods (e .g . , PROSPECTOR), or ad hoc schemes (e.g. ,
MYCIN). Some others, such as FLOPS", use fuzzy reasoning techniques. However, to
date there are very few systems based on the D-S scheme in spite of its advantages
discussed in Section 2. Some of these advantages were demonstrated in a system called
OASES, developed for trouble-shooting production processes'2~2i. In the rest of this
section and the next, we discuss the design and implementation of MIDST, our expert
system shell extracted from OASES.

Figure 1 illustrates the basic components of the MIDST system. The system designer or
the expert interacts through the system designer interface to create a knowledge base for
problem solving.. This interface provides two main functions. Via the rule editor the
system designer builds the domain knowledge base as a partitioned rule base. Facilities
are provided for creating, deleting and modifying partitions, and then creating, deleting
and modifying individual rules within partitions. The second function of the interface is
to provide debugging feedback to the system designer and expert during the system
development process. During system development after the system designer enters rules
for a partition or makes changes to them, the system is designed to analyse the rules and
determine if any rule is missing or is incomplete. We are still in the process of
implementing this functionality of the system along with other debugging techniques,
and, therefore, do not discuss them in this paper.

The rule editor performs the task of converting rules entered in an English-like format
into the Internal Lisp format required by MIDST. Uncertainty in the rules is represented
as exact belief functions in the D-S framework, and are extracted from the domain expert
employing a scheme we describe in Section 4. Rules are stored in the rule base, and
associated queries are stored in the query database. The network compiler compiles the
rules into a rule nerwork which makes the inferencing process efficient. The compilation
of rules into a network is an expensive process, and is done off-line.

The task of interpreting the domain knowledge is performed by the inference engine
which is the heart of the MIDSTsystem. MIDST incorporates a combined forward- and
backward-control structure in its reasoning mechanism. This allows the system to have

GAUTAM BISWAS AND 7' S. ANAND

USER
T

i USER INTERFACE I

NETWORK
ANALYZER

-

FIG. 1. MIDST system architcclure.

mixed-initiative control. A typical session starts with the system allowing the user to
volunteer information that might be relevant to the problem. This information is used by
the system to derive intermediate or part~al conclusions. The system then assumes
control, and what typically follows is a cycle of questions and answers in which the
inference engine selects a relevant piece of evidence to query the user about. Instead of
answering a question the user can take the initiative any time and volunteer additional
evidence, seek clarification, or request an explanation. This latter request is handled by
the explanation mechunism sub-system and takes one of two forms: (i) an explanation of
the reason for that particular question. or (ii) a summary of the principal conclusions of
the system at that pomt in the consoltation. This task is essentially performed
examining the history of the consultation. The ability of the system to examine the rule
network and produce explanations is quite important as it rnakcs thc inferencing
mechanism transparent to the user. Evidence combination is baaed on Dernpstcr's

AN EXPERT SYSTEM SHELL FOR MIXED INITIATIVE REASONING 473

combining formula (eqn 4) presented in Section 2. In the rest of this section, we discuss
the structure of the knowledge base, the rule format, the design and implementation of
the rule network and the reasoning strategy employed in MIDST.

3.1 Knowledge-base structure

The knowledge base of MIDST is formulated as a partitioned rule base. The structure of
the rules (i.e., the rule language) as well as the partitions are designed to facilitate the
representation of domain knowledge, and incorporate uncertainty in terms of belief
functions in the D-S framework.

A rule links a pattern on its left hand side (LHS) to one or more conclusions andlor a
sequence of actions on its right hand side (RHS), i.e., the LHS pattern represents
relevant evidence for the conclusions on the RHS. Single pieces of evidence are
represented as attribute-value pairs, and, in general, an LHS pattern is a conjunction of
pieces of evidence, (c.g., [(<process type > <continuous flow >) & (<problem
occurrence > < continual >) & (< insuJficient capacity > <late in process flow >) I) .
Actually, evidence in the LHS pattern of a rule can be one of two types:

(i) askable, corresponding to information that can be obtained by directly querying the
user (therefore, they have expert-supplied queries associated with them), or

(ii) verifiable, corresponding to evidence obtained from rule firings. (They represent
intermediate conclusions in the chaining process).

Each conclusion on rhe RHS is a disjunctive set of hypotheses, where an individual
hypothesis is represented as an attribute-value pair. In addition to conclusions, the
system designer may also specify a sequence of forward-chaining actions on the RHS of a
rule. These actions are usually Lisp functions which permit the system designer to
perform additional computations, or incorporate overriding control constraints.

To accommodate uncertainty in the rule structure, the shell associates an expert
supplied belief value with every conclusion on the RHS. Belief values are modeled as a
bpa function in the D-S framework. Note that belief values may also be associated with
individual pieces of evidence in the LHS pattern. They may be derived from user input
for askable patterns or computed values for verifiable patterns. BFis a Lisp function that
Computes the overall belief value for the LHS pattern of a rule. If multiple pieces of
evidence are involved, the belief value associated with the LHS pattern is the minimum
of the belief values of each piece of evidence on the LHS of the rule.

A rule from the O A S E S ~ ~ . ~ ~ system illustrates the rule structure described above:

[(<process-iype > <continuous pow>) bf, and
(< insufficient capacity > <late in process flow >) bfb] -+

{[(<cause > <process design >) 0.51

[(<cause > < (raw materials, technology, mainfenance) 2 0.31 1 .
The expert may also supply evidence that negates the belief in a conclusion. For

example, in the OASES framework a rule stated in English is:

471 GAUTAM BISWAS AND T S. ANAND

if (continuous flow fibrrgluss munulacturing process) & (molten glass viscosity is not
nominal) & (all ingrrdiem conzpaction ratios are within limiis)
then (rde out bin Ievelflucfnations as the cause for tile raw material s o u r ~ i n g , ~ r ~ b [~ ~) ,

Such heuristic rules enable the expert to apply the process of elimination in the
diagnostic process. In the D-S framework, evidence against a hypothesis is treated as
evidence in favor of the negation of the hypothesis in the set theoretic sense. Therefore,
if @ = (bin level fluctuations, inconsistency qf ruw V I U ~ W ~ U ~ , post-scale contamination}
then the above rule translates to:

if (rontit~uous flow fiberglass manufacturing process) &

(molten glass. viscosily is not nominal) &

(all ingredient comp~ction ratios are within linriu)

the11 (inconsistency of raw muterials or post-scule contamination is the causefor the mw
material sourcing problem).

Facilities are provided for partitioning the knowledge base into separate chunks or
units. This may facilitate the modeling ol the expert's reasoning process. Conceptually,
partitions represent the breakdown of a complex problem-solving process into a
sequence of component subprohlcms. The division o f the knowledge base into partitions
is an attempt to ctreamline and make efficient the inferencing niechanism by imposing a
structure on the problem-solving process. The partitioning approach also provides an
efficient way to model the expert's reasoning proccss. As a result, the knowledge
acquisilion process can he made more structured, thus making a little simpler, an
otherwise difficult task. Another benefit of partitioning, discussed later, is that it makes
the D-S scheme easier to implement and computationally more efficient.

A n important feature of the expert system shell is the compilation of rules into a
network that makes the backward-cbaining phase of the inferencing more efficient, and
provides a convenient means for implementing the chaining process in the D-S
framework. This compilation is done off-line and the p u l t a n t network is stored as a
multi-linked list. The rule network is described in greater detail next.

3.2 The rule network compiler

The MIDST rule compiler takes advantage of knowledge available from a static analysis
of the rule set to produce a more efficient representation for computational purposes.
Specifically, it constructs a Lisp structure that embodies a block of rules that bear on the
same diagnostic conclusion.

3.2.1 The rule network design

The rule network represents a compilation of ~ndividual rules, and links conclusions to
relevant evidence. Each sequential partition is compiled into a disjoint rule network. For
example, fig. 203) shows a portion of the rule network corresponding to rules in xxZJ,

AN EXPERT SYSTEM SHELL FOR MIXED INITIATIVE REASONING
475

(rule03
(((<dist> <less-equa1200>)) BF)
([[[<site of play> <shelf>)

(<site of play> <margin>)) 0.8)))

(rule04
(((<dist> <greater-ZOO>)) BF)
((((<site of play> <craton>)) 0.6)))

(rule06
(((<move> <seaward>)

(<beds-dip> <seaward>)
(<beds-deepen> <seaward>)
(<abrupt-change> <no>)) BF)

((<site of play> <margin>)) 0.7)))

(rule18
(((<sedfiner> <seaward>)) BF)
((((<beds-deepen> <seaward>)) 0.7)))

(rule19
(((<sedfiner> <landward>)) BF)
((((<beds-deepen> <landward>)) 0.7)))

(rule20
(((<sed_homogeneous> <seaward>)) BF)
((((<beds-deepen> <seaward>)) 0.7)))

(rule21
(((<fauna-deepens> <seaward>)) BF)
((((<beds-deepen> <seaward>)) 0.7)))

(rule22
(((<reflectors-thin-&-dip> <seaward>)) BF)
((((<beds-dip> <seaward>)) 0.6)))

FIG. 2a. Some of the XX rules.

that deal with the identification of the site of a hydrocarbon play. The rules are listed in
fig. 2(a). Both conclusions and evidence are represented in the same conceptual
framework: attribute-value pairs. They form the nodes of the network. Rules relate
evidence patterns to conclusions, and appear as links in the network. Links have weights
associated with them. These weights are directly dependent on the amount of belief that
the evidence pattern provides for the particular conclusion it is linked to. Final
conclusions represent the top layer of nodes in the rule network. In fig. 2(b), the top
layer of the network represents the possible values of the site of a hydrocarbon play:

476 GAUTAM BlSWAS AND 1'. S . ANAND

-.-~-~

1 0 6

: < r e f l e c t o r s _ t h m 4 4 l p ,
: ~ i e d w a r d ,

FK. 2h. Sccuon oi :he rule netwurl, tot XX.

within the cruton, on the conrbienml shy , uand on rile ocrunlc murgbz. In addition, there
are two other kinds of dritwny ~iodes. The first is an AND node: a conclusion that
depends on a conjunction of evidences is linked to thc evidence-nodes through this kind
o f node. The second is a level node. Level nodes link two hypotheses spaces.
Conceptually, a hypothesis bpace is made up from the set of rules that verify the same
attrihute. It should be noted that the conclusions in a hypothesis space many ba final or
intermediate, and evidence may cithcr be askable or verifiable. In fig. 2(b), the nodes
enclosed in the dashed boxes represent hypothcscs spaces. Nodes corresponding to
verifiable evidence patterns are linked to levcl. Evidence nodes corresponding to the
same attribute convcrge on to the same level-node. For example, in fig. 2(b) < beds-
deepen > is a verifiable attnbute, and, theretorc, all evidence nodes that support the
values of this attribute (seaward or lundwurd) are linked to the same level-node. This
level node is also linked to the hypothesis space where a value for this attribute may be
derived. Thus, the overall structure of the rule network is that of hypotheses spaces
linked to each other through level-nodes.

In inferencing terminology, reritrable pieces of evidcnce represent intermediate
conclusions and their presence leads to chaining or reasoning at multiple levels. TO
handle chaining in the D-S framework each liypothcsis space defines a separate frame of
discernment (6)). This approach closely mirrors the method suggested by Gordon and
Shortliffe for implemcnting MYCIN2" in t h ~ s framework. The conceptual structures in
the knowledge base are the attribute-value pairs, and each verifiable attribute defines a
frame of discernment extendmg over the possible values o f that attribute. An advantage
of such an implementation is that it maintains mutual exclusiveness of hypotheses and
independence of evidence, a requirement in the D-S framework.

AN EXPERT SYSTEM SHELL FOR MIXED INITIATIVE REASONING 177

A shortcoming of the current nclwork implementation is that it doe7 not completely
capture all the informatm contained in the rules. For example, the network does 11ot
provide featurcs to faithfully represent rules that have evidence-supporting multiple
hypotheses. or evidence that $upports a set of hypotheses rather than a singleton
hypothesis. As a result, when the pattern on the LHS of a rule is instantiated, the actual
rule is invoked to generate new hypotheses and compute the new belief function. In
future, we will define additional dummy nodes to solve the above representation
problem. The network would then provide effective speed up both in the forward- and
backward-chaining modcs of operation. However. in oui current research the emphasis
was on developing efkient backward chaining and quer:,-selection mechan~sms, and the
current network configuration definitely achieves these objecives.

In summary, somc of the salient features of the network implementation are:

(i) the presence of bidirectional links which permit easy traversal along the network
structure, and

(ii) a table look-up mechanism that allows identitication of nodes corresponding to an
attribute. This allows a single-step access to any node in the network.

The utilizaiion of the network for efficient query and rule selection during backward
chaining, and propagation of bcllef values between hypotheses spaces is further
elaborated in the ne'st section.

3.3 InferencinglControl structures

The inferencing mechanism has four main components: the evidence combination
schemc. the procedure for selecting the top-ranked hypothesis, the query-selection
mechanism that directs the user-system dialogue based on the top-ranked hypothesis,
and the top-level controller that is related to the selection of partitions within the rule
base. The system adopts a mixed-initiative form of control. Initially, the user may
provide facts and evidence that helshe considers relevant to the problem. The system
forward chains on this evidence. establishes intermediate conclusions, and then ranks
goal hypotheses based on some criteria, eg, the belief values associated with each goal
hypothesis. The D-S scheme is used to update the belief values of hypotheses depending
on the evidence provided by the user. MIDST then goes into the backward-chaining
mode, identifies the top-ranked hypothesis and then the best question to ask the user to
try and establish this hypothesis. If the user considers the current query to be irrelevant,
helshe may provide additional facts and evidence, unrelated to the query, which switches
the system back into the forward-chaining mode. This approach illustrates miseti-
initiative control.

The overall flow of control for the inferencing mechanism is shown in fig. 3. The user
interface is directed by the ASKQ routine. In the initial step, the system goes through
questions in the top level partition (the partition that has an initial predeterm~ned
sequence of queries similar to the ASKFIRST queries in MYCIN*), and the user
responses are converted into appropriate evidence patterns and stored in working
memory. Depending on the responses, the partition controller transfers control to an

478 GAUTAM BISWAS AND T. S. ANAND

1 1
LLYfL I

B

i >

ho. 3. The inference control structure. FIG. 4. Simple rule network.

appropriate partition. Forward chaining and evidence combination is performed by the
DEDUCE function. This establishes intermediate conclusions based on which the final
goal hypotheses are ranked. The function GETMAXH is invoked to pick the leading
hypothesis. Next the backward-chaining process is initiated, and CHOOSEQ selects
appropriate queries based on the top-ranked hypothesis. At each step, the exit condition
is checked by an EXITCHK function. Before querying the user for more information,
the system checks if, based on the current belief values, it can come to some definite
conclusions. Instead of having a standard overall EXlTCHK function, the shell allows
the system designer to define EXITCHK routines for every partition. For example, the
following conditions:

(i) the ignorance factor, m (O) is below a certain threshold,

(ii) the belief value committed to the top-~czked hypothesis exceeds a second
threshold, and

(iii) the difference in belief values between the two top hypotheses exceeds a third
threshold

were checked in the EXITCHK routine for the lower-level partitions of OASES'~ to
establish the leading hypothesis beyond doubt. As a justification, we observe that a
combination of the first two conditions ensure that further corroborating evidence would

AN EXPERT SYSI'EM SHELL FOR MIXED INITIATIVE REASONING 479

change the belief in the leading hypothesis only marginally, whereas the third condition
enwres that the belief in the leading hypothesis is sufficiently greater than any of the
other possibilities. Other EXITCWK conditions can be specified for individual levels.

As discussed eariier. user interactions are controlled by the ASK0 routine. This routine
generates queries and invokes a separately defined routine indcpendent of the shell (user
interface in fig. 1) to interpret the user's response. Depending on the sophisticatih of
the system interface this routine may incorporate some form of natural language
proccssing. The routine returns an evldence pattern or a set of evidence patterns
depending on the user's response. These patterns are stored in the MIDST systcm
working memory. For example, in the OASES2' system, the ASKQ routine incorporates
a module GENEV which is based on a combined ATT parser-keyword matching
approach. The user may provide a direct reply to the system query, or if he wishes to
specify other relevant information, he may do so in his response.

3.3.2. DEDUCE

This is the forward-chaining routine. The initial algorithm adopted for DEDUCE can be
describcd as follows:

1. HYPS t list of hypotheses sets and associated belief values.

2. Match the evidence pattern generated by the user-supplied information with the
current active rule set.

3. Find all rules that have satisfied left-hand sides (this is. the instantiated set)

4. Trigger all rules in the instantiated set one by one, and update the belief values of the
hypothesis in HYPS using Dempster's combination formula (The order in which rules
are fired is not important).

5. Perfom all forward-chaining actions associated with the rule being fired.

This algorithm reflects the traditional forward-chaining approach where the interpreter
searches working memory, picks a set of rules that can be fired, makes a choice and fires
a rule which updates the contents of workmg memory. This process is repeated till no
rules can be fired. However, this straightforward approach could not be directly applied
to MIDST since this would result in a large amount of extra computation, as is illustrated
below. Consider a very simple example, with the following rules:

rulel: if A then B , 0.6,
rule2: if Cr then A, 0.4,

rule3: if CZ, then A , 0.5.

The portion of the network corresponding to these three rules is shown in fig. 4. If
working memory denotes that C2 has been established with belief value = 1 then rule:!

480 GAUTAM BISWAS AND T. S. ANAND

derives A with belief = 0.5, and this results in an update of belief values of all hypotheses
in Level J frame of discernment. On propagation of belief in A, rule1 derives B, and,
therefore, equation 4 can again be applied to update belief values of hypotheses in Level
I frame of discernment. Now, if at some later time CI is established, rule2 will fire and
the belief in A (and other Level J hypotheses) will be updated, and this change in belief
will propagate to higher levels (say Level I) , where belief values of all hypotheses will
have to be recomputed. However, evaluation of equation 4 is computationally
expensive, and it would be quite wasteful to repeat the entire computation every time the
belief in an already established hypothesis or evidence is updated. A number of schemes
have been proposed for making the belief function computations more efficient; the
better known examples are schemes proposed by Barnett*', an extension of Barnett's
scheme proposed by Gordon and Shortliffezo, and then a more generalized scheme
~ roposed by Shenoy and shaferz6.

But none of these directly address the situation described, where changes in belief
values of hypotheses need to be propagated to higher levels so that belief values at these
levels may be updated. However, this involves complete recomputation of all belief
values at higher levels (which is computationally very expensive), whereas, ideally, the
belief values should be updated by incremental recomputation. The options thus left
open to us were, either t o use some sort of approximation for incremental updating of
belief values at higher Levels, or use some other technique to handle this situation. We
chose the latter. In order to prevent wasteful computations, belief values were not
transmitted between levels, till the EXITCHK conditions, described in Section 3.3, were
satisfied. Therefore, in the example above, the belief value for A would not be
propagated to the next level till it was established that there would be no significant
change in its belief value (either because of conditions (i) and (ii) in EXITCHK, or
because the system knows of no other evidence, i .e . , rules, that can support the
hypothesis). However, within a level, the DEDUCE function operates as described in
the beginning of this section. In order to implement this scheme, local structures called
hypothesis-bases are defined for each hypothesis space. These structures store
intermediate beliefs in the hypotheses and once these beliefs achieve a 'sufficient' value,
or all rules associated with this level have been exhausted, they are added on to the
global evidence-base (working memory). The 'sufficient' criterion is defined by the
EXITCHK conditions. The modified algorithm that incorporates this change is described
below.

DO for all the newly acquired evidence patterns

1. Determine the level in the network where the evidence pattern is applicable.
2. Retrieve the local hypothesis-base of that level from the level-node in the network.

HYPS +list of hypotheses sets and associated belief values.
3. Do until no more rules can be fired.

a. Match the evidence pattern with the current atcive rule set.
b. Find all rules that have satisfied left-hand s'c'es (this is the instantiated set).

AN EXPERT SYSTEM SHELL FOR MIXED INiTlATIVE REASONING
481

c. Trigger all rules in thc instantiated set one by one and update belief values of the
hypotheses in HYPS wing Dempster's combination formula (The order in which
rules arc iircd i.; not important).

d. Perform all forward-chaining actions associated with the rules being fired.

4. For cvery levcl if the local HYPS satisfies the EXITCHK conditions, add this
HYPS to the global evidence-base and mark the corresponding level as solved.

3.3.3. GETMAXH

The function of thc GEI'MAXM routine is to.determine the most promising (i . e . the top
ranked) hypothes~s which the system then tries to establish by qucrymg thc user for more
information. The procedure adopted for doing thls is as follows:

1 . Rank the hypothesis in the HYPS corresponding to the top-most level of reasoning in
the current active partition.
This ranking is done on the basis of the exact behef committed to the hypotheses.

2. Select hypothcsis with maximum belief

3. If this is a set, sclect hypothesis with maximum belief among the elements of the set.

The query-selection mechanism is implemented by the routine CHOOSEQ. Given the
leading hypothesis which the system is trying to ver~fy, CHOOSEQ examines the
network of compiled rules to find out which rule it needs to fire to increase belief in the
ledding hypothesis. The network, as discussed earlier, links hypotheses to relevant
evidence patterns as described by the expert-supplied rules. If thz most relevant pattern
IS askable, CHOOSEQ returns the corresponding query to ASKQ. On the other hand, if
the pattern is verifiable, and the level associated with that attribute has not already been
solved (in the sense of step 4 of the modified DEDUCE algorithm in Section 3.3.2). then
CHOOSEQ calls itself recursively, invoking the corresponding lower level hypothesis
space and setting this pattcrn as the lead~ng hypothesis which it will then try and establish
in this Icvel. It is important to note that different frames of discernment are associated
with different hypothesis spaces in the network. Also, the procedures for returning from
a level (hypothesis space) to the onc it was invoked from depends on the EXITCHK
conditions as discussed jn Section 3.3. The next sect~on presents an example to illustrate
the various features of the inferencing mechanism discussed abovc.

This example, taken from the XY sy~tern2', ~llustrates the functions of the five
Components of the inferencing mechanism. The system is currently trying to establish the
site of a hydrocarbon play. Readers are referred to figs 2(a) and (b) that describe a
section of the rule5 and the portion of the network that is relcvant to the inferencing

482 GAUTAM BISWAS AND T. S. ANAND

process being discussed. Initial evidence provided by the user results in the exact belief
function:

m ((h , , h 2 }) = 0.45, m (h l) = 0.25, m(h2) = m (h 3) = 0.1

where h , = (< site of play> <margin >), h~ = (< site of play> <shelf >), and
h3 = (< site of play> <craton >). Based on these values, GETMAXH establishes h,
as the leading hypothesis, and CHOOSEQ is invoked to pick an appropriate query to
obtain more evidence in support of < margin > from the user. CHOOSEQ examines
the rule network (fig. 2(b)) and picks (< dist> <less-equal-200 >) as the best
evidence-node. Since this is an askable attribute, the system queries the user and
determines the distance of the play from tbe margin is less than 200 miles. This causes
rule 03 (fig. 2(a)) to fire and belief values get updated, according to eqn 4, as shown
below:

The updated belief function is:

m (. { h l , h Z }) = 0.576, m (h ,) = 0.272, m (h Z) = 0.109, and m(h ,) = 0.022.

The GETMAXH function again identifies h , as the leading hypothesis. To further
increase belief in h , , CHOOSEQ determines that it will have to establish evidence
corresponding to the AND node in fig. 2(b), which involves establishing two verifiable
attributes. Let us assume that the system has established that there is no abrupt change in
slope, and as we move seaward the beds dip seaward. It now descends to Level 2 to
determine the direction of deepening of the beds. Again fig. 2(b) indicates a number of
askable evidence patterns to establish that bed. deepen seaward. CHOOSEQ first selects
a query to determine the direction in which sediments become finer, and the user
responds seaward. This establishes the hypothesis (< beds-deepen> <seaward 2)
with a belief value of 0.7. In a traditional system, additional rules would have been
triggered automatically, and belief values of the < site-of-play > attribute would have
been recomputed. However, in this case, establishing additional properties, such as
homogeneity of sediments and deepening of fauna would have increased belief in the
hypothesis (< beds-deepen> (seaward >), and would have resulted in different
belief values for the < site-otplay > attribute.

In order to avoid repeated computation of belief values, which is expensive, the system
does not propagate belief values out of a hypothesis space till the EXITCHK conditions
are satisfied. In this example, the system continues to query theuser till the belief value
for (< beds-deepen> <seaward >) becomes 0.96, and the EXITCHK condition is

AN EXPERT SYSTEM SHELL FOR MIXED INITIATIVE REASONING 483

established. This value is then propagated to the higher level, where belief values are
updated in the site of' pluy frame of discernment.

4. The system designer interface

This section summarizes mechanisms developed for MIDST to facilitate the task of
knowledgc base creation and modification. Functions for structuring the overall
knowldege base as sequential partitions, entering and editing rules, and obtaining
queries for askable evidence are discussed. It is assumed that the system designer, by
prior interactions with the domain expert has designed the knowledge base partitions,
evidence patterns and hypotheses are already represented as attribute-value pairs, and
rules have been formulated in the format described in Section 3.1.

The system designer interface is implemented on APOLLO DN3000 and Sun 3
workstations, and runs under CommonLisp. This programming environment provides
support for the display and use of multiple windows on the screen. The salient
characteristics of the interface are: (i) a multiple window display, (ii) the use of special
templates to facilitate rule entry, and (iii) simple mouse-controlled operations that allow
the user to interact with the system in multiple windows simultaneously.

Creation of the domain knowledge base is performed in two distinct phases. In the first
phase, the rule editor captures the overall problem-solving methodology of the expert,
i.e, it makes the system designer specify sequential partitions for each subtask of the
problem-solving process. The aim is to obtain sequential partitions (if any), and the
hierarchical relationship between them. The skeletal structure of the knowledge base is
displayed in the structure window. The process of defining the partitions and determining
the hierarchical o r sequential order is guided by a question-answering session with the
system designer. After this phase is complete, the structure window is placed on one
corner of the screen, so that the system designer may refer to it if he wants.

In the second phase. the system designer first specifies the goals i.e., the list of final
conclusions for each arti it ion, enters rules that link evidence patterns to conclusions,
and enters questions for evidence that is to be derived by directly querying the user.
MIDST provides the system designer the facility to switch between the two phases at any
time during the interaction. While entering rules for a partition, he may want to modify
the sequential partition structure, and then return to the process of entering rules for the
current partition. For the current partition in which rules are being entered, a partition
window displays the partition id, the final conclusions for that partition, and the Lisp
form of the last rule that was entered. A rule template is displayed in the interaction
window, the window in which current interactions are occurring. Rules and the
associated belief values are entered into the template. The user is permitted to enter a
number in the interval [0,10] to express belief in conclusions. The basic purpose here is to
obtain a relative ranking of the conclusions. These values are then converted to a belief
function in the ~ e ~ p s t e r - s h a f e r framework. For every individual piece of evidence, the
rule editor prompts the system designer for an associated query. This appears as a
separate template within the interaction window. The list of queries entered for the

KNOWLEDGE 4
GAUTAM BlSWhS AND 1'. S. ANAND

START

-i,-'
MODIFY A

KNOWLEDGE
CONSULTATION

LOAD THE
KNOWLEDGE

STRUCTURES

L
INITIALIZE

AND

FIG. 5. Operations of the rule editor.

current partition stored in the query window. In addition, the system designer can open
up the query window to independently edit the queries.

Once the system designer has entered all the rules and the associated queries, the rule
editor separates all evidence patterns into askable and verifiable patterns. The verifiable
evidence patterns do not have queries associated with them, and thereby need to be
derived by firing rules. For each verifiable pattern there must be a set of rules whose
RHS contains this pattern. If no rule is found, the system designer is informed and he
either converts the evidence pattern to the askable type by providing a query, or he
enters rules that can be used to derive the pattern.

AN EXPERT SYSTEM SHELL FOR MlXED INITIATIVE REASONING 485

The capabilities and sequence of operations of the current version of the rule editor
are summarized in fig. 5. The rule editor allows the system designer to add a new
knowledge base, modify an existing one or run a consultation to obtain debugging
feedback. This facility to run a consultation is provided to the system designer to test the
knowledge base by running sample case studies. MIDST allows the entry of large
knowledge bases to be distributed over a number of sessions. The system designer can
run test cases to check the validity of newly entered or modified knowledge, thus making
it possible to do incremental debugging. The system designer can then go back to the
expert for more directed consultations and discussions to refine the knowledge base.

4.1. Adding a knowledge base

The three major structures that the system designer needs to specify in the knowledge
base are the sequential partitions, the rules within each partition and the queries
associated with askable attributes. MIDST begins by explaining to the system designer
the purposes and benefits of partitions, and then interacts with the system designer to
obtain partitions and the relationships between partitions. As an example, consider the
system designer entering the domain knowledge base for the OASES system". The rule
editor prompts are depicted in bold font and the system designer's input is in italics.

Would you like to enter a new knowledge base?
yes
Enter a name for your knowledge base.
OASES
Would you like to partition the knowledge base?
yes
Bow many steps have you divided your problem-solving process into?
3
Bow many partitions do you need at step I?
I
Enter a name for the partition.
process type
How many partitions do you need at step 2?
5
Enter names for the 5 partitions.
Separate the names by commas.
continuous flow, batch flow, worker paced, machine paced, job shop
TO which partitions in step 2 is the partition process type in step 1 connected?
all.

This information is displayed to the system designer in a separate window (the structure
window). Window management is done from Common Lisp routines using underlying
operating system calls. Currently the partition information is displayed in a non-graphic
mode; however, this display will be improved in future versions. After relationships
between partitions in steps 2 and 3 have been obtained, the rule editor enters the rule
entry phase to allow the system designer to enter rules for each partition. The designer is

486 GALITAM BISWAS AND r S ANAND

required to input thc LHS pattern of a rule, and then the KHS conclusions. and the rule
editor converts the rule into the internal Lisp fo~mat . When the system designer supplies
rules which negate a hypothesis, thc appropriate conversion is donc automatically, F~~
example, consider thc system dcjigner entering an OASES rule:

Enter the attributes and values of the 'i,HS patkkna:
(separate attributes and values by a colalma; one attribute-value pair per line)
machinery peed und sizr, not if1 good h a h c c .

Enter the attributes and values of the MAS conclusions
(one conclusion per line; an attribute FoNowcd by a set of values
separated by commas)
cause, cul~aoty plaiirut~g, prorcs.:" de.~igt~
cause. workforcr, m u i ~ l t n o n c (~ .

In order to extract the expcrt'h h c k t In the IlHS conclu\ions. given the LHS evidence,
the rule editor prompts the system designel- to rank thc Ri IS conclusions on a scale of
0-10. Note hcrc that thc cxpert is not supplying a n ahrolute support or belief value for
the conclusion, but 1s rnescly provid~ng ;I rolativc ranking hirsed on his judgement.

Enter the relative ranking for the concllusion on a scale 0-10.
Y 3

A very desirable feature of the D-S framcwork tor rcprcsenting knowledge in uncertain
domains is the explicit dcfinition and representation of Ignorance. In formulating the
rule, the editor specifically queries the cxperl (systcm dcsigncr) about his belief in the
relevance of the LHS evidence, i.e., given that the system designcr will be examining
other evidence for making conclusions in this frame of discernment, on a scale of 1-10 to
what extent does this cohrihule to m:iking n final conclusion.

On a scale of 1-10 what is the relevance of this evidence in the overall
reasoning process?
8

From this, the system computes 1n ((+) for the belief functmn corresponding to this rule
to be 0.2 (i . e . . I-8/10). Thc relative runking supplied hy the expert is then normalized to
yield the belief values (the m lunctmn) tor the rule according to the equation:

Using m (0) =0.2, rule editor formulates the following rule:

[(< machinery-speed-anLsizc > < not-in.._good .. balance >) RF] -.
{ [(i causes < capacity-planning> <cause > .= process.design >) 0.61
[(<cause> <workforce> <cause > <maintenance>) 0.21 j .

AN EXPERT SYSTShf SWELL FOR MlXED INITiATiVE REASONING
487

The m (O) value along with the abovc values represents the measure of exact belief
function for this rule.

The rule in its Lisp form along with the associated helief values is displayed in a
separate window. For each new attribute entered in the LHS of a rule, the rule editor
queries the system designer for an associated query unless one has already been entered.
This query is displayed in a second window. Thus, whilc the system designer is entering
rules, two separate windows (besides the intcraction window) are open displaying all the
rules that have been entered and all the associated queries. When the system designer
indicates that he has finished entering rules within a partition the rule editor asks him to
specify the ASKFIRST queries, ~f any. for that partition. Finally, rules specifying the
transfer of control from the current partition to the partitions it is linked at thc next step
are obtained from the system designer.

4.2. ModiJying the knowlmdge base

AS fig. 5 indicates, Btcilities are provided in MIDST to modify the overall structure of the
knowledge base, the rules within partitions, and the associated queries. Modifying the
overall structure involves the addition or dclction of partitions, and the addition,
deletion o r modification of links between partitions. While deleting and adding
partitions, o r deleting and adding links care needs to be exercised that the hierarchical
relationship of the existing partitions is not violated. When a new partition is added,the
rule editor aulomatically prompts the system designer to enter the rules within that
partition.The modified structure is again displayed to the system designer in the structure
window.

Modifying rules similarly involves the addition of new rules, the deletion of rules and
the modification of existing rules. In the current prototype no sophisticated editing
facilities are available. Therefore, in order to modify a rulc the system designer is
required to enter the complete rule all over again. Facilities for changing part of a rule,
or changing only the belief values have not yet been implemented. Whenever the rule set
is modified, MIDST automatically recompiles the network and stores it for future use.
The system designer can also modify queries (i.e., change the langllage of a query), add
new queries (this may make a hitherto verifiable attribute into an askable attribute), or
delete an already existing query. The addition and deletion of queries also requires that
the rule network be recompiled, Usually this recompllation is done, just before the
system designer wants to run a consultation to see the effects of the modifications.

4.3. Runrring a consultation

This involves three steps as illustrated in fig. 5. The first step involves loading all the
knowledge base structures such as the rules, the queries and the rule network. In the
second step, the working memory structures and the book-keeping fields in the network
are appropriately initialized. The third step is the inferencing procedure described in
Section 3.3.

GAUTAM BISWAS AND T. S. ANAND

jn this paper, we have described the design and implementation of MIDST, an expert
system shell for mixed initiative reasoning. A primary achievement of our research has
been the implementation of an efficient technique for incorporating the Dempster.
Shafer evidence combination scheme for inexact reasoning. This was accomplished by
compiling the domain rules into a rule network. We consider the design and
implementation of the network to be the major contribution of this research effort. ~h~
network was used not only to speed up the backward-chaining process, but also to
partition the overall knowledge base into hypotheses spaces similar to a method
suggested by Gordon and ~hortliffe~". In addition to computational advantages of a
smaller frame of discernment, the network allows implementation of the D-S scheme
without compromising the basic assumptions of independent pieces of evidence and a
mutually exclusive hypotheses set.The network provided an efficient and convenient
means of propagating belief values between levels. The compilation of the network is
done off line and the resultant network is stored in a file. The network construction
algorithm was designed in a manner that it runs in O(n) time; where n is the number of
rules in a partition27. The rules and the network for individual partitions are stored in
separate files, and loaded only when a partition becomes active. This speeds up the
loading of large knowledge bases.

A second task addressed was the design and implementation of knowledge base
construction tools. Here, special attention was paid to effectively utilize features of the
underlying programming environment. The internal Lisp representation is made opaque
to the system designer, and the acquisition of belief values is based on a framework that
we hope experts will easily relate to. MIDST currently runs on Sun 3 and Apollo
DN3000 workstation under Common Lisp. Applications of MIDST currently underway
include porting OASESz3 and developing the XX systemz4.

There are a number of tasks that we envision will improve the current version of
MIDST. They are:

1. Extensions to the rule editor to incorporate sophisticated editing facilities, provide
graphic displays and the ability to switch from the rule entry mode to a mode where
the system designer can run a consultation, modify rules and then switch back to the
rule entry mode. In addition, a TEIRESIAS'4 type checking of the rules is also
envisaged.

2. The development of sophisticated explanation mechanisms and debugging aids.
3. Extending the network to facilitate its use during forward chaining. This can be done

by specifying additional dummy nodes.

4. The propagation of incremental belief values in the Dempster-Shafer framework.
5 . Extending GETMAXH so that it ranks hypotheses not on the basis of the absolute

belief but on the basis of the plausibility interval. This will necessitate the
generalization of computational techniques discussed by Shenoy and ShaferZ6.

6 . Develop tools that will aid the system designer in building specialized user interfaces.

AN EXPERT SYSrEM SHELL FOR MIXED INITIATIVE REASONING
489

References

6. LINDSAY, R..
BLICIIANAN, B.G..
F ~ I (; ? . N ~ A L M E.A n r u
L C ~ I F I ~ ~ C U K G , J

7. B ~ . N N L : ~ . 1.5..
CRLAI<.I, L..
ENWY M O K ~ . . K. ANL)

Mr-I < x n , R

10. M ' t ~ s , S.M. AND

Ku.rr;owsl;~, C.A

12. FoRGY, C. ,\Nu
MCDERMUT-I. .I

13. EKMAN, L.D.,
LONL>ON, P.E. AND

FICKAS. S.F.

14. DAVIS. R.

Expexpcri ryvtems Amficial iriteIlrge,~e In hiorness, John Wilcy, New -forit,
1985

Rvle ha~c'd expen systems. The MYClh' expenmem of thr Sranford HPP,
Addi5on-Wesley, Headmg. MA. 1984.

D A M : An expen system for computer iauii diagnws, Proc. 7th. I m Jr.
C < J ~] . Am/. lrileil , 1981. Voi 7, pp. 843-845.

R I. A n rrpert In the computcr systems domain, Proc. Am. AJS. A m / /,rreIl.,
1980, Val 1, pp 269-271.

Model design m thc PROSPECTOR consultant system for mineral
explo, ation. In Experr ,systems m i lv miirueiecrronrc oge, Edinburgh Univ.
Prcc~, 1979, pp i5.1-167.

DENDRAL, McGraw-li~li, New York, !Y80.

SACON. A knodedge-bused coiisultanr fiv strunural onnlysir, Report no.
HPP-76-23. Computer Scmce Department, Stanford Univ.. CA. 1978.

A domawindependent production rule system [or consultatron programs.
Proc. 6th hi: Jr. Conf Anif Intell., 1979, pp. 921-925

An lnveitlgation of tools for bullding expert systems. in Budding experr
ryrtemr, F. Hayes-Ruth, D.A. Warcrman, and D.B. Lenat(eds), 1983. pp
169-215. Addison-Wesley. Reading. M A

A pmcrrcnl guide to designing expert syrems, Rowman and Allenheid.
Tatowa, N J , 1984.

T/ze Rorie refere,tcr monuol, N-1647-ARPA RAND Report, Santa Moni-
ca. CA, 1981.

OPS: A domaai-iniicpcndent production system language, Proc. 5th Inl. Jr.
(bnf .4rllf. Intell., 1977, pp. 933-939.

The dcaign and an example use of Hearsay 111, Fror. 7th Inr. 11. Con) Art$
Intd. . 1981. pp. 409-415.

l k u o f mem level knowledge irt the construcrron and moinrenancc of large
knowledge hares, Ph.D. Thcsls. Drpt. of Computer Science, Sranfoid
University, 1976.

Research on a m r d d consulting system for iaking the present illness, Proc.
Third 1N1no1~ C o d Medical inf. Systems. Unlv. of Illinois at Chicago Circle.
1976, pp. 299-320.

The formation of composite hypotheses in diagnobtic problem solvins-an
exercise In svnthetic rcasonmg, Pror. Ini. Jt Conf Artif hnN., 1977. Voi. 5.
pp. 1030-1U37.

GAUTAK BlSWAS AND T. S. ANAND

17. Szol.OVlTS, P. A N D

PAIIKLK, S.G.

18. SRAFFH. G.

19. ADAMS, J.B.

20. GoanON. J . AND

S ~ o n r i m a . E.H.

21. SLLIII. W.,
B u c ~ ~ r u , J. AND

TUCKER, D.

22. B~swns. G . .
AsnA~czYw. R. AND

OLII .F~ M.D.

23. Blswns, G..
OLIFF, M. AND

ABRAMczYs, R.

24. ANANU, T.,
Biswns, G.,
Pnr. M..
KLNDAI.~., C.,
CANNON. R.,
BV.DI:K, J . AND

M ~ R G A N , P

25. BAR NET^, J.A.

26. SHENOY. P.P. AND

SIMFFK, G.

27. ANAND, T.S.

Categorical and pmh:~hilistic redsonin@ in medical diagnosis. Ariif.
1978. 11, 115-IW.

A nmtltmtaruol tireoi.~ of evidet~ru. Princeton Univ. Press, NJ, ,976,

Proh;thilistic ieasoning .ind ccrtalnty kstors, Molk. Riosci., 1976, 32,
177- 186.

A method for maneging evidential reasoning In a hiciakchical hypothesis
space. Arri]: I,znf[.. I'IXS. 26, 323-357.

Nonmonolon!~ h ~ l z y li,sic: Expcricnce with FI.OPS, Proc. NAFIpS.86,
Hnndlcr. W. and Kandcl, A. (cds). Ncw Orle;lns. LA. 1986, pp. 524-530.

OASES: An expert sys tm k)r iqmal ims ;inalyais - The system for general
cause ;mlvsis, [EEE Trms.. 1087. SMC-17, 133-145.

OASES: An application in tiherglass m:tnuCacturing, to appear in Inr. J
E.rperr Sy~tena, 1088. 3.

XX: Hydrocarbon cxplor;ition using a knt)~lcdgc-hnsed approach, Ptoc.
AAPG Annlul (hov.. IL)RX, Houston. TX, March 20-23.

Cornpuratiaaal rncrhods for a rn;~thcn~,~tic;rl thcory ot evidence, Proc. 7th In1
.h (br~j : A/ , 1081, pp. 868-K7.5.

Propagating hclief funcrions with local computations. IEEE Expert, 1986.1,
43-52,

MIDST: An rxpn ,~ywnz ,shrNfi,r mirni irritiuiirr r~usuning, M.S. Thesis,
Dcpt. of Computcr Scicncc, Univ, of South Carolina. 1987.

