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Abstract 

Load-deflection relation of isotropic simply supported reinforced concrete circular slabs subjected to 
distributed load has been determined taking into account the effect of membrane action for loads greater than 
the yield-line load. The analysis includes the effect of deflections occurring up to yield-line load. Results are 
compared with those of tests conducted in the laboratory. 

Key words: Concrete (reinforced). deflection. loads, membrane action, reinforcement (isotropic). slabs 
(circular), yield-line load. 

1. Introduction 

The yield-line theory proposed by Johansen' has been widely used for the design of 
irregular type of slabs having different types of boundary conditions and loadings. This 
theory is finding acceptance due to the fact that the ultimate loads as determined in tests 2  
are much higher than those predicted by yield-line theory. This difference between 
yield-line load and experimental load is due to the development of membrane stresses at 
large deflections in simply supported slabs at midspan. In simply supported slabs. the 
central regions tend to move inwards but are restrained from doing so by adjacent outer 
regions. This creates a central area of tensile membrane stresses within the slab together 
with the surrounding ring of compression. This effect enhances the load-carrying capacity 
of the slab. Park 3 , Taylor et ar Hayess , Kemp', Sawczuck and Winnicki 7 . Motleys  and 

Desayi and Kulkarni9  proposed methods of analysis for rectangular simply supported 

reinforced concrete slabs including membrane action. Prabhakara w  extended the work 

of Desayi and Kulkarni to simply supported skew slabs. The above investigations were 
concerned with rectangular and skew slabs. 
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Membrane action in isotropic circular slabs was analysed by Wood" using basic 
equations of large deflection plate theory. Due to the basic assumption that the material 
is rigid plastic, the resulting load-deflection curve starts from Johansen 's load and so zero 
load does not correspond to zero deflection. However, Wood's analysis is useful to  
estimate the ultimate strength of slab if a suitable value of deflection at ultimate load is 

assumed. Desavi and Kulkarni I2  extended Wood's approach to orthotropic restrained 

circular 
slabs. While the above investigations were based on deformation theory, s ome  

investigators have applied flow theory to circular slabs. Janas I3  Mork?, Cal1adine"
4  

, 

have applied flow theory to circular slabs. Al-Hassani ls  used deformation theory fo r  
the ascending part of the load-deflection curve and flow theory for the descending 
portion of the curve. Braestrup and Morley I6  proposed a modified rigid plastic theory for 
circular slabs with ring beams. They assumed that membrane action starts an initial 
elastic deflection. This deflection was assumed empirically as 0.03 times the thickness of 
slab. From their load-deflection plots, it is observed that the empirical elastic deflection 
corresponds to _that at the Johansen's load of simply supported circular slabs. 
Chattopadhayay" gave some steps to obtain the initial value of deflection according to 
the theory presented in their paper. 

The above investigations on circular slabs were concerned with rigid plastic approach 
and they do not completely predict the load-deflection behaviour from zero load to 
failure, as seen in an experiment. Hence, a study was undertaken to develop methods for 
the determination of complete load-deflection behaviour of simply supported, isotropic 
circular slabs and the results of the same are briefly presented here. 

2. Proposed method 

The method has been developed in three stages. Figure 1 shows the typical 
load-deflection plot in which AB, BC and CD correspond to three stages. In the first 
stage (AB), classical theory of plates is used for computing deflections up to cracking 
load. In the second stage (BC), an effective moment of inertia is used which reflects the 
reduction in flexural rigidity of the slab beyond cracking. Third stage (CD) corresponds 
to the prediction of the behaviour of the slab beyond Johansen's load incorporating the 
effect of membrane action. 

2.1. Stage I: Load-deflection behaviour up to cracking load 

In fig. 1, AB represents the elastic behaviour and the central deflection S of the slab up 
to point B is estimated using classical plate theory' s . Thus 

q S = 
E, 

where 0,  



• 

Lint MI or in gum 

FIG. 1. Idealised load-deflection plot. 

RC CIRCULAR SLABS 

and z = Poisson's ratio taken equal to 0.2 for concrete 

q = intensity of load 

R = radius of circular plate 

Er  = modulus Of elasticity of concrete 

= gross momentum of inertia of the section. 

The value of E. is taken as 4729 VT.  Allmm 2  where f: is in Nirnm 2  (57000 Vgpsi where 
f; is in psi) 19

. 

At B in fig 1, 5 = 5,, and from equation (1) 

Pi .q„ R 4  
5 .r 	 E, 1g  (2) 

er- 6.; 
It op 

Collapse mechanism lot' M 4 = M 

i< 1  63+ 6p ) 

R 

FIG. 2. Collapse mechanism and enlarged section 
at the centre of the slab. 
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in which 
intensity of cracking load 

qr 

which is determined by equating the 
slab moment at the centre, viz., 

 

(3 	q R 2  

 

(3)  

  

to the cracking moment, viz., 

nier = Jr 

The value of f, in equation (4) is taken 

N nu-W( 7 .5 Nifir psi where f ; is in psi) - 

as 0.6225 Yr Nimm 2  where f; 

(4) 

is in 

2.2. Stage 2: Load-deflection behaviour beyond cracking load and up to Johansen's load 

As a consequence of cracking of concrete the flexural rigidity decreases as the load 
increases beyond cracking load. Hence equatitm (1) is modified to 

p, q R 4  
—  	 (5) 

k, E. 'elf 

where lc, is a constant and 

la  = c—L) Ig  [ I — 24' 	 (6) 

q 

in which y is a constant, 'Cr  is cracked moment of inertia of the section and q > qcr. 

Two coefficients k, and y were introduced to improve on the prediction of deflections. 
Hence at an intensity of load q which is in the range q, < q < q1 , the deflection 8 can be 

determined using equations (5) and (6). In order to use these equations k, and y must be 

evaluated. This has been done using the results of an experimental programme. the 
details of which have been reported elsewhere 19 . 

2.3. Stage 3: Load-deflection behaviour beyond Johansen's load 

In this stage the load-deflection behaviour beyond Johansen's load is determined by 3  
procedure which incorporates membrane action. The procedure has been developed for 
both isotropic and polar orthotropic circular slabs. Wood's solution" for isotropic 
circular slabs has been modified by including the effect of deflections prior to Johansen s 

load on the depth of neutral axis, membrane forces and their effect on loadecarrYing 
capacity. The solution derived for isotropic circular slabs only is presented in this paper. 
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2.4. Strain rates imposed by mechanism 

Figure 2 shows the yield-line pattern of a simply supported circular slab with radius 
R. 

The mechanism beyond Johansen's load can be described with the assumption that the 
membrane foices are introduced after yield-line mechanism forms at Johansen's load as 

W = (6 j + 5 ) ) (1 — rl R) 	
( 7 ) 

where W is the deflection and 5, 5p are deflections at the centre at Johansen's load 
and incremental deflection beyond Johansen's load. Hence 

al/ (51 +  

dr 	R 
	 (8) 

The radial strain er  can be obtained from large deflection plate theory as" 
du 1 (dwy 

E r  = —
d r 

+ — 
2 

—
dr (9) 

where u is the radial displacement which can be determined as follows. The value of s,. in 
equation (9) is zero as the yielding is due to circumferential moments only. Hence 
equation (9) becomes 

du I (dwy 
+ — — =0. 

dr 2 dr 

Substituting for (dw/dr) from equation (8) in equation (10) and integrating, 

(10) 

1 
u = — 

2 

(8i+  8) 2 r  

	  + uo  
R2  

where /t o  is the finite stretch at half-depth imposed at the centre. 
this, the circumferential strain ee  can be determined as, 

Thus u is known. From 

1 (45i + 502 	14 0  
= = _ 	+ . 

2 	R 2  

(12) 

If Ili is the height of neutral axis above mid-depth, equation (12) can be rewritten as 

follows. From fig. 2, the value of u o  is related to /to  as 

kto(Sp ±  5) 
uo  

Rr 

(12a) 
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Substituting this 
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value of u0  in equation (12), wc get 

 

;Lo op + 450 
Rr 

(51 + 5,0 2  (13) 
R 2 r 

 

The circumferential curvature K o 
 can be obtained from equation (8) as 

1 dW (5+ 5 ) 
a  I P 

Ko = — 
r dr 	RT 

(14) 

Knowing e0  from equation (13) and K e  from equation (14), the height of neutral axis 

above mid-depth in circumferential direction, /4 can be obtained as 

(51 +34r So 	 (15) 

Pee 	 lf? 

The height of neutral axis can also be calculated from yield criterion which is presented in 

the next section. 

2.5 Yield criterion 

Wood5  proposed the yield criterion for isotropic circular slabs as 

	

P 2 
	

(16) 

MO 	 To 	To 

and hence the yield function 

P2  
f = 1 + a — g 	_ 

To 	TF)  Mo  
••• 

(17) 

where M and P are the plastic moment capacity of the section about the central line and 
the compressive force on unit width respectively. Also M o  and To  are the plastic moment 
capacity of the section with zero membrane stress and uniaxial tension respectively -  i.e. 

3 A, 07a) J;' mo= fy  di 	4 bdi 

and 

To = A s  fy 	 (11) 
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Substituting the value of To  from 

where 

did i  
k — 	  

3 A s  fy  
1- 7  — 

4 bd i  

equation (171,) in equation (17a) we get 

(17c) 

(17d) 

Considering the yield criterion in circumferential direction only, equation (17) becomes 

P fi 	I 121 	M 

	

fa = 1 + a -2 	 • 	 (18) To 	TII 

where Me  and Pe  are plastic moment capacity along the centre line and the overall 
compressive force in circumferential direction only. The constants a and 13  in equations 
(16-18) are defined as follows 5  

Id 	3 
— 	t 

a —
2 di  2 

1— —3 
t 

4 

(19) 

13  = 

3 
t 

4 

1 
3 

— —
4 

t 
(20) 

A f and 	II 	Y  

d i  fe 

(21) 

Hence, from the yield function in circumferential 
height of neutral axis in circumferential direction 

direction. viz., equation (18). the 
is determined as. 

dfoldPii  

rifolaM0  
—lb  MO [— 

TO 

213 1'01 

Toj 
(22) 
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Equating (15) and (22), we obtain 

= A + Br 
To 

where 	A = a  – 	T" 	

(23) 

20 	20 Iwo  

= (Si+ O) 	 (25) and 	g 	
p 	

(24) 

4/3 M, R 
•  

Knowing Py  from equation (23), the value of Me, can be obtained from the yield criterion 

equation (16) as 

MU  
= (1+ aA PA 2 ) + (aB – 2f3A B) r – PB 2  r2  

MO 

= A i + B t r+Ci r2 
	

(26) 

	

where A = I + aA – PA 2 
	

(27) 

	

B s  = aB-2PAB 
	

(28) 

= –f3B2 . 	 (29) 

2.6. Evaluation of radial force and moment 

The value of the radial force T, and the radial moment M, are obtained from the 
equilibrium equation. In the plane of the slab the equilibrium equation is" 

d i T,.\ = To  = 	Po  
(30) 1 e T0 ) 

from which 

Tr 	Br C 

	

= A – — 	 (31) To 	2 	r 

The value of C in equation (31) is zero and also T, = 0 at r = R. Using These conditions 
in equation (31), the value of A is obtained as 

BR 
14=-- 	 (32) 

2 
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Hence equation (31) reduces to 

Tr 	BR Br 

To 	2 	2 * 	 (33) 

The value of M r  is evaluated using the equilibrium equation for moments which includes 
the membrane forces. The equilibrium equation is" 

d 

rd frit/14— Mti+ rT 
dw_ 
dr 

qr 2  

— 2 	 (34) 

Substituting for M 8  and T, from equations (26) and (33) in equation (34) and integrating 
we obtain the value of M,. as, 

_Mr = I[ 	(8J+807.01 	r2  [ 	(6i +i5p )BTo ] a 
B 1  —  	+ 	— 	 + —+ b — qr2  

Mo  2 	RM 0 	3 	 2RM0 	r 	6M0  

(35) 

In equation (35), the value of a is zero as the value of M r  is finite at the centre. The values 
of b and q are obtained using two conditions which are as follows. At the centre of the 
slab Mr = Me and hence from equation (26), 

( 1141 = (—Me ) = A
1 . 

	

(36) 
Mo  r 0 	Mo  r=0 

At the edge of the slab the value of the radial moment is zero. Hence 

(Mr)r=R = 0. 	
(37) 

Substituting equations (36) and (37) in equation (35) 

qR 2 	 R 	 Aro  
—6m0  = 1+ aA— pA 2 +-i [aB —213AB — 	5p )] 

R2 	BTo  
[pB 2  + 	(51 + 5p ) 

2rMo 	
(38) 

Substituting the values of A from equation (24) and using the relation between A and B 

from equation (32) in equation (38), we get 
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qR2= 	a(SI + SP 	_ ) To 08 2  R2  
i __   

6M0 	8fiA4o 	4 

71(Si + 4 

+ 

U. MUTHU 

	

a(5 +5P  )To 	08 2  R 2  

8PAlo 	2 

, )2  ps 2  R2  
+ 

	

16/3A/6 	4 	(39)  

Substituting the value of B from equation (25) and using equation (17c) in equation (39) 

we get 

qR2 Si+ Sp)2 
= 1 .0 ± k 2/64(3) 	. 	 (40) 

6M0  

The above equation reduces to 

Qm 	k 2  (5I + 8)2  
= .0 	 (41) 

6413 	d 

where Qm  is the enhanced load due to membrane action i.e. 

Qm  = 7rR2 q 	 (42a) 

and yield-line load 

Qf  = 671-M0 	 (42b) 

This total load Qm  increases until a new state of tensile membrane develops at the centre. 
When Po  = d/2 the plastic membrane develops. The shape of the plastic membrane is 
obtained from the equilibrium equations as follows. 

2.7. Effect of plastic membrane at centre 

The equilibrium equation for the radial moments is" 

dr (rMr) —  Me— r V, = 0 	 (43) 

and the equilibrium equation for the vertical forces is 

d 	dW (r r Tr 	 (44) dr 	dr 	-d7 	qr. 
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Now a state of all round tension exists and hence it is assumed that, 

Mr = Me = Mmin = Mo(1 —  a --  P) 	 (45) 
Tr  = Te = T0 . 

(46) 
Substituting the values of Mr , Mo  from equation (45) in equation (43) we get 

Vr  = 0 i.e. there is no shear. 

Substituting the value of V,. = 0 and Tr  = To  from equation (46) in equation (44), we 
obtain 

d  ( 	W  r To  ddr ) = - qr. 
dr 

This leads to 

dW _ qr 

dr - 	 27' o  

or, 	
qr2  . 

W = (8p 4- Si )  — 4T0 

(47) 

(48) 

(49) 

From equation (48), the curvatures K r  and Ke are obtained as 

d 2  W 
Kr =-  dr 2  -= 

q 
2T0  • 

(50) 

1 
K9 = — — 

r 

dW . q 

dr — 2T 0  • 
(51) 

From equations (50) and (51), it is known that the plastic membrane is of spherical shape 
and at this stage the slab would have cracked right through. Due to this the extension 
rates could be different, but are the same at the centre. Hence Wood" assumed that they 
are identical everywhere and so 

u  = du ± _l_ 1 dW\2 	 (52) 

r 	4:1- 	2 Wr ) 

and this leads to 

— 2 3 

	

qr 	 , 

u=. 	, 	 4- Cr 	 (53) 
16 To . 
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where C is an arbitrary constant. The membrane will change to an outer cone at radius p 

and hence the displacement at the junction is 

2 3 — P 
p 	

.4.  r  
, 

re.2 

	

16 / o 	
(54) 

Also the value of deflection at radius p can be determined for the outer cone as follows. 

For the outer cone, 

	

—Wp 	 (55) 
dr R p 

Since the yielding is due to circumferential moments only for the outer cone Er  = 0 and 
hence using equations (10) and (55) the displacement u is obtained as 

PO = A 2 4" B2 r 	 (56) 

where 

	

a 	n [ wp p 	Up (R p) 1 
A 2 = TO 	 (57) 

213 2$M0 2 ( R p) 	Wp 

flu  W P  

	

and 	B2  = 2(3 M0 2 (R P)
1 . 	 (58) 

Hence at r= p, if Pe  = —T0  then 

A2 = """ TO — 82 P - 	 (59) 

Substituting equation (59) in equation (56) the value of Pe  is 

r 	P\ 	 (60) 
pe  = To+ B2R 	— 

Substituting equation (60) in the equilibrium equation of forces in the plane of the slab 
i.e. equation (30) we get 

Tr  = A 2 — 
B2 r C2 
2 

(61) 

and since Tr  = 0 when r = R and Tr  = To  when r = p, 
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B2 R r 	B2 RR Tr  = –A2 — 	± (A2 ± 	 (62) 2 	R 	2 	r 

27'0  
and also 	/32 R – 	 

(1– pIR) 2  a 	 (63) 

Now the value of shear force Vr  can be obtained from the equilibrium equation of 
vertical forces as 

qr 	dW D 
Vr  = 	— T 	+ — . 

2 	r d 	r (64)  

The value of D in equation (64) is obtained using equation (55) and the conditions that at 
r = p, V = 0 and Tp  = To . Hence 

D = – qP
2 

2 (65) (Rip-1) 

Substitution of the value of D in equation (64) yields 

qr 	dW 
= – 	T 

r  (TT 
ToWp 

(Rip-1) 
• (66) 2r 

 

Using equation (66) in equation (43), the equilibrium of the cone is written as 

dW 	To  Wo 	a02 ar2 

— (r M r )– Alo +rTr 	+ 	 – 
dr 	 dr 	((RIp)-1) 	2 	2 	

(67) 

The value of Me appearing in the above equation is determined by substituting the value 
of Pe  in equation (60) into equation (16). The value of Tr  is obtained from equation (61). 

The values of Me l  Tr  so obtained are substituted in equation (67) and integrated. Using 
the two remaining boundary conditions, namely, 

(Mr),R = 0 	 (68) 

and 	(Mr )r a p  = Mmin = M0( 1  – a – /3) 	
(69) 

the value of Qn, is obtained as 

1 – 5pIR 
1+ --- p 

Q,,, 	t pl R 	 (70) 

Qi – (1 + 2pIR) (1– pIR)2° 
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Using equation (70) for different values of pl R the total load Q„ can be calculated. Th
e  

corresponding central deflection S r- (6 1 + 6) can be found out by using equations (58) 

(63) and (55). From equation (58), 

	

4/ 	4pmo 
= 82 	' 

	

R p 	0 

Substituting the value of B2 from equation (68) and simplifying 

	

Wp 	8filtio  

	

p 	(1— p1R) 2  TO R 

(71) 

(72) 

The value of Al0  appearing in equation (72) may be written in the form 

A,f, d 	To d 

did '  
3 

1 	4 d, f .  

(73) 

Substituting the value of M o  from equation (73) in equation (72) and simplifying, 

Wp 	8(131 k)(dI R) 

R 	(1 — pl R) (74) 

Now the value of 8 is obtained using equation (74) and equation (49) as 

+ p 	8(J3//c) (d/R) 	qp 2  
(75) R 	1 — pl R 	44RT0  

Suhstituting the value of To  in terms of Mo  from equation (73). equation (75) reduces to 

88$/k 	3 Q„ p 2  
(76) d 1— p/I? a -6 -12 

Hence the load-deflection behaviour beyond Johansen's load can be estimated from 
equations (64) and (76), Ihe procedure for which is as follows: For a given slab, the values p and k 

are computed using the strength and sectional properties of the slab. A value of p/ I? is assumed and the value of Q„ is estimated from equation (70). The corresponding deflection 6 is obtained by substituting the value of Q, and the assumed value of pl R 
in equation (76). Thus coordinates of one point are obtained in the 
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load-deflection plot. The above procedure is repeated for different values of p1R and the load-deflection behaviour beyond Johansen's load is obtained. 

3. Experimental work 

° The experimental programme consisted of casting and testing 14 isotropic and 
orthotropic circular slabs. These covered two ratios of radius to thickness of slab, 
namely, 12.58 and 16.09. The coefficients of orthotropy were varied such that the cases 
covered include M 1  < M2 9 MI = M2 and M 1  > M2. The details of casting and testing of 
these slabs are reported elsewhere l9  and hence are not repeated. Table I gives the details 
of the tested slabs. Out of these slabs, four slabs with M i  = M2 correspond to the 
case of isotropy the analysis of which is presented in this paper. 

4. Results 

4.1. Comparison of load-deflection behaviour 

The proposed method has been used to predict the load-deflection curves for the tested 
slabs. The comparison is shown in fig. 3 for slab SSI. Also other solutions based on rigid 
plastic approach namely that of Wood" and Braestrup and Morley le  have also been used 
to predict the load-deflection behaviour beyond Johansen's load and plotted in fig. 3 for 

Table I 
Details of simply supported circular slabs of Series 1 

i 
Slab 	Thick- 	Spacing of reinforce- 	Percentage of 	Cube 	Intensity Q, 	6,, 

no. 	ness 	ment (mm) 	 reinforcement 	strength of compu- (KN) (mm) 

(rim)   (Nimm2 ) ted Johan- 
along 	along 	Circum- 	Radial 	 sen's load 

circumferential radial 	ferential 	 (KNirn') 

direction 	direction 

0.248 SSI 651) 101.6 101.6 
SS2 65.0 101.6 50.8 0.248 

SS3 65.0 101.6 76.2 0.248 

SS4 65.0 50.8 101.6 0.494 

SS5 65.0 50.8 50.8 6.494 

SS6 651) 38.1 101.6 0.660 

SS7 65.0 76.2 101.6 0.330 

SS8 50.8 101.6 76.2 0.346 

SS9 50.8 101.6 101.6 0.346 

SSIO 50.8 76.2 101.6 0.461 

SS11 50.8 38.1 101.6 0.922 

SS12 50.8 50.8 101.6 0.690 

SS13 50.8 50.8 50.8 0.690 

SS14 50.8 101.6 508 0.346 

••••••••••••■1 

0.230 79) .4 38.5 112.0 55.0 

0.457 25.0 38.7 106.0 42.5 

0.306 21.5 38.4 101.5 48.0 

0.230 28.7 58.8 176.0 50.0 

0.457 26.2 74.1 186.0 55.0 

0.230 21.8 73.5 188.0 31.0 

0.230 21.8 48.2 127.0 46.0 

0.415 33.9 "'.5.5 131.0 46.0 

0.312 30.9 ,5 . 5,1 111.0 46.0 

0.312 32.0 30.1 130.0 50.0 

0.312 20.7 40.0 1765) 53.0 

0.312 27.1 37.5 164.0 70.0 

0.621 2.5.5 4344 172.0 71.0 

0.621 15.9 2.3.6 129.0 50.0 

Note: Average cover up to centre of radial reinforcement is 11 rum radius of slab = 820 mm. * of rein- 

forcement = 4 mm. 
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FIG_ 3. Comparison of experimental and compu- 
ted load-deflection curves for slab SS-I. ---o-- 

Experimental; 	 Proposed; --0— Braestrup 

and Morley; 	Wood. 

comparison. It is noted that the proposed method predicts the load-deflection behaviour 
more satisfactorily than other methods for most of the tested slabs. As the theoretical 
curves do not show the descending trend of the curve, the curves have been terminated at 
the experimental deflections at failure load. 

4.2. Determination of ultimate load 

The ultimate loads of simply supported circular slab have been computed. For this 
purpose the deflection at ultimate has been taken as 0.9 d as determined in Table II 
which is the average value of deflection at ultimate load for all the 14 slabs tested in this 
study. The ratios of experimental ultimate load Q, to the predicted ultimate load Qui, 
have been determined and are given in Table III. Other methods available in the 
literature have also been used to estimate ultimate load, namely, those of Wood" and 
Braestrup and Morley'''. It is found from Table III, that all the three methods under- 
estimate the ultimate load slightly and hence may be considered satisfactory. 

4.3. Certain limitations of the proposed analysis 

It may be seen from fig. 3 that the proposed analysis, as well as the other methods 
available in literature, give a load-deflection plot which is concave beyond yield-line 
load, whereas, thç.  experimental plot is convex. Hence, the presently available 
procedures based on `perfectly plastic behaviour' do not result in a load-deflection plot  
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Table H 
Ratio of deflection to thickness of slabs at ultimate 

Slab no 	Deflection 
	

Thickness 	Ratio 
mm (b„,) 	mm (d) 	&He ld 

SS1 55.0 65.0 0.85 
SS2 42.5 65.0 0.65 
SS3 48.0 65.0 0.74 
SS4 50.0 65.0 0.77 
SS5 55.0 65.0 0.85 
SS6 31.0 65.0 0.48 
SS7 46.0 65.0 0.71 
SS8 46.0 50.8 0.91 
SS9 46.0 50.8 0.91 
SS10 50.0 50.8 0.99 
SS1 I 53.0 50.8 1.04 
SSI 2 70.0 50.8 1.38 
SS13 71.0 50.8 1.40 
SS14 50.0 50.8 0.99 

Average 	 0.90 

which would clearly show a maximum load and the descending part of the curve beyond 
the maximum. This has necessitated the introduction of a deflection at maximum 
load -a data which is based on the average of test results. These data require to he 
defined more completely with respect to strength of concrete, amount of reinforcement, 
radius/thickness ratio of the slab and other parameters which affect the load-deflection 
behaviour of the slab and this can be done only on the basis of large number of test 
results. 

Table III 
Ratio of experimental to computed ultimate loads of simply supported 
isotropic slabs (using 5„ -= 0.9 d) 

Slab 
number 

Ratio of experimental to computed ultimate load 

Ultimate 
load 

Q lit 

(KN) 

Proposed 
method 

Q tiel  CI  up 

Wood's method 

Q Nei Q mw 

Braestrup and 
Morley's method 

Q sal Quinn 

SS I 
555 
SS9 
SS13 

112.0 
186.0 
111.0 
172.0 

0.97 
0.98 
1.43 
1.67 

0.97 
0.98 
1.43 
1.67 

1.07 
0.96 
1.63 
1.67 

Average 1.26 1.26 1.33 
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Future investigations on this problem could attempt methods in which the perfectl y  
plastic behaviour assumption is probably abandoned or modified and alternate 

procedures 
developed which would result in load-deflection plots that represent the 

experimental plots much better than what could be obtained in the present investigati on.  

5. Conclusions 

1. The proposed membrane analysis is an extension of Wood ! 1  and takes into 
consideration the deflections occurring up to yield-line load. The load-deflection plots up 
to ultimate load obtained by the proposed method give satisfactory agreement with the 
test results. This agreement is better than that given by two other methods available in 

literature. 

2. The deflection at ultimate load has been obtained as a proportion of slab thickness. 
The average value of deflection at ultimate is 0.9 d for the slab tests conducted in this 

investigation. 

3. The proposed method has been used to predict the ultimate loads of simply supported 
isotropic circular slabs using 6,Id as 0.9. It is noted that the proposed method under- 
estimates the ultimate load by 26%. Two other methods available in literature viz., those 
due to Wood and Braestrup and Morley underestimate by 26 and 33%, respectively. 
Thus, all the three methods may be considered satisfactory as the error in estimation of 
ultimate load is on the safe side only. 

4. It is noticed that the proposed method and other methods available in literature, 
which are based on perfectly plastic behaviour assumption have resulted in a 
load-deflection plot which is concave (and not convex) beyond the yield-line load. Future 
investigations on this problem could attempt at developing alternate analytical 
procedures which would result in load-deflection plots that represent better the 
experimental plots. 

Notation 

A , a, B 	 Coefficients 
A i  , A2, al , Bi , B2 	Constants 

Area of steel 
C, C, 	 Arbitrary constants 

Thickness of slab 
di 	 Effective depth 
E, 	

Modulus of elasticity of concrete 
Yield function 

fc 	 Cube strength 
f 	 Cylinder strength 
fr 	 Modulus of rupture 
fy 	 : Yield stress 
icr 411, 	

: 

Cracked moment of inertia, effective moment of 
inertia, gross moment of inertia, respectively 
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Ko  
K, 

mo, rnr 

Po  
4Q; 	Q ue 

To 
Tr , To  

V r  

Y, 

al 13, Pi Y 

6,  Ser Sj 5p , 6 4
, 

Sue 'Er, Ee- 

: Curvature in circumferential direction 

: Constant depending on the properties of the section 
: Plastic moment capacity of the section about the centre 

line 
: Radial moment 

: Moment capacity of the section with zero membrane 
forces 

: Moment in circumferential direction 
: Moment capacity of the section in circumferential and 

radial directions, respectively 
: Circumferential and radial elastic moment, 

respectively 
: Compressive force 

Compressive force in circumferential direction 
: Applied load, Johansen's load (yield-line load), mem- 
: brane load, experimental ultimate load, respectively 
: Intensity of load, cracking load and Johansen's load, 

respectively 
Radius of circular slab 
Radius 

: Uniaxial tension 
: Tensile force in radial and circumferential directions, 
: respectively 
: steel index 
: Radial displacement, displacement at centre, 
: respectively 

Shear force per unit length 
: Deflection of mechanism 
: Distance to the neutral axis from the extreme fibre 

Coefficients 
: Deflection, deflection at cracking load, 
: deflection at Johansen's load, plastic deflection, deflec- 
: tion at ultimate load, experimental deflection at ulti- 
: mate load, strains in radial, and circumferential direc- 

tions, respectively 
: Radius of cone 

Poisson's ratio 
: Depth of neutral axis above mid-depth at the centre of 

: slab 
: Height of neutral axis above mid-depth along circum- 

ferential direction 
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