J. Indian Inst. Sci., May-June 1988, 68, 167-184 **© Indian Institute of Science**

On the asymptotic formulae for the spectral matrix of a differential operator

N. K. CHAKRAVARTY Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Calcutta 700 019, India.

Received on April 21, 1986; Revised on November 20, 1987.

Abstract

Key words: Spectral matrix, isometric mapping, ϕ - and C-Fourier transforms, Cauchy-type equations, **Riernann matrix function. majorize, convolution, Wiener's Tauberian theorem.**

(i)
$$
M = \begin{pmatrix} -D^2 + p(x) & r(x) \\ r(x) & -D^2 + q(x) \end{pmatrix}
$$
, $D = d/dx$ and $U = U(x, \lambda) = (u(x, \lambda), v(x, \lambda))^T$
\n(ii) $Q(x) = \begin{pmatrix} P(x) & r(x) \\ r(x) & q(x) \end{pmatrix}$

In the present paper we obtain certain asymptotic formula for the spectral matrix of a self-adjoint second-order differential system. We base our derivation of the formula on a Tauberian theorem due to N. Wiener.

is a real $C_{1-k}(0,b)$, $(k = 0,1)$, class matrix summable on $[0,b)$, where *b* is finite or infinite; by $C_k(\alpha, \beta)$ -class matrices, we mean matrices which are k times differentiable with respect to the variable *x* over (α, β) , the *k*th derivative being continuous in the **interval.**

- (iii) λ is a complex parameter.
- (iv) The boundary conditions at $x = 0$ and $x = b$ are respectively

I. Introduction

Consider the differential system

$$
MU = \lambda U \tag{1.1}
$$

where

$$
a_{j1} u(0, \lambda) + a_{j2} u'(0, \lambda) + a_{j3} v(0, \lambda) + a_{j4} v'(0, \lambda) = 0;
$$

\n
$$
b_{j1} u(b, \lambda) + b_{j2} u'(b, \lambda) + b_{j3} v(b, \lambda) + b_{j4} v'(b, \lambda) = 0;
$$
\n(1.2)

167

 $j = 1, 2$. a_{ij}, b_{ij} are real-valued constants independent of λ , satisfying

(i) rank(a_{ij}), rank(b_{ij}) = 2, *i* = 1, 2, *j* = 1, 2, 3, 4;

(ii) $a_{i1} a_{k2} + a_{i3} a_{k4} = 0$, $j, k = 1, 2; b_{11} b_{22} - b_{12} b_{21} + b_{13} b_{24} - b_{14} b_{23} = 0$;

(iii) for vectors $a_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})$ $(a_i, a_k) = \delta_{ik}, \delta_{ik}$, the kronecker delta.

By making *b* tend to infinity we obtain¹ a self-adjoint eigenvalue problem associated with the system (1.1) over the interval $[0, \infty)$.

Let $\phi_i(0|x,\lambda) = (u_i(0|x,\lambda), v_i(0|x,\lambda))^T$, $j = 1,2$, be two linearly independent **boundary-condition** vectors at $x = 0$ *i.e.* $\phi_i(0|x, \lambda)$ are the solutions of (1.1) and **boundary-condition** vectors at $x = 0$ *i.e.* $\phi_j(0|x, \lambda)$ are the solutions of (1.1) and $\phi_j(0|0, \lambda) = (a_{j2}, a_{j4})^T$, $\phi'_j(0|0, \lambda) = -(a_{j1}, a_{j3})^T$, $j = 1, 2, a_{ij}$ are those which occur **in (1.2).**

The eigenvalue problem associated with the Fourier system corresponding to the general system (I. 1) is obtained by considering the system (1.1) with $p(x) = q(x) = r(x) = 0$ whose solutions satisfy the same boundary conditions at $x = 0$ and $x = b$. For the treatment of the Fourier system over $[0, b]$ we impose the additional **conditions**

$$
b_{j1}a_{k2} + b_{j3}a_{k4} = 0, \quad b_{j2}a_{k1} + b_{j4}a_{k3} = 0, \quad j,k = 1,2
$$
 (1.2a)

involving the constants a_{ij} , b_{ij} in the boundary conditions at $x = 0$, $x = b$.

For the problem of the interval $[0, b]$, $b > 0$ arbitrary, there occurs in the explicit **expression for the Green's matrix** $G(b, x, y, \lambda)$ **a symmetrix matrix** $(l_{rs}(\lambda))$ **, depending** only on λ , b and the coefficients in the boundary conditions at $x = b$, which tends to $(m_{rs}(\lambda))$ as *b* tends to infinity. The matrix $(m_{rs}(\lambda))$ plays a vital role in the problem of the interval $[0, \infty)$ (see Chakravarty¹ for details; a regular eigenvalue problem is considered here for the interval $[0, b]$ and the problem of the singular interval $[0, \infty)$ is solved by **making** *b* **tend to infinity through a suitable sequence.)**

If λ_{nb} is a simple pole of $l_{rs}(\lambda)$, with residue R_{rs} , the normalized eigenvector is given by

Consider two other vectors

 $\theta_k(0|x,\lambda) = (x_k(0|x,\lambda), y_k(0|x,\lambda))^T$ solutions of (1.1) connected with $\phi_i(0|x,\lambda)$ by **means of the relations** $[\phi_j, \theta_k] = \delta_{jk}$ **, the kronecker delta, where [...] is the bilinear concomitant** defined for vectors $\alpha_i = (\alpha_{1i}, \alpha_{2i})^T$, $j = 1, 2$ by

$$
[\alpha_1,\alpha_2]=\begin{vmatrix}\alpha_{11}&\alpha_{12}\\ \alpha'_{11}&\alpha'_{12}\end{vmatrix}+\begin{vmatrix}\alpha_{21}&\alpha_{22}\\ \alpha'_{21}&\alpha'_{22}\end{vmatrix}
$$

$$
\psi_n(b,x) = \sum_{r=1}^2 R_{rr}^{\frac{1}{2}} \phi_r(0|x, \lambda_{nb})
$$
 (1.3)

where $R_{12}^2 = R_{21}^2 = R_{11} R_{22}$.

Further, when $R_{11} R_{22} - R_{12}^2 > 0$, there are two normalized linearly independent **eigenvectors** $\psi_n^{(j)}(x)$, $j = 1, 2$, corresponding to an eigenvalue λ_{nb} , such that $\psi_n^{(1)}(x) = R_{11}^{-\frac{1}{2}} (R_{11} \phi_1(0|x, \lambda_{nb}) + R_{12} \phi_2(0|x, \lambda_{nb}))$

Let $\rho(b, t) = (\rho_n(b, t))$ be a matrix such that $d\rho_n(b, u) = R_n$. Then $(d\rho_n(b, u))$ is **either positive definite or positive semi-definite.**

Denote by $L_p^2(-\infty, \infty)$ **the Hilbert space of matrices** $h(x)$ **, square integrable over**

$$
\psi_n^{(2)}(x) = -R_{11}^{-\frac{1}{2}} (R_{11}R_{22} - R_{12}^2)^{\frac{1}{2}} \phi_2(0|x, \lambda_{nb})
$$
 (1.4)

(compare Tiwari").

Titchmarsh⁴ closely, by making *b* tend to infinity through a suitable sequence, Tiwari^{2,3} **shows that**

(i) $\rho(b, u) = (\rho_{rs}(b, u))$ tends uniformly to $\rho(u) = (\rho_{rs}(u))$, *u* real, where $d\rho = (d\rho_{\rm r}(u))$ is either positive definite in the sense that the corresponding quadratic form is positive definite or $d\rho$ is positive semi-definite in the sense that the matrix $d\rho$ is **singular and all its principal minors are non-negative.**

(ii) $\rho(u)$ is given by

$$
-\infty < x < \infty \text{ with weight } d\rho(u) \text{ (i.e. } \int_{-\infty}^{\infty} h^T(x) \, d\rho \, h(x) < \infty \text{). Then, following}
$$

 $p(u)$ is normalized in the sense that $p(0) = 0$. (iii) if $f \in L_2[0, b]$, $\rho(u)$ generates an isometric mapping of $L_2[0, b]$ on to $L^2_{\rho}(-\infty, \infty)$ by **means of the formulae**

$$
\rho(u) = (\rho_{rs}(u)) = \frac{1}{\pi} \lim_{\nu \to 0} \int_0^u \left(-\mathrm{i} m m_{rs}(\mu + i\nu)\right) d\mu, \quad \lambda = \mu + i\nu,
$$

$$
E(u, f) = E(u) = \int_0^{\infty} f^{T}(x) \phi(0|x, u) dx
$$

$$
f(x) = \int_{-\infty}^{\infty} E^{T}(u) d\rho(u) \phi(0|x, u)
$$
 (1.5)

where
$$
\phi(0|x, u) = \phi(x, u) = \phi = \begin{pmatrix} u_1(x, u) & u_2(x, u) \\ v_1(x, u) & v_2(x, u) \end{pmatrix}
$$
.

•

170 N. K. CHAKRAVARTY

a matrix whose jth column is the vector $\phi_i(0|x,u)$, *u* real. The integrals are convergent in the metrics $L_2[0,b]$ and $L^2_{\rho}(-\infty,\infty)$ respectively.

The Parseval relation is

$$
||f||^2 = \int_0^h |f|^2 dx = \frac{1}{\pi} \int_{-\infty}^{\infty} E^{T}(u, f) d\rho(u) E(u, f)
$$
 (1.6)

and for two vectors f, g ,

$$
\int_0^b (f,g) dx = \frac{1}{\pi} \int_{-\infty}^{\infty} E^{T}(u,f) d\rho(u) E(u,g)
$$
 (1.7)

$$
E(\lambda, f) = \int_0^\infty f^T(x) \phi(0|x, \lambda) dx, \quad \text{(λ-complex)}, \quad \text{may} \quad \text{be} \quad \text{called} \quad \text{the} \quad \phi\text{-Fourier}
$$

By using condition (1.2a) it can be easily verified that for the Fourier system over the interval $[0, b]$, associated with an eigenvalue $\lambda_{nb}^F = n^2 \pi^2/b^2$, there are two linearly independent normalized eigenvectors $(2/\pi)^{\frac{1}{2}} \psi_{n}^{F}(x)$, $j = 1, 2$. The explicit representa**tion of** $\psi_{nj}^F(x)$ is

transform of *f.*

The matrix $\rho(u) = (\rho_{rs}(u))$, *u* real, is the spectral matrix with usual properties, associated with the system (1.1) with boundary condition (1.2) at $x = 0$.

We now actually construct the spectral matrix for the Fourier system by first constructing the same for the regular eigenvalue problem for the interval [0, b] and then for the singular interval $[0, \infty)$ by making *b* tend to infinity through a suitable sequence.

 $(2/\pi)^{\frac{1}{2}} \psi_m^F(x)$, $j = 1, 2$, being two linearly independent sequences of normalized **eigenvectors, form a basis of the space of eigenvectors. An element'**

The two linearly independent boundary condition vectors $\phi_i^F(0|x,\lambda)$ at $x = 0$ for the **Fourier system are given by**

$$
\psi_{nj}^F(x) = \begin{pmatrix} a_{j2} \cos nx \pi/b \oplus a_{j1} \sin nx \pi/b \\ a_{j4} \cos nx \pi/b \oplus a_{j3} \sin nx \pi/b \end{pmatrix}
$$
 (1.8)

$$
\pi^{-\frac{1}{2}}\left(\psi_{n2}^F(x) - \psi_{n1}^F(x)\right) \tag{1.9}
$$

may be chosen as a normalized eigenvector corresponding to the eigenvalue λ_{nb}^F $\equiv n^2 \pi^2/b^2$ for the Fourier system under consideration (compare Acharyya⁵).

$$
\phi_j^F(0|x,\lambda) = \begin{pmatrix} a_{j2} \cos \lambda^{\frac{1}{2}} x - a_{j1}/\lambda^{\frac{1}{2}} \sin \lambda^{\frac{1}{2}} x \\ a_{j4} \cos \lambda^{\frac{1}{2}} x - a_{j3}/\lambda^{\frac{1}{2}} \sin \lambda^{\frac{1}{2}} x \end{pmatrix}, j = 1, 2.
$$
 (1.10)

Substituting from (1.4) by (1.8) and (1.10) with $\lambda_{nb}^F = n^2 \pi^2/b^2$ and observing that the **resulting equation holds identically in x, we obtain, on slight simplification,**

 $R_{11}^F = 2/\pi$, $R_{12}^F = 0$ and $R_{22}^F = 2/\pi$, where R_{ij}^F are the residues of $I_{ij}^F(\lambda)$ (the **equivalent of** $l_{ij}(\lambda)$ **of the general system) at a simple pole** λ_{nb}^F **.**

A similar consideration with (1.3), (1.9) and (1.10) leads to

$$
R_{11}^F = 1/\pi
$$
, $R_{22}^F = 1/\pi$ and $R_{12}^F = 1/\pi$.

Put $d\sigma_{rs}(b, u) = R_{rs}^f$. Then the matrix $\sigma(b, u) = (\sigma_{rs}(b, u))$ has the explicit repre**sentation** $2/\pi \cdot uI$ **,** I **,** 2×2 **unit matrix or** $u/\pi \cdot I_1$ **,** $I_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ **according as the matrix** (R_{rs}^F) is positive definite or positive semi-definite.

As before, $\sigma(b, u)$ can be extended to $\sigma(u)$ as *b* tends to infinity through a suitable sequence. $\sigma(u)$ is the spectral matrix for the Fourier system and

$$
\sigma(u) = 2u/\pi \cdot I. \text{ (d}\sigma(u) \text{ positive definite)}, \qquad (1.11)
$$

and $\sigma(u) = u/\pi \cdot I_1$, $(d\sigma(u))$ positive semi-definite). (1.12)

In what follows we assume $d\rho(u)$, $d\sigma(u)$ are both positive definite; the case when they are positive semi-definite follows similarly. It may be noted that $\sigma(u)$ for the Fourier **system has properties similar to those of** $p(u)$ **for the general system.**

When $u = \mu^2$ **, put** $\rho(u) = \rho_1(\mu)$ **and assume that** $\rho_1(\mu)$ **is extended to the negative half-line as an odd function.** Similarly for $\sigma_1(\mu)$, where $\sigma_1(\mu) = \sigma(u)$.

Our system (1.1) is a special case of (A) (with $m = n = 2$) but a generalized form of **(B). We are therefore led to investigate the spectral problems associated with (1.1). In** the present paper we investigate the asymptotic formulae for the spectral matrix $\rho_1(\mu)$ for large μ . We follow mostly the methods of Levitan^{6.7} and Marchenko⁸ in the **investigation of the problem.**

Spectral theory of second- and higher-order differential equations and of Dirac equations is a subject which is being intensively investigated by mathematicians of many countries. But the spectral problems for the system

$$
LY = \lambda \, MY \tag{A}
$$

a system consisting of m differential equations each of order n have not received as much attention. Again, if the tensor interaction forces are taken into account, the Schrodinger equation for a deuteron (in the ground state) leads to the system

$$
Y'' + \lambda^2 Y = (V(x) + 6x^{-2}P)Y, 0 < x < \infty, P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
$$
 (B)

where $V(x)$ is a hermitian matrix satisfying certain conditions.

2. Some preliminary investigations

Let
$$
C_j(x, \lambda^{\frac{1}{2}}) = \begin{pmatrix} a_{j1} \sin \lambda^{\frac{1}{2}} x \oplus a_{j2} \cos \lambda^{\frac{1}{2}} x \\ a_{j3} \sin \lambda^{\frac{1}{2}} x \oplus a_{j4} \cos \lambda^{\frac{1}{2}} x \end{pmatrix}, j = 1, 2.
$$
 (2.1)

 Λ^{\prime}

 $C(x, \lambda^{\frac{1}{2}})$ being the matrix whose *j*th column is the vector $C_i(x, \lambda^{\frac{1}{2}})$, $j = 1, 2$. Evidently, $C_i(x, \lambda^{\frac{1}{2}})$ are the solutions of the Fourier system.

Let
$$
S_j(x, \lambda^{\frac{1}{2}}) = \lambda^{\frac{1}{2}} \int_0^x C_j(x, \lambda^{\frac{1}{2}}) dx
$$
 (2.2)

 $S(x, \lambda^{\frac{1}{2}})$ being the matrix whose *j*th column is the vector $S_1(x, \lambda^{\frac{1}{2}})$. Let λ be real, say $\lambda = u$.

 $\frac{1}{2}$ 1 - C (x ive) and Z (x $|u|^{\frac{1}{2}}$) = S (x ive) **When** $u < 0$, let $e_i(x, |u|^{\frac{1}{2}}) = C_i(x, i\omega^{\frac{1}{2}})$ and $Z_i(x, |u|^{\frac{1}{2}}) = S_i(x, i\omega^{\frac{1}{2}})$, the corres**ponding matrices whose** *j***th column vectors are** $e_i(x, |u|^{\frac{1}{2}})$ **and** $Z_i(x, |u|^{\frac{1}{2}})$ **being represented respectively by** $e(x, |u|^{\frac{1}{2}})$ **and** $Z(x, |u|^{\frac{1}{2}})$ **.**

where $M(x, t)$ satisfies a set of conditions elaborated on p. 177 of the paper under **reference.** $M(x, t)$ is finite in the sense that $M(x, t) = 0$ for $t > x$ and $M(x, 0) = 0$, x lying **in an arbitrary but fixed interval.**

We prove the following lemma.

Lemma 2.1. For $-\infty < u \le 0$, and arbitrary but fixed x, say $x = x_0$,

$$
\int_{-\infty}^{0} e^{T}(x_0, |u|^{\frac{1}{2}}) d\rho(u) e(x_0, |u|^{\frac{1}{2}}) = O(1).
$$

It has been established by Ray Paladhi⁹ (p. 176) that there exists a matrix $M(x, t)$ such **that** $C(x, \lambda^{\frac{1}{2}})$ and $\phi(x, \lambda)$ are connected to each other by

where $K(x,t)$ **is finite and is such that** $U = (X_i (x,t), Y_i (x,t))^T = A_i K(x,t)$ **where** $\overline{A_i}$ $K(x, t) = \begin{pmatrix} K_{11} & K_{21} \\ K_{12} & K_{22} \end{pmatrix}$ K_{12} K_{22} **satisfies** *inter alia,* **the Cauchy-type equation**

$$
C(x, \lambda^{\frac{1}{2}}) = \phi(x, \lambda) - \int^x M(x, t) \phi(t, \lambda) dt
$$
 (2.3)

$$
\int_0^{\infty} \frac{1}{\sqrt{1-\frac{1}{2}}\cos(\frac{\pi}{2})} \, e^{-\frac{1}{2} \sin(\frac{\pi}{2})} \, dx
$$

Along with (243) we have also the integral equation

$$
\phi(x,\lambda) = C(x,\lambda^{\frac{1}{2}}) + \int_0^x K(x,t) C(t,\lambda^{\frac{1}{2}}) dt
$$
 (2.4)

$$
\partial^2 U/\partial x^2 = \partial^2 U/\partial t^2 + Q(x)U \qquad (2.4a)
$$

with initial conditions

$$
U(x, t)|_{t=0} = f(x) \neq 0
$$
 a twice differentiable function and

$$
\frac{\partial U(x, t)}{\partial t}|_{t=0} = 0
$$
 (2.5)

for each $j = 1, 2$. (see Ray Paladhi⁹, pp. 174-175).

The solution of (2.4a)-(2.5) by the Riemann method yields

$$
U(x,t) = \frac{1}{2}((f(x+t)+f(x-t))+\frac{1}{2}\int_{x-t}^{x+t}W(x,t,s)\,f(s)\,ds
$$
 (2.6)

the Riemann matrix function $W(x,t,s)$ satisfying the inequality

e Riemann matrix function
$$
W(x, t, s)
$$
 satisfying the inequality
\n
$$
|W(x, t, s)| \le \frac{1}{2} \int_{x-t}^{x+t} |Q(\sigma)| d\sigma \exp\left(\frac{1}{2}t \int_{x-t}^{x+t} |Q(\sigma)| d\sigma\right)
$$
\n(2.7)

where by $|S|$ we mean the sum of the moduli of all the elements of the matrix *S* (see Chakravarty and Ray Paladhi¹⁰).

Since $f(x)$ is continuous in x lying in an arbitrary but finite interval, we can assume $|f(x \pm t)| \le \alpha(t_0)$, where $t_0 \ge t$ is fixed but arbitrary. Hence from (2.7) and (2.6)

Integrating both the sides of (2.3) with respect to *x* **over the interval (0,** x_0 **) and changing the order of integration on the right hand side, we obtain \lambda^{-\frac{1}{2}}S(x_0, \lambda^{\frac{1}{2}}) = \int_{0}^{x_0} \left(1 - \int_{0}^{x_0} M(t, s) ds\right) \ changing the order of integration on the right hand side, we obtain**

$$
K(x,t) = O(|\alpha|) + O\left(\int_0^t |Q(\sigma)| d\sigma\right)
$$
 (2.8)

where $O(.)$ for a matrix means that each element of the matrix is $O(.)$. Since $M(x, t)$ also **satisfies a Cauchy-type equation with initial conditions (like (2.4a) and (2.5))** *(see* **Ray** Paladhi⁹, p. 177), we have also the relation

$$
M(t,s) = O(|\alpha|) + O\left(\int_0^t |Q(\sigma)| d\sigma\right).
$$
 (2.9)

$$
\lambda^{-\frac{1}{2}}S(x_0, \lambda^{\frac{1}{2}}) = \int_0^{x_0} \left(I - \int_t^{x_0} M(t, s) \, ds \right) \phi(t, \lambda) \, dt
$$
\n
$$
= \int_0^{x_0} H_0(x_0, t) \phi(t, \lambda) \, dt
$$
\n(2.10)

\nwhere $H_0(x_0, t) = I - \int_t^{x_0} M(t, s) \, ds, I, 2 \times 2$ unit matrix.

Now each column vector of $\lambda^{-\frac{1}{2}}S(x_0, \lambda^{\frac{1}{2}})$ is the ϕ -Fourier transform of the corresponding column vector of $H(x_0, t)$ for $t < x_0$, and equal to zero for $t \ge x_0$. Therefore by the **Parseval relation (1.6)**

where H_{0k} (.) and H_{0k} (.) are the jth and the kth column vectors of H_0 (.). Since the right **hand side of (2.11) is obviously finite, it follows that**

$$
1/\pi \int_{-\infty}^{\infty} u^{-1} S_j^T(x_0, u^{\frac{1}{2}}) d\rho(u) S_k(x_0, u^{\frac{1}{2}})
$$

=
$$
\int_{0}^{x_0} (H_{0y}, H_{0k}) dt, j, k = 1, 2,
$$
 (2.11)

leading to

The proof follows with little modification in the proof for the corresponding result for the series as given in Mirsky¹¹ (p. 331).

$$
\int_{-\infty}^{\infty} u^{-1} S^{T}(x_0, u^{\frac{1}{2}}) d\rho(u) S(x_0, u^{\frac{1}{2}}) = O(1)
$$
 (2.12)

$$
\int_{-\infty}^{0} u^{-1} S^{T}(x_{0}, u^{\frac{1}{2}}) d\rho(u) S(x_{0}, u^{\frac{1}{2}})
$$

\n
$$
\ll \int_{-\infty}^{\infty} u^{-1} S^{T}(x_{0}, u^{\frac{1}{2}}) d\rho(u) S(x_{0}, u^{\frac{1}{2}}) = O(1)
$$
\n(2.13)

The theorem follows from lemma 2.1 by using proposition A and noting that $d\rho(u)$ is **positive.**

where the symbol 4 means that the right hand side matrix majorizes that on the left. When $u < 0$, we obtain from (2.2) by the first mean value theorem of the integral calculus, $Z(x, |u|^{\frac{1}{2}}) = ix|u|^{1/2}e(\theta x, |u|^{\frac{1}{2}}), 0 < \theta < 1.$ **(2.14)**

The lemma then follows from (2.13) and (2.14).

For an
$$
n \times n
$$
 matrix $A = (a_{rs})$, let $||A|| = \max_{1 \le r, s \le n} |a_{rs}|$.

Then the following proposition holds.

Proposition A. A necessary and sufficient condition that [A dx is absolutely **convergent** *(i.e. each* **element of the matrix integral is absolutely convergent) is that** \cdot $||A||$ dx is convergent.

Theorem 2.1. **Under the conditions of lemma 2.1 fo** $||e(x_0, |u|^{\frac{1}{2}})||^2 ||d\rho(u)|| < \infty$, holds. **_ (2.15)**

The theorem generalizes Marchenko's lemma 2.2.1 (see Marchenko⁸, p. 42). We now **establish the following lemma which plays a basic role in our further investigations.**

Lemma 2.2. If $Q(x)$ is summable in every finite interval, then there exist continuous **matrices C, such that**

(i) sup
$$
\bigvee_{-\infty<\mu<\infty}^{\mu+1} P_1(\mu) \ll C
$$
, uniformly in μ ; and equivalently

(ii) $\rho_1(b+\mu)-\rho_1(b-\mu) \ll C$, uniformly for *b*, $\mu \ge 0$, holds. **Similar results also hold for the spectral matrix** $\sigma_1(\mu)$ **.**

As in Levitan⁶ (p. 212), consider $g_e(t, a) = \varepsilon^{-2} (2\varepsilon - t) \cos at, \ 0 \le t \le 2\varepsilon;$ $= 0$ $\qquad \qquad$ $\qquad \qquad$ \qquad \qquad

uniformly for a and ε **, which may be small enough. Substituting for** $C(t, \lambda^{1/2})$ **in (2.16) by (2.3), we obtain on changing the order of integration**

so that each column vector of $\psi_r(\lambda, a)$ is the ϕ -Fourier transform of the corresponding **column vector of**

Then
$$
\psi_{\epsilon}(\lambda, a) = \int_0^{2\epsilon} g_{\epsilon}(t, a) C(t, \lambda^{\frac{1}{2}}) dt
$$

$$
= \epsilon^{-2} \int_0^{2\epsilon} (2\epsilon - t) C(t, \lambda^{\frac{1}{2}}) \cos at dt
$$
 (2.16)

When λ is real and equal to μ , we have for $\mu < 0$,

$$
\|\psi_{r}(u,a)\| \leq \varepsilon^{-2} \int^{2r} |2\varepsilon - t| |\cos at| \left\|C(t,i|u|^{\frac{1}{2}})\right\| \mathrm{d} t \, (\text{Mirsky}^{11}, \, \text{p. 343})
$$

$$
\leq 4||e(\xi, |u|^{\frac{1}{2}})||, \quad 0 < \dot{\xi} < 2\varepsilon.
$$

Therefore, from (2.15) and proposition A, it follows that

$$
\int_{-\infty}^{0} \psi_{\epsilon}^{T}(u,a) d\rho(u) \psi_{\epsilon}(u,a) = O(1)
$$
 (2.17)

$$
\psi_{\varepsilon}(\lambda, a) = \int_0^{2\varepsilon} (g_{\varepsilon}(s, a)I \ominus \int_s^{2\varepsilon} M(t, s) g_{\varepsilon}(t, a) dt) \phi(s, \lambda) ds
$$

 $\tilde{\mathbf{f}}_0$

$$
H(s, a, \varepsilon) = g_{\varepsilon}(s, a) \, I - \int_{s}^{2\varepsilon} M(t, s) \, g_{\varepsilon}(t, a) \, dt \quad \text{for} \quad s \leq 2\varepsilon \quad \text{and} \quad \text{equal} \quad \text{to} \quad \text{zero}
$$

for $s \geq 2\varepsilon$.

Hence by the Parseval theorem and relation (2.17)

$$
\pi^{-1} \int_0^{\infty} \psi_{\epsilon}^T(u, a) d\rho(u) \psi_{\epsilon}(u, a)
$$

=
$$
\int_0^{2\epsilon} H^T(s, a, \epsilon) H(s, a, \epsilon) ds + O(1)
$$
 (2.18)

uniformly for a, ε , small enough.

Now,
$$
\int_0^{2\epsilon} H^T(s, a, \epsilon) H(s, a, \epsilon) ds
$$

= $I \int_0^{2\epsilon} g_\epsilon^2(s, a) ds - 2 \int_0^{2\epsilon} g_\epsilon(s, a) \left(\int_s^{2\epsilon} M(t, s) g_\epsilon(t, a) dt \right) ds$
+ $\int_0^{2\epsilon} \left(\int_s^{2\epsilon} M(t, s) g_\epsilon(t, a) dt \right) \right)^2 ds$

 $=$ **J** $-2L+L$ **cay**

$$
-1 - 21 - 21 - 3
$$
, say.

From definition $g_e(t, a) = O(1/\epsilon)$ uniformly for a and from (2.9)

$$
\int_0^t M(t,s) \, ds = O(|\alpha|t) + O\left(t \int_0^t |Q(\sigma)| \, d\sigma\right)
$$

On changing the order of integration

$$
\int_0^r M(t,s) \, ds = O(|\alpha|t) + O\left(t \int_0^t |Q(\sigma)| \, d\sigma\right)
$$

On changing the order of integration

$$
J_2 = O\left(\varepsilon^{-2} \int_0^{2\varepsilon} dt \int_0^t M(t,s) \, ds\right) = O(|\alpha|) + O\left(\int_0^{2\varepsilon} |Q(\sigma)| \, d\sigma\right) \qquad (2.19)
$$

Since
$$
\int_s^{2t} M(t,s) g_\varepsilon(t,a) \, dt = O(|\alpha|) + O\left(\int_0^{2\varepsilon} |Q(\sigma)| \, d\sigma\right) = O(1), \text{ it follows that}
$$

$$
J_3 = O\left(\int_0^{2\varepsilon} ds \left|\int_s^{2\varepsilon} M(t,s) g_\varepsilon(t,a) \, dt\right|\right) = O(|\alpha|\varepsilon) + O\left(\varepsilon \int_0^{2\varepsilon} |Q(\sigma)| \, d\sigma\right). (2.20)
$$

 \bullet

Hence from (2.18), (2.19) and (2.20)

$$
1/2\pi \int_{-\infty}^{\infty} \psi_{\epsilon}^{T}(\mu^{2}, a) d\rho_{1}(\mu) \psi_{\epsilon}(\mu^{2}, a) = I \int_{0}^{2\epsilon} g_{\epsilon}(s, a) ds + O(|\alpha|)
$$

+ $O\left(\int_{0}^{2\epsilon} |Q(\sigma)| d\sigma\right) + O(1).$ (2.21)

Since $C(t, \lambda^{\frac{1}{2}})$ cos $at = \frac{1}{2}(C(t, \lambda^{\frac{1}{2}} + a) + C(t, \lambda^{\frac{1}{2}} - a))$ and

$$
\lambda^{\frac{1}{2}} \int_0^x S(t, \lambda^{\frac{1}{2}}) dt = -C(x, \lambda^{\frac{1}{2}}) + xA + B
$$
, where

 J_0
= $\binom{a_{11} a_{21}}{a_{13} a_{23}}$ and $B = \binom{a_{12} a_{22}}{a_{14} a_{24}}$ **it follows from (2,16) by integration by parts** $a_{13} a_{23}$ and $b = \begin{bmatrix} a_{14} & a_{24} \end{bmatrix}$

When λ is real, say $\lambda = u$, we estimate separately $J_{11}(u)$ and $J_{12}(u)$ by using the explicit **expressions for the elements of the matrix** $C(2\varepsilon, u^{\frac{1}{2}} \pm a)$ **as obtained from (2.1). Then it is easy to deduce that**

where *K* **are different constant matrices.** *K* **are non-singular, since the rank of the matrix** (a_{ij}) of the coefficients in the boundary condition (1.2) is two. Also *b* have different constant values. (The symbol \geq means that the matrix on the left majorizes that on the right.) Putting $u = \mu^2$ and for convenience $\varepsilon = 1$, it follows from (2.21) that

$$
\psi_{\varepsilon}(\lambda, a) = \frac{1}{2} \varepsilon^{-2} (\lambda^{\frac{1}{2}} + a)^{-2} (2 \varepsilon A + B - C(2\varepsilon, \lambda^{\frac{1}{2}} + a)) \n+ \frac{1}{2} \varepsilon^{-2} (\lambda^{\frac{1}{2}} - a)^{-2} (2 \varepsilon A + B - C(2\varepsilon, \lambda^{\frac{1}{2}} - a)) = J_{11}(\lambda) + J_{12}(\lambda), \text{ say.}
$$

where *C* **is a suitable constant matrix independent of** *b.* The lemma therefore follows, since $\sin \mu/\mu \geq 2/\pi$ for $0 \leq \mu \leq \frac{1}{2}\pi$.

$$
\psi_{\epsilon}(u,a) \gg K(\sin(u^{\frac{1}{2}}+b)\varepsilon/(u^{\frac{1}{2}}+b)\varepsilon)^2, K(\sin(u^{\frac{1}{2}}-b)\varepsilon/(u^{\frac{1}{2}}-b)\varepsilon)^2
$$

$$
\int_{-\infty}^{\infty} (\sin \mu/\mu)^4 d\rho_1(b+\mu), \int_{-\infty}^{\infty} (\sin \mu/\mu)^4 d\rho_1(\mu-b) \ll C,
$$

3. Some auxiliary results

Let
$$
F(\lambda^{\frac{1}{2}}) = F(\lambda^{\frac{1}{2}}, f) = \int_0^\infty f^T(x) C(x, \lambda^{\frac{1}{2}}) dx
$$
 (3.1)

the *C*-Fourier transform of the vector $f \in L_2[0, \infty)$. **When** $u = \mu^2$, let $F(u^{1/2}) = F_1(\mu)$, if $\mu \ge 0$ $=-F_1(\mu)$, if $\mu < 0$.

Consider an arbitrary $f \in C^1(0, X)$ such that $f(x) = 0$ for all $x \ge X$. Then obviously $f(x)\varepsilon L_2[0, X]$ and hence $f(x)\varepsilon L_2[0, \infty)$.

Taking scalar product of (2.3) by $f^T(x)$, integrating over $[0, \infty)$ and then changing the order of integration, we have

$$
\int_0^\infty f^T C(x, \lambda^{\frac{1}{2}}) dx = \int_0^\infty (f(x) - h(x))^T \phi(x, \lambda) dx
$$

•

Therefore from $\| ||f||^2 - ||g||^2 \| \le ||h|| (2||f|| + ||h||)$

where
$$
h(x) = \int_x^{\infty} M^{T}(x, y) f(y) dy
$$
.

which extends Marchenko's⁸ result (p. 46) to the present system. **We establish the following lemmas.**

Lemma 3.1. For an arbitrary $f \in C^1(0, X)$ which vanishes for all $x \ge X$,

Then
$$
F(\lambda^{\frac{1}{2}}, f) = E(\lambda, f) - E(\lambda, h) = E(\lambda, g)
$$
, where $g = f - h$.

Now
$$
||g||^2 = \int_0^{\infty} |g|^2 dx = 1/\pi \int_{-\infty}^{\infty} E^{T}(u, g) d\rho(u) E(u, g)
$$

$$
= 1/\pi \int_{-\infty}^{\infty} F^{T}(u^{\frac{1}{2}}, f) d\rho(u) F(u^{\frac{1}{2}}, f)
$$
(3.2)

by the Parseval relation.

The lemma holds, if we replace $\rho_1(\mu)$ by $\sigma_1(\mu)$, the spectral matrix for the Fourier **system.**

$$
\left|\|f\|^2-1/2\pi\int_{-\infty}^{\infty}F_1^{\mathcal{T}}(\mu,f)\ d\rho_1(\mu)\ F_1(\mu,f)\right|
$$

$$
\leq 1/\pi \int_{-\infty}^{0} F_1^T(\mu, f) d\rho_1(\mu) F_1(\mu, f) + ||h|| (2||f|| + ||h||)
$$
 (3.3)

$$
\lim_{a\to\infty} 1/4\pi \int_{-\infty}^{\infty} (F_1(\mu+a)+F_1(\mu-a))^T d\rho_1(\mu) (F_1(\mu+a)+F_1(\mu-a)) = ||f||^2,
$$

if $Q(x)$ satisfies the conditions of lemma 2.2.

The lemma is proved by an adaptation of the analysis of Marchenko⁸ (p. 46-48).

Replace *f* by $f(a, x) = f \cos ax$, $-\infty < x < \infty$, for which $F_1(\mu, f)$ and $h(x)$ are replaced. respectively, by $F_1(a,\mu,f)$ and $h(a,x)$. Then from (3.3)

By using the explicit form of $C(x, \mu)$ and the Riemann Lebesgue lemma in $F_1(a, \mu, f)$ it **follows that**

 $\lim F_1(a, \mu, f) = 0.$ **a—. cs)**

When $\lambda \leq 0$,

$$
\lim_{a\to\infty}\left|\|f(a,x)\|^2-1/2\pi\right|\int_{-\infty}^{\infty}F_1^T(a,\mu,f)\,\mathrm{d}\rho\left(\mu\right)F_1(a,\mu,f)\right|
$$

$$
\leq \lim_{a \to \infty} 1/\pi \int_{-\infty}^{0} F_1^T(a,\mu,f) \, d\rho_1(\mu) F_1(a,\mu,f)
$$

+
$$
\lim_{a \to \infty} ||h(a,x)|| (2||f(a,x)|| + ||h(a,x)||).
$$
 (A)

$$
|F(a,\lambda^{\frac{1}{2}},f)| \leq 4 \quad \int_0^\infty |f| \, ||C(x,i|\lambda|^{\frac{1}{2}})|| \, \mathrm{d}x = 4 \quad \int_0^\infty |f| \, ||\, e(x,|\lambda|^{\frac{1}{2}})|| \, \mathrm{d}x.
$$

Now $f = 0$ outside $(0, X)$. Then it follows from above by using the Schwarz inequality

that $F(a, \lambda^{\frac{1}{2}}, f)|^2$ converges uniformly to zero in each sub-interval and is majorized by 16||f||²||e(X, $|\lambda|^{\frac{1}{2}}$)|| which is integrable over $-\infty < \lambda \le 0$ with weight $||d\rho(\lambda)||$, by theorem 2.1.

Hence
$$
\lim_{a \to \infty} \int_{-\infty}^{0} |F^{T}(a, \lambda, f)|^{2} ||d\rho(\lambda)||
$$

=
$$
\int_{-\infty}^{0} \lim_{a \to \infty} |F^{T}(a, \lambda, f)|^{2} ||d\rho(\lambda)|| = 0.
$$

Now
$$
h(a, x) = \int_{x}^{a} M^{T}(x, y) f(a, y) dy = \int_{x}^{a} M^{T}(x, y) f(y) \cos ay dy
$$
, which tends

to zero as a tends to infinity, by the Riemann Lebesgue lemma; $M^T(x, y)$ is bounded in $(0, X)$ when $Q(x)$ satisfies conditions stated in the lemma (see relation (2.9)).

 $\int x$ **Therefore** $\lim |h(a, x)|^2 = \lim |h(a, u)|^2 du = 0.$ $a \rightarrow \infty$ **b** $a \rightarrow \infty$ **c**

Also
$$
\lim_{a \to \infty} ||f(a, x)||^2 = \lim_{a \to \infty} \int_0^\infty |f|^2 \cos^2 ax \, dx = \frac{1}{2} ||f||^2
$$
, by the Riemann Lebes-

gue lemma. Hence from (A)

$$
\lim_{a\to\infty} 1/\pi \quad \int_{-\infty}^{\infty} F_1^T(a,\mu,f) \; d\rho_1(\mu) F_1(a,\mu,f) = ||f||^2
$$

Since $F_1(a, \mu, f) = \frac{1}{2}(F_1(\mu + a) + F_1(\mu - a))$, the lemma follows from above.

Lemma 3.2. If $Q(x)$ satisfies the condition of lemma 2.2 and $f(x)$ that of lemma 3.1, then

 $(\sum a_{\mu\nu} x_{\mu} y_{\nu})^2 \leq \sum a_{\mu\nu} x_{\mu} x_{\nu} \sum a_{\mu\nu} y_{\mu} y_{\nu}$, if $\sum a_{\mu\nu} x_{\mu} x_{\nu}$, $a_{\mu\nu} = a_{\nu\mu}$ is a positive quadratic form (with real but not necessarily positive coefficients), (Hardy, et aI^{12} , ch. 29, p. 33) **we obtain**

$$
\lim_{a\to\infty}\int_{-\infty}^{\infty}F_1^T(\mu+a)\,d\rho_1(\mu)\,F_1(\mu-a)=\lim_{a\to\infty}\int_{-\infty}^{\infty}F_1^T(\mu-a)\,d\rho_1(\mu)\,F_1(\mu+a)
$$

 $= 0$, uniformly in μ . The lemma remains true when $\rho_1(\mu)$ is replaced by $\sigma_1(\mu)$.

$$
\begin{array}{ccccccccccccccccc}\n\hline\n\end{array}
$$

Let
$$
G(\mu, a) = \int_{-\infty}^{\infty} F_1^T(\mu + a) d\rho_1(\mu) F_1(\mu - a)
$$

= $\left(\int_{-\infty}^0 + \int_{0}^{\infty} \right) F_1^T(\mu + a) d\rho_1(\mu) F_1(\mu - a) = I_1 + I_2$, say.

Using the inequality

•

$$
|I_2|^2 \leq \int_0^\infty F_1^T(\mu+a) d\rho_1(\mu) F_1(\mu+a) \int_0^\infty F_1^T(\mu-a) d\rho_1(\mu) F_1(\mu-a).
$$

By integration by parts

$$
F_1(\mu, f) = \int_0^\infty f^T C(x, \mu) dx = 1/\mu \int_0^\infty f^T dS(x, \mu) = O(1/\mu).
$$

Therefore

$$
\int_0^{\infty} F_1^T(\mu + a) d\rho_1(\mu) F_1(\mu + a) = O\left(\int_0^{\infty} ||d\rho_1||/(\mu + a)^2\right)
$$

= $O\left(\sum_{k=0}^{\infty} 1/(k+a)^2\right)$, by lemma 2.2, where

$$
||d\rho_1|| = \max_{1 \le r,s \le 2} |(\rho_1)_{rs} (\mu)|
$$

Now $\sum_{k=0}^{\infty} 1/(k+a)^2 = \sum_{k=0}^{N} 1/(k+a)^2 + \sum_{k=N+1}^{\infty} 1/(k+a)^2$

$$
\le \sum_{k=0}^{N} 1/(k+a)^2 + \sum_{k=N+1}^{\infty} 1/k^2.
$$

The usual limit technique can now be applied so as to obtain

$$
\lim_{a \to \infty} \int_0^{\infty} F_1^T(\mu + a) d\rho_1(\mu) F_1(\mu + a) = 0.
$$
 (3.4)

Similarly
$$
\lim_{a \to \infty} \int_{-\infty}^{0} F_1^T(\mu - a) d\rho_1(\mu) F_1(\mu - a) = 0.
$$
 (3.5)

Again
$$
\int_{0}^{\infty} F_{1}^{T}(\mu - a) d\rho_{1}(\mu) F_{1}(\mu - a) \leq \int_{-\infty}^{\infty} F_{1}^{T}(\mu - a) d\rho_{1} F_{1}(\mu - a)
$$

$$
\leq K \left(1 + \sum_{-\infty}^{-1} 1/k^{2} + \sum_{1}^{\infty} 1/k^{2} \right) = O(1)
$$
 (3.6)

where K is a constant (compare Levitan⁷, p. 240).

Similarly
$$
\int_{-\infty}^{0} F_1^T(\mu + a) d\rho_1(\mu) F_1(\mu + a) = O(1).
$$
 (3.7)

All the results (3.4) – (3.7) hold uniformly for μ .

Hence $\lim_{a \to \infty} I_1 = \lim_{a \to \infty} I_2 = 0$. $a \rightarrow \infty$

 $\gamma_{\rm C}$

Similarly for $\int_{-\infty}^{\infty} F_1^T(\mu - a) d\rho_1(\mu) F_1(\mu + a)$ and for the case when ρ_1 is replaced

by σ_1 . The lemma therefore follows.

Put
$$
\rho_1(\mu) - \sigma_1(\mu) = \Phi(\mu) = \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12} & \Phi_{22} \end{pmatrix}
$$
, where Φ is symmetric, since ρ_1, σ_1

are so. Let $\Phi(\mu)$ be extended to negative μ as an odd function.

Lemma 3.3. If $Q(x)$ *satisfies the condition of lemma 2.2, then for the C-Fourier* **transform** $F_1(\mu)$ **of an arbitrary vector f of lemma 3.1,**

Since $F_1(\mu)$ is extended to negative μ as an odd function, the lemma follows from **lemmas 31 and 3.2.**

$$
\lim_{a\to\infty}\int_{-\infty}^{\infty}F_1^{\mathsf{T}}(\mu-a)\,\mathrm{d}\Phi(\mu)\,F_1(\mu-a)=0,\text{ holds uniformly for }\mu\geq 0.
$$

4. Derivation of the asymptotic formulae

In what follows we shall require the Wiener-Tauberian theorem¹³ (pp. 73-74) as modified by Levitan⁷ (pp. 241-242) *i.e.* the following theorem.

Theorem A. **Let** $h(\mu)$ **,** $h_1(\mu)$ **be two bounded measurable functions satisfying**

(i) $h(\mu)$, $h_1(\mu)$ are each $O(1/\mu^2)$ for large values of μ ;

(ii) the Fourier transform of $h(\mu)$ never vanishes. Suppose further that $\theta(\mu)$ is a function satisfying the condition

(see also Titchmarsh¹⁴, p. 371, where a different formulation is given.) **The following theorem is now established.**

Theorem 4.2. If $Q(x)$ satisfies condition of lemma 2.2 and $\mu_0 > 0$, fixed but arbitrary, then

 $\lim_{a \to \infty} (\rho_1(\mu_0 + a) - \rho_1(a)) = 2/\pi$. $\mu_0 I$, where *I* is the 2 × 2 unit matrix.

$$
\sup_{-\infty<\mu<\infty}\frac{\mu+1}{V\theta(\mu)<\infty}.
$$

Then
$$
\lim_{a \to \infty} \int_{-\infty}^{\infty} h(\mu - a) d\theta(\mu) = 0
$$
 implies $\lim_{a \to \infty} \int_{-\infty}^{\infty} h_1(\mu - a) d\theta(\mu) = 0$.

SPECTRAL MATRIX OF A DIFFERENTIAL OPERATOR 183

Since $f(x)$ is arbitrary and rank (a_{ij}) , a_{ij} coefficients in the boundary condition (1.2), are two, it follows from the explicit form of $C(x,\mu)$ in the definition of $F_1(\mu)$ that the components of $F_1(\mu)$ are linearly independent. Hence if $F_1 = (F_{11}, F_{12})^T$, it follows **from lemma 33 that**

Again, the Fourier transform of convolution $F_{11} \star F_{12}$ is the product of the Fourier transforms of F_{11} and F_{12} . The theorem is obtained from Tauberian theorem A by closely following the analysis of Levitan⁷ (pp. 241-243). **Finally we establish the following theorem.**

$$
\lim_{a \to \infty} \int_{-\infty}^{\infty} F_{1j}(\mu - a) F_{1k}(\mu - a) d\Phi_{jk}(\mu) = 0, j, k = 1, 2.
$$
 (4.1)

Also
$$
F_{1j}F_{1k} = O(1/\mu^2)
$$
, $\bigvee_{\mu}^{\mu+1} \Phi_{jk}(\mu) < \infty$, by lemma 2.2.

Theorem 4.2. The spectral matrix $\rho_1(\mu)$ associated with the differential system (1.1) **and appearing in the inversion formula (1.9) has the asymptotic representation**

 $\rho_1(\mu) = 2/\pi$. $\mu I + o(\mu)$, as μ tends to infinity.

Here *I* is the 2×2 unit matrix and $Q(x)$ satisfies the condition of lemma 2.2.

In theorem 4.1 put $\mu_0 = 2$ and $a = n + 2k - 1$; then there exists an integer $n > N$, such **that**

1. CHAKRAVARTY, N. K. Some problems in eigenfunction expansions *(III)*, Q. J. Math. **(Oxford (II), 1968. 19, 397-415.**

$$
\rho_1(n+2k+1)-\rho_1(n+2k-1)=(4/\pi+\varepsilon_k)I.
$$

where $|\varepsilon_k| < \varepsilon$, a pre-assigned positive number and $k \ge 0$ is arbitrary but fixed.

Hence the theorem.

Acknowledgements

The author is grateful to Dr S. K. Acharyya of the Department of Pure Mathematics, Calcutta University, and to the referees for valuable comments.

•

Putting $k = 0, 1, 2, \ldots, m$ (fixed) and summing, we obtain in the usual manner (compare Marchenko⁸, p. 53)

 \lim $1/\mu \rho_1(\mu) = 2/\pi l$. $\mu \rightarrow \infty$

References

14. TITCHMARSH, E. C. *Eigenfunction expansions associated with second order differential equations,* **Part II, 1958, Clarendon Press, Oxford.**