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of isotropic simply supported reinforced concrete
circular slabs

PrakAasH DEesayr ano K. U. Muthu*
Department of Civil Engineering. Indian Institute of Science. Bangalore 560 012, India.

Received on May 14. 1986. Revised on August 20. 1987.

Abstract

Load-deflection relation of isotropic simply supported reinforced concrete circular slabs subjected to
distributed load has been determined taking into account the effect of membrane action for loads greater than
the yield-line load. The analysis includes the effect of deflections occurring up to yield-line load. Results are
compared with those of tests conducted in the laboratory.

Key words: Concrete (reinforced). deflection. loads, membrane action, reinforcement (isotropic), slabs
(circular), yield-line load.

1. Introduction

The yield-line theory proposed by Johansen' has been widely.used for the.demgn Qf
irregular type of slabs having different types of boundary conditions and lqad:ngs. Th:g
theory is finding acceptance due to the fact that the ultimate loads as dt:’:termmed In tests

are much higher than those predicted by yield-line theory. This difference between
yield-line load and experimental load is due to the development of membrane stresses ;lit
large deflections in simply supported slabs at midspan. In simply supporte‘c‘i slabs. the
central regions tend to move inwards but are restrained from dom_g 50 by adjacent t?ut:cr
regions. This creates a central area of tensile membrane stresses within the slfib toget ‘t:r
with the surrounding ring of compression. This effect enhances the }oac_i-cg;*ry;/{ng lca[;af::l fj
of the slab. Park®, Taylor et al®, Hayes®, Kemp®, Sawczuck and WIEIHI(?."kl ) or e{)rld
Desayi and Kulkarni® proposed methods of analysis for rectangu[l{?r mmr:j ydsu'fepwmk

reinforced concrete slabs including membrane action. Prabhakara ?Xtef’_ e ti:;; e o

of Desayi and Kulkarni to simply supported skew slabs. The above investiga

concerned with rectangular and skew slabs.
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. in isotropic circular slabs was am!lysed by W{md“ using basic
actum‘ﬂ .ction plate theory. Duc to the basic assumption that the materjy|
rﬁ{i d;,:i:i;g load-deflection curve starts from Joha‘nsen‘s |ﬂi:id and so zerg
sl ] ero deflection. However, Wood's analysis is usefu] tq

mate the ultimate strength of slab if a suitable value of deflection at ultimate load jg
estima ,

, A ood’s approach to orthotropic restraj
assumed. Desavi and Kulkarni extended W PP P P ned
g . ations were based on deformation theory, some

- alar <l - » above nvest!
f;iitl:‘:;a‘ﬁll:zshg:l::p:'::-ej flow theorygtu circular slabs'.! 3anas'3, Morley’_‘, Calladine™
havf-,: applied flow theory to circular s{abs. Al-Hassani'” used deformation theory ‘for
the ascending part of the load-deflection curve and flow !heory. for the‘dcscendmg

estrup and Morley'® proposed a modified rigid plastic theory for

portion of the curve. Bra . ry
They assumed that membrane action starts an initja|

circular slabs with ring beams. t ! '
elastic deflection. This deflection was assumed empirically as .03 times the thickness of

slab. From their load-deflection plots, it is observed that the empirical elastic deflection
corresponds to that at the Johansen's load of simply supported circular slabs.
Chattopadhayay'” gave some steps to obtain the initial value of deflection according to

Membranc
equations of la
is rigid plastc.
load does not correspond 10 Z

the theory presented in their paper.

The above investigations on circular slabs were concerned with rigid plastic approach
and they do not completely predict the load-deflection behaviour from zero load 1o
failure, as seen in an experiment. Hence, a study was undertaken to develop methods for
the determination of complete load-deflection behaviour of simply supported, isotropic
circular slabs and the results of the same are briefly presented here.

2. Proposed method

The method has been developed in three stages. Figure 1 shows the typical
load-deflection plot in which AB. BC and CD correspond to three stages. In the first
stage (AB), classical theory of plates is used for computing deflections up to cracking
load. l.n th_e second stage (BC), an effective moment of inertia is used which reflects the
reduction in flexural rigidity of the slab beyond cracking. Third stage (CD) corresponds
to the prediction of the behaviour of the slab beyond Johansen’s load incorporating the
effect of membrane action.

2.1. Stage 1: Load-deflection behavioyr up to cracking load

In fig_'l, AB represents the elastic behaviour and the central deflection & of the slab up

to point B is estimated using classical plate theory'®. Thus

- _Bl g R?
E 1,

5 (1)

where B, = B/(1 — u?)
B = (5+u)/64(1+ p)
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and p = Poisson’s ratio taken equal to 0.2 for concrete

g = intensity of load
R = radius of circular plate
E. = modulus of elasticity of concrete
[, = gross momentum of inertia of the section.
The value qf E. is taken as 4729 V. N/mm? where feisin Nimm? (57000 V! psi where
fl is in psi)"”.
At B in fig 1, 8 = 8., and from equation (1)

e Bl Ger RJ
E:l (2)
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in which

of cracking load

Gor = intensity
cd by equating the slab mo

hich 1§ determin ment at the centre, viz.,
which 1

(3+p)gR°
(3)

to the cracking moment, viZ.,
m., = f, L/ Ve

The value of f, In equation (4
N/mm* (7.5 Vf, psi where fe 18

(4)
) is taken as 0.6225 Vf: Nimm® where f! is in
in psi)”.

2.2. Stage 2: Load-deflection behaviour beyond cracking load and up to Johansen'’s load

ing of concrete the flexural rigidity decreases as the load

As a consequence of crack
load. Hence equatibn (1) 1s modified to

increases beyond cracking

_ B q R
k.\»‘ E(‘ ’cff (5)

o

where &, is a constant and

w1

in whi ' i
which vy is a constant, I, is cracked moment of inertia of the section and g > qer-

H ; 2’3 ::}erlﬁiitee':]fi tkt ;?? ?dwere introduced to improve on the prediction of deflections.

determined using e yuati Ooa g ‘?hmh is in the range g, < q < g;, the deflection & can be

R —— ey hafsl beennij( ) d"d_(ﬁ). In order to use these equations k, and y must be

details of which have beeno?e using the results of an experimental programme. the
eported elsewhere!”.

2.3. ; '
Stage 3: Load-deflection behaviour beyond Johansen’s load

In this stage the ' : .

proceduregwhich li?ligr(;s)?:glon pehasiour t?e)’ﬂnd Johansen's load 1s determined by 2

both isotropic and polar orkt:q;mb?a“e’ action. The procedure has been developed for

e mOdiﬁedtbrOPlc cqcular slabs. Wood's solution'' for isotropi

load on the depth of neutral dxy Including the effect of deflections prior to Johansen 3

capacity. The solution derived f " memt_)rar‘}e forces and their effect on load-carryine
Or 1sotropic circular slabs only is presented in this paper



RC CIRCULAR SLABS I3

2.4. Strain rates imposed by mechanism
Figure 2 shows the yicld-line pattern of a simply Supported circular slab with radius R

The mechanism beyond Johansen's load can be described with the assumption that the
membrane forces are introduced after yield-line mechanism forms at Johansen’s

W= (8)."‘6!,) (} "?'/R)

load as

(7)
where W is the deflection and 0; , 0, are deflections at the centre at Johansen’s load
and incremental detlection beyond Johansen’s load. Hence

dw  (§;+8,)
& R (8)

The radial strain g, can be obtained from large deflection plate theory as'!
du |1 (dW)Z

TR

E;
dr

(9)

where « i1s the radial displacement which can be determined as follows. The value of ¢, in
equation (9) is zero as the yielding is due to circumferential moments only. Hence

equation (9) becomes

9—”‘+1(@’)2=0. (10)
dr 2\dr

Substituting for (dw/dr) from equation (8) in equation (10) and integrating,

1 (8j+6p)2!' 11
U= — -5 R2 + Ug ( )

where u,, is the finite stretch at half-depth imposed at the centre. Thus u« is known. From

this, the circumferential strain g can be determined as.

___1 (6j+6p)2+“[l‘ (12)
2 R? r

7
Eg = -
>

If g is the height of neutral axis above mid-depth, equation (12) can be rewntten as

follows. From fig. 2, the value of up is related 10 fio 25
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Substituting this value of uo in equation (12), we get
2
= " Rr 2 Rr ‘

can be obtained from equation (8) as

The circumferentiai curvature Ky

1 dW_ (_51+5P) »
Ke==7 & R )
from equation (14). the height of neutral axis

from equation (13) and Ky .
can be obtained as

Knowing £ . o 110
circumferential direction. te

above mid-depth 1n

Eeo B (ﬁj-i-ﬁp)r. (15)

Pﬂ:‘KTa=-“'0 SR

The height of neutral axis can also be calculated from yield criterion which 1s presented in

the next section.

2.5 Yield criterion

Wood® proposed the yield criterion for isotropic circular slabs as

al 1+ e p?
= = a — — B —
My To B TS (16)

and hence the yield function

P 2
f=1+a — — B _P_z_ﬂ )
Tu T{] MU

ba ]

where M and - ,

o Compressi\}; afl: the plast_lc HIOMEL CApacily of the section about the central hne and

aitbadiny 6 Dbl tr.ce on unit width respectively. Also M, and T, are the plastic moment
ion with zero membrane stress and uniaxial tension respectively” ¢

3A, f
Mﬂ r— ‘A.i'f d ( — 5 ¥ |
y di 4 bd, f{') (17a)

and
] s 'S
0 4 !j'fy " (l7b)
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Substituting the value of T, from equation (17b) in equation (17a) we ger

vy _ Tud
" (17¢)
where
d/d,
TN (17d)

_— - 18
o T T2 M, (18)

where M, and P, are plastic moment capacity along the centre line and the overall

compressive force in circumferential direction only. The constants a and B 1n equations
(16-18) are defined as follows®

1 d 3{
S 2 d13 2 (19)
1——1¢
4
3r
4 .
B = 3 (20)
I—Zr
and t = As Jy _ (21)
dlfc

Hence, from the yield function in circumferential dircction..viz.. equation (18). the
h(‘:ight of neutral axis in circumferential direction is determined as,

- Wol 0Py _ [a 2B !’u}_ (22)
4 = = i

3f3/(?MH N nl T'll;
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Equating (15) and (22). we obtain

ff = A+ Br
Ty
(44 281 Tn
where A= '2-[; 28 M,
and B 18 My R

Knowing P,
equation (16) as

D K. U MUTHU

Mo _ (1+aA-BA?)+(aB-2BAB) r— BB

M
=A.+Blr+C|r2
where A, = l+aA—-BA°
B, = aB—-2BAB
C, = — BB

2.6. Evaluation of radial force and moment

The value of the radial force 7, and the radial moment M, are obtained from the
equilibrium equation. In the plane of the slab the equilibrium equation is"'

d ( f ) Ta P.q

—(r — | = = S

dr y T" T
from which

Tr Br C

i e  —

Iy 2 r

The value of C in €quation (31) is zero and

In equation (31), the value of A 1s obtained as

...

2

(23) -

(24)

(25)

from equation (23). the value of M, can be obtained from the yield criterion

(26)
(27)
(28)
(29)

(30)

(31

also T, = 0 at r = R. Using these conditions

(32)

1
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Hence equation (31) reduces to
I,  BR Br
T, 2 2 (33)

The value of M, is evaluated using the equilibrium equation for moments which includes
the membrane forces. The equilibrium equation js'!

q
— (M)-My+rT, —=— —.
P (rM,) T T 5 (34)

Substituting for M, and T, from equations (26) and (33) in equation (34) and Integrating
we obtain the value of M, as.

M, r 6;+6,)ToA 5 8;+8,)BT, .
IZB]—() p){} ] r [Cl_(; p) ﬂ+i+b—£*.

My 2 RM, 2RM, r 6M,
(35)

In equation (35), the value of a is zero as the value of M, is finite at the centre. The values

of b and g are obtained using two conditions which are as follows. At the centre of the
slab M, = M, and hence from equation (26),

M. M
£ ()
MU r=0 MU r=0

At the edge of the slab the value of the radial moment is zero. Hence

(M,),-r = 0. (37)
Substituting equations (36) and (37) in equation (35)
gR? , R ATy .
6M. 1 +aA—BA z[a B R, %
R? , BTy ] 38
- + 5+6,) - (38)
= e o, @

Substituting the values of A from equation (24) and using the relation between A and B

from equation (32) in equation (38), we get
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2
R? a(ﬁ,+5p)Tq; ﬁBzRZ - 0(5;'*‘5;;)7-{} o BB R?
. L Ll S el
6M =1 8BM 4 88M, 2
T2(8;+8,)’ T(,(3j+§p) — BZR .
f,ﬁMﬁ 168M 4

Substituting the value of B from equation (25) and using equation (17¢) in equation (39

we get
QRZ 81‘*'6’, 2
oM, d
The above equation reduces 1O
k2 18;+8,\2
Om_ 1.0+ ( *' P) ”
i 648 \ d
where Q,, is the enhanced load due to membrane action t.e.
Qm = TTRZq (423)

and yield-line load

Q; = 6TM,. (42b)

This total load Q,,, increases until a new state of tensile membrane develops at the centre.

Whe.n #o = d/2 the plastic membrane develops. The shape of the plastic membrane is
obtained from the equilibrium equations as follows.

2.7. Effect of plastic membrane at centre

The equilibrium equation for the radial moments js!!

d
5 M) =My—rV, =0 (43)

and the equilibrium equation for the vertical forces is

d d dw
e V ]
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Now a state of all round tension exists and hence it is assumed that
M, = Mg = Mpin = Mo(1-a—-pB) (45)
I, = Tg = Ty. (46)

Substituting the values of M,, My from equation (45) in equation (43) we get

V, =0 i.e. there is no shear.

Substituting the value of V, = 0 and T, = T, from equation (46) in equation (44), we
obtain '

d T dW _
a.r_(r n-d—- )— —=qr. (47)

This leads to

dW_ gr
dr - ZT(} (48)
2
or W (A8 = s (49)
‘ PO 4T,
From equation (48), the curvatures K, and K, are obtained as
d*w
. (50)
r ZTO
dW
Ky —= (51)
r dr 2Tg

From equations (50) and (51), it is known that the plastic membrane 1s of_spherical shape
and at this stage the slab would have cracked right through. Due t?lthls the extension
rates could be different, but are the same at the centre. Hence Wood'! assumed that they

are identical everywhere and so

u_du+1 dw,2 (52)
r dr Z(dr)
and this leads to
DB
= 4 (53)

T 16T3.
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rary constant. The membrane will change 10 an outer cone at radius p

where C is an arbit ‘ : _
t at the junction is

and hence the displacemen

2.3

-q'p
= + CP
Y~ 1673 (54)

Also the value of deflection at radius p can be determined for the outer cone as follows

For the outer cone,

EI_W= -W, .
drr R-p (35)

Since the yielding is due to circumferential moments only for the outer cone ¢, = 0 and
hence using equations (10) and (55) the displacement u is obtained as

P9=A2+Bzr (56)
where
a TG W -
A, =Ty — — : [ L e uP(R ) (57)
2
and 32 . TO r WP ] .
286M, | 2(R-p) (58)

Hence at r = p, if P, = — T, then
A; = —Ty—Byp. (39)

Substituting equation (59) in equation (56) the value of P, is
Py = —Ty+B R(i—f_
o+ BR (2 £). )

Substituting equation (60) i il;
: th ' : .
je. equation (10) WI2( ge)t 0 the equilibrium equation of forces in the plane of the slab

Tr= _Az— -B—:':f 4 9
2 r (61)

and since T, = 0 when r = Rand T = Ty, when
r F=p,
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B>R r
Tr - _AZ_ - - = (Az'l' 533—8. .{?
2 R 2/ (62)
d al B, R 2To
alSo = —-
= 2 T (A= pIRY? (63)

Now the value of

shear force V, can be obtained fr ilibri :
_ om the equilibrium equati
vertical forces as 1 Fpatiem o}

V,= — T, — + -

qr dW D

2 dr r (64)
The value of D in equation (64) is obtained using equation (55) and the conditions that at
r=p, V — 0 and Tp — Tn. Hence

= To W, i i‘f
(Rip—1) © 2 (65)

S—
—

Substitution of the value of D in equation (64) yields

dw ToW
il T 07w +£2.

Vr - = P
2 dr (Rlp—1)  2r

(66)

Using equation (66) in equation (43), the equilibrium of the cone is wntten as

d dw T, W, gp®>  qr’
= M) =-My+rT, — + - e s, (67)
oy UM Metrl o Y R ) T 2 2

The value of M, appearing in the above equation is determined _by substituting t_he value
of Py in equation (60) into equation (16). The value of T, is obtained frc?m equation (Ql).
The values of M,, T, so obtained are substituted 1n equation (67) and integrated. Using
the two remaining boundary conditions, namely,

(Mr)ratﬁ' = (68)
and (Mr)r-p = Munin = MO(I_H-B) (69)
the value of Q,, is obtained as
1—-5p/R |
1+
Om 1-p/R (70)

0, (1+2p/R) (1-p/R)*’
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p/R the total load Q,, can be caiculated. The

for different values of
| deflection 8 = (8, + 5,,) can be found out by using equations (58)

ion (58).

122

Using equation (70)

corresponding centra
(63) and (55). From equat

W, _ B 48M,
R-p — &2 TE'; (71)

Substituting the value of B, from equation (68) and simplifying

w, _ 8BM, _
R-p (1-p/RYTyR (72)

The value of M, appearing in equation (72) may be written in the form

A,f, d Tyd

M“ = — f e _l_l.... .

d/id, ] k (73)
3 Af,
4 d,f‘,d

Substituting the value of M, from equation (73) in equation (72) and simplifying

W, _ 8(BIK)(d/R)
- (74

R (1—p/R)

N . ; ;
ow the value of & is obtained using equation (74) and equation (49) as

6§ &+8, 8(B/k)(d/R)  gp?
= +

R R 1-p/R 4RT, ()

Substituting the v: |
g the value of T, in terms of M, from cquation (73). equation {75) reduces to

d 1-p/R 2k Q R

value of p/R is ass
umed and the ‘
corresponding deflecti i : vale of Q,, is estimated f '
10n & 1s obtained by substifuting the valuer?)?](; ql;?ltcllotr!l'le(zlgz'u;:;
r

value of p/R in equation (76 T
uat
lon (76). Thus coordinates of one point are obtained in the
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load-deflection plot. The above procedure is r
: . e :
load-deflection behaviour beyond JOhansen’spfoa;:;di :0; lf:gi:jm values of p/R and the

3. Experimental work

The experimental programme consisted of casti j i '

orthotropic circular slabs. These covered twocizttlizg ;fmrlm;?j:l:g tlhtclzsmmpl; oy
namely, '12.58 and 16.09. The coefficients of orthotropy were varied such Slftstﬁe : -
covered include M; < M,, M; = M and M, > M,. The details of casting and testinasei
these slabs are reported elsewhere'® and hence are not repeated. Table I gives the d : '(:
of the te:sted slabs. Out of these slabs, four slabs with M, = M corgres onj tgtz:;ls
case of isotropy the analysis of which is presented in this papei i )

4. Results

4.1. Comparison of load-deflection behaviour

The proposed method has been used to predict the load-deflection curves for the tested
slabs. The comparison is shown in fig. 3 for slab SSI. Also other solutions based on rigid
plastic approach namely that of Wood'! and Braestrup and Morley'® have also been used
to predict the load-deflection behaviour beyond Johansen’s load and plotted in fig. 3 for

Table |
Details of simply supported circular slabs of Series 1

== — — —

Slab  Thick- Spacing of reinforce- Percentage of Cube Intensity Q,. 8,
no. ness ment (mm) reinforcement strength  of compu- (KN) (mm)
(mm) — (N/mm-) ted Johan-

along along Circum-  Radial sen’s load

circumferential radial ferential (KN/m~)

direction direction
SS1 65.0 101.6 101.6 0.248 0.230 224 38.5 1120  55.0
SS2 65.0 101.6 50.8 0.248 0.457 25.0 38.7 106.6  42.5
SS3 65.0 101.6 76.2 0.248 0.306 215 8.4 101.5 48.0
SS4  65.0 50.8 101.6 0.494 0.230 28.7 58.8 176.0  50.0
385 65.0 50.8 500.8 (:.494 0.457 26.2 74.1 186.0 55.0
SS6 65.0 38.1 101.6 ().660 0.230 21.8 73.5 I88.0  31.0
S§7 65.0 76.2 101.6 (0.330 0.230 21.8 48.2 127.0 460
SS8 50.8 101.6 76.2 {).346 0.415 339 255 131.0 46,0
359 50.8 101.6 101.6 0.346 0.312 309 254 111.0 460
SS10 50.8 76.2 101.6 ().461 0.312 324U 301 130.0  $0.0
SSiI1 50.8 38. 1 101.6 0.922 0.312  20.7 40.0 [76.0 S53.0
5512 50.8 50.8 101.6 {).690 0.312 27.1 378 1640 70.0
SS13 50.8 50.8 50.8 0.690 0.621 25.5 414 172.0 ?l.i’
SS14  S0.R 101 .6 50 8 0.346 0.621 259 23.6 129.0 0.0

s e ———————————— = i
radius of slab = 820 mm. ¢ of rein-

—

reinforcement is 11 mm,

e — e — = S ———
Note: Average cover up o centre of radial
forcement = 4 mm.




p. DESAYI AND K. U. MUTHU

Total uniform leoad K KN

} I | J
0 20 &0 60 80
Central deflection mm
Fig. 3. Comparison of experimental and compu-
ted load-deflection curves for slab SS-1. —0—
Experimental, -——-- Proposed; —9— Braestrup
and Morley; ——-— Wood.

comparison. It is noted that the proposed method predicts the load-deflection behaviour
more satisfactorily than other methods for most of the tested slabs. As the theoretical
curves do not show the descending trend of the curve, the curves have been terminated at

the experimental deflections at failure load.

4.2. Determination of ultimate load

The ultimate loads of simply supported circular slab have been computed. For this
purpose the deflection at ultimate has been taken as 0.9 d as determined in Table 11
which is the average value of deflection at ultimate load for all the 14 slabs tested in this
study. The ratios of experimental ultimate load Q,, to the predicted ultimate load Qup
I?ave been determined and are given in Table III. Other methods available in the
literature have also been used to estimate ultimate load, namely, those of Wood'' and
Braestrup and Morley'®. It is found from Table IiI, that all the three methods under-
estimate the ultimate load slightly and hence may be considered satisfactory.

4.3.  Certain limitations of the proposed analysis

[t may be seen from fig. 3 that the proposed analysis, as well as the other methods
izwa(ljlable in literature, give a load-deflection plot which is concave beyond yield-line
oad, whereas, the experimental plot is convex. Hence, the presently available
procedures based on ‘perfectly plastic behaviour’ do not reSL;lt in a load-deflection plo!
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Table Il
Ratio of deflection to thickness of slabs at ultimate

- - ———

Siab no Deflection Thickness Ratio
mm (8,.) mm (d) 8,./d
SS1 55.0 65.0 0.85
SS2 42.5 65.0 0.65
SS3 48.0 65.0 0.74
SS4 50.0 65.0 0.77
SS5 55.0 65.0 0.85
SS6 31.0 65.0 (.48
SS7 46.0 65.0 0.71
SS8 46.0 50.8 0.91
SS9 46.0 50.8 0.91
SS10 50.0 50.8 0.99
SS11 53.0 50.8 1.04
$S12 70.0 50.8 1.38
SS13 71.0 50.8 1.40
SS14 50.0 50.8 0.99
Average (0.9

—— m— — ——— PR o a— C— ——

which would clearly show a maximum load and the descending part of the curve beyond
the maximum. This has necessitated the introduction of a deflection at maximum
load—a data which is based on the average of test results. These data require to be
defined more completely with respect to strength of concrete, amount of reinforcement,
radius/thickness ratio of the slab and other parameters which affect the load-deflection
behaviour of the slab and this can be done only on the basis of large number of test

results.

Table 111
Ratio of experimental to computed ultimate loads of simply supported

isotropic slabs (using 6, = 0.9 d)
e ——

Slab Ratio of experimental to computed ultimate load

number
Ultimate Proposed Wood's method Braestrup and
load method Q! Ouw Morley's method
Qur Qur’ Qup Qmj Qubm
(KN)

SS1 12,0 0.97 0.97 1.07

SS5 186.0 0.98 0.98 0.96

SS9 111.0 1.43 1.43 1.63

SS13 172.0 1.67 1.67 1.67

Average 1.26 1.26 1.33 L

. ) e ——— ==
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problem could attempt methods in which the perfectly

: sations on this o
Future mve?uga“:ﬁump!io n is probably abandoned or modified and alterngg,
plastic hehawoulf d which would result in load-def!cctlf?n plots that represent the
proce_dures ?eTetnguch better than what could be obtained in the present Investigation.
cxperlmenta piot

5§, Conclusions
; 3 _
ne analysis is an extension of Wood" and takes into

ed membra ; : "
ekt P::(‘[;O:l']e deflections occurring up to yield-line load. The il Tivetint Pk P
consideratio d method give satisfactory agreement with the

. mate load obtained by the propose : . '
:Zs:llrt;sults This agreement is better than that given by two other methods available i,

literature.
2 The deflection at ultimate load has been obtained as a proportion of slab thickness,

The average value of deflection at ultimate is 0.9 d for the slab tests conducted in this

investigation.
3. The proposed method has been used to predict the ultimate loads of simply supported

isotropic circular slabs using 8,/d as 0.9. It is noted that the pr9p0§ed method under-
estimates the ultimate load by 26%. Two other methods available in literature viz., those
due to Wood and Braestrup and Morley underestimate by 26 and 33%, respectively.
Thus, all the three methods may be considered satisfactory as the error in estimation of

ultimate load 1s on the safe side only.

4. It 1s noticed that the proposed method and other methods available in literature,
which are based on perfectly plastic behaviour assumption have resulted in a
load-deflection plot which is concave (and not convex) beyond the yield-line load. Future
Investigations on this problem could attempt at developing alternate analytical
procedures which would result in load-deflection plots that represent better the

experimental plots.

Notation
A.a B - Coefficients
Ay,A,a,,B,,B, : Constants
A, - Area of steel
C,C, - Arbitrary constants
d - Thickness of slab
d, - Effective depth
&, * Modulus of elasticity of concrete
¥ *Yield function .
ft; - Cube strength
c * Cylinder strength
fr * Modulus of rupture
];y : Yield stress
ersdet, Iy : Crac!(ed moment of inertia, effective moment of



= Egx

a*B!BI Y

aiaﬂ"*a‘frspaaus
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Curvature in circumferential direction

g;)ns'tant depending on the properties of the section
. astic moment capacity of the section about the centre
line

Radial moment

Moment capacity of the section with zero membrane
forces

Moment in circumferential direction

Mo'ment capacity of the section in circumferential and
radial directions, respectively

Circumferential and radial elastic moment,

respectively
Compressive force

Compressive force in circumferential direction
Applied load, Johansen’s load (yield-line load), mem-
brane load, experimental ultimate load, respectively
Intensity of load, cracking load and Johansen’s load,
respectively

Radius of circular slab

Radius

Uniaxial tension

Tensile force in radial and circumferential directions,
respectively

steel index

Radial displacement, displacement at centre,
respectively

Shear force per unit length

Deflection of mechanism

Distance to the neutral axis from the extreme fibre

Coefficients

Deflection, deflection at cracking load,

deflection at Johansen’s load, plastic deflection, deflec-
tion at ultimate load, experimental deflection at ulti-
mate load, strains in radial, and circumferential direc-

tions, respectively

Radius of cone

Poisson’s ratio
Depth of neutral axis above mid-depth at the centre of

slab '
Height of neutral axis above mid-dep

ferential direction

th along circum-
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