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Abstract 

In the present paper we obtain certain asymptotic formula for the spectral matrix of a self-adjoint second-order 
differential system. We base our derivation of the formula on a Tauberian theorem due to N. Wiener. 

Key words: Spectral matrix, isometric mapping, ‘,6- and C-Fourier transforms, Cauchy-type equations, 
Riernann matrix function. majorize, convolution, Wiener's Tauberian theorem. 

I. Introduction 

Consider the differential system 

MU .= AU 

where 

.,
q(x) 

r(x) 
- 	

),D = (Nix and U Ea U(X, A) = (u(x, A), v(x,A)) 16  

(ii) Q(x) = 
p(x) r(x) 
r(x) q(x) 

is a real Ci _ k (0,b), (k = 0,1), class matrix summable on [0, b), where b is finite or 
infinite; by Ck(a.0) -class matrices, we mean matrices which are k times differentiable 
with respect to the variable x over (a,(3), the kth derivative being continuous in the 
interval. 

(Hi) A is a complex parameter. 

(iv) The boundary conditions at x = 0 and x = b are respectively 

ail  u(0,A)+ ao u'(0,A)-1-ai3v(0,A)+aj o'(0,A) = 0; 

b11 u(b,A)+1)12 14 1 (b,A)-1-bi3 v(b,A)+b14 v'(b,A) = 0; 
	

(1.2) 
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= 1 „ 2. a 1 . bii  are real-valued constants independent of A. satisfying 

rank(a4 ), rank (b y ) = 2, i= 12 j= 	2,3,4; 

(ii) ail  ak2 + aj3  ak ,s  =- 0, j, k = 1,2; b ti  b22 bi2 b2i +1) 1 3 b24  — b i4  b23  = 0; 

(iii) for vectors al  = (a, 1 , 	.s  , al ) (al  ak ) = &/k SIA , the kronecker delta. 

By making b tend to infinity we obtain 
the system (1.1) over the interval 

a self-adjoint eigenvalue problem associated with 

The eigenvalue problem associated with the Fourier system corresponding to the 
general system ( I. 1) is obtained by considering the system (1.1) with 
p(x) = q(x) = r(x) = 0 whose solutions satisfy the same boundary conditions at x 
and x r----  b. For the treatment of the Fourier system over [0. hi we impose the additional 
conditions 

bil ak2 + ko ak4  = 0, bi2 aki  -F. bps  ak3  = 0, j, k = 1, 2 
	

(1.2a) 

involving the constants a ii , bq  in the boundary conditions at x = 0, x = h. 

Let (/)/ (01x, A) = (u1 (01x, A)„ v/ (01x, A)) T 	= 1,2, be two linearly independent 
boundary-condition vectors at x = 0 i.e. chi (Oix. A) are the solutions of (1.1) and 
01 (010, A) = (a12 , al4 ) 7r  4 t 1 (010 A) = 	(ail  , ai3 ) 7-  = 1.2, aq  are those which occur 
in (1.2). 

Consider two other vectors 

Ok(OIX , A) = (xk (Olx, A), y k (Ojx, A)) T  solutions of (1.1) connected with 4•1 (01x, A) by 
means of the relations Eø

, °1 = 	, the kronecker delta, where [. .1 is the bilinear 
concomitant defined for vectors al  = (a lp  azr  ) T  , 	I, 2 by 

	

ail ai2 	a21 a22 Ia i  , 	= 
1 	a 12 	a21 	(2 221 k 

For the problem of the interval 10,4 I) > 0 arbitrary, there occurs in the explicit 
expression for the Green's matrix G(b,x,y, A) a symmetrix matrix (1,(A)), depending 
only on A,b and the coefficients in the boundary conditions at x =2 b, which tends to 
(rn,(A)) as b tends to infinity. The matrix (m,(A)) plays a vital role in the problem of the 
interval [0, co) (see Chakravarty l  for details; a regular eigenvalue problem is considered 
here for the interval [0, b) and the problem of the singular interval [0, co) is solved by 
making b tend to infinity through a suitable sequence.) 

If Anb is a simple pole of /„(A), with residue 	the normalized eigenvector is given by 

2 

I/4(b,X) 	I 
rw• 

(0Ix , Anb ) (1.3) 
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where Ri2  = Ri i  = R ii  R 22 . 

Further. when R 11  R22 — Ri2 > 0, there are two normalized linearly independent 
eigenvectors tO,l )  (x),i = 1, 2, corresponding to an eigenvalue A nh . such that 

q (t) () = R 	(R I  cti l  (01x, Ant, ) R12 4)2(01X, Awl )) 

0,2)  (x) = 	R it= ( R 1 1 R22 	 4)2 (Oks Antt) 	 (1.4) 

(compare Tiwari"). 

Let p(b.t) = (p,(b I)) he a matrix such that d p,(b, 	= R r, . Then (dp,(b,u)) is 
either positive definite or positive semi-definite. 

Denote by L p2 (— cc, oc) the Hilbert space of matrices h(x), square integrable over 

% 
— 0: < x < cc with weight d p(u) (lie j_ 	h T  (x) d p h (x) < cc). Then following 

Titchmarsh4  closely, by making b tend to infinity through a suitable sequence, Tiwari" 
shows that 

(i) u) = (p,(b, u)) tends uniformly to p(u) 	(p„(u)), u real, where 
dp 	(dp,(u)) is either positive definite in the sense that the corresponding quadratic 
form is positive definite or up is positive semi-definite in the sense that the matrix dp is 
singular and all its principal minors are non-negative. 

(ii) p(u) is given by 

1 
p(u) = (p„(u)) = 	lirn 	I  (— 	+iv)) dpr, A  

IT 	sP•O' 0 	Jo 

p(u) is normalized in the sense that p(0) = 0. 

(iii) if f E L2 [O. 61, p(u) generates an isometric mapping of L210, M on to L p2  (— 	cc) by 

means of the formulae 

X 

E(u,f) 	fly) = I f7  (x) 41)(01x ,u) dx 
J o 

f(x) = 	E T  (u) dp(u) 6(01x, u) 
...0„ 

(1.5) 

(x,u) 
where 4)(01x, u) = 4)(x, u) = (t) = v 	u)  

u 2  (x, u)\ 
v2 (x u) 

• 
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a matrix whose jth column is the vector ti)1 (01x,u), u real. The integrals are convergent in 

the metrics L 2 [0„b] and L(– x oc) respectively. 

The Parseval relation is 

h 

if il 2  = fII  111 2  dr = —1  f 	T ( 4 f) Mu) 
IT - -= 

and for two vectors fg, 

h 	 I  

Jo 	

%. 	, 
(fig) dx = — 	1.,

7
= Tr f 	(al if) dp(u) E(u,g) 

- 1.„ 

.‘ 
E(A, f) = f 
	

f' (x) cb(Olxi A) dx, (A-complex), may he called 
0 

the 

(L6) 

(1.7) 

6-Fourier 

transform of f. 

The matrix p(u) 	(p„(u)), it real, is the spectral matrix with usual properties, 
associated with the system (1.1) with boundary condition (L2) at x = 0. 

We now actually construct the spectral matrix for the Fourier system by first 
constructing the same for the regular eigenvalue problem for the interval [0, bi and then 
for the singular interval 10, x) by making b tend to infinity through a suitable sequence. 

By using condition (1.2a) it can be easily verified that for the Fourier system over the 
interval 10, b], associated with an eigenvalue Arib  = n2 72 /19 2 , there are two linearly 

	

independent normalized eigenvectors (2/70z 	L2. The explicit representa- 
tion of iii„Fi (x) is 

(x) 	aa  cos ax rib ® ail  sin tix rib \ 
(1.8) 

apt cos 11X 7r1h C) ai l sin nx rib 

(2/7r)4  0(x), j = 1, 2, being two linearly independent sequences of normalized 
eigenvectors, form a basis of the space of eigenvectors. An element' 

_ 
7T• (tlinF2(x )— 414.1(x ) ) (1.9) 

may be chosen as a normalized eigenvector corresponding to the eigenvalue A„FI, 
la n2  v2/132  for the Fourier system under consideration (compare Acharyya 5 ). 

The two linearly independent boundary condition vectors 47(01x, A) at x = 0 for the 
Fourier system are given by 

2 	 1 	1 

a 12  cos A 2 .r –aji /A2 sin Ax 
Or (01x, 	A) = 	 , 	1,2. 	 (1.10) 

a-4  cos Ax (.1-A2 sin Azx 
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Substituting from (1.4) by (1.8) and (1.10) with  A nFb  = n 2 77.20L2 
IV and observing that the 

resulting equation holds identically in x, we obtain, on slight simplification, 

Ri, = 21ir, 142  = 0 and Rc2= 2hr, where Rt.,. are the residues of 1(A) (the 
equivalent of I ii (A) of the general system) at a simple pole.A„Fb . 

A similar consideration with (1.3), (1.9) and (1.10) leads to 

Rf; = lhr, E2 = 	and Rr, = ihr. 

Put do-,(b, u) = R,F, . Then the matrix o-(b.u) = (ff„(b,u)) has the explicit repre- 
sentation 2hrul, I, 2 x 2 unit matrix or uf7r.i 1  , 1 1  = ( 11 ;) according as the matrix (R„Fs ) 
is positive definite ,r positive semi-definite. 

As before, u(b,u) can be extended to a(u) as b tends to infinity through a suitable 
sequence. u(u) is the spectral matrix for the Fourier system and 

o(u) = 2uhr-I, (dcr(u) positive definite), 

and cr(u) = 	(dulu) positive semi-definite). 

In what follows we assume dp(u), da(u) are both positive definite; the case when they 
are positive semi-definite follows similarly. It may be noted that cr (0 for the Fourier 
system has properties similar to those of p(u) for the general system. 

When u = p. 2 , put p(u) = 13 1 (j1) and assume that p i  (A) is extended to the negative 
half-line as an odd function. Similarly for u t (pt), where irr i 	= cr(u). 

Spectral theory of second-  and higher-order differential equations and of Dirac 
equations is a subject which is being intensively investigated by mathematicians of many 
countries. But the spectral problems for the system 

LY = A MY 	 (A) 

a system consisting of m differential equations each of order n have not received as much 
attention. Again, if the tensor interaction forces are taken into account, the Schrodinger 
equation for a deuteron (in the ground state) leads to the system 

Y"-}-A2 1( = (V(x)+6x -2 P)Y, 0 <x < 00, P = ( o)  ,13 ) 	 (B) 

where V(x) is a herrnitian matrix satisfying certain conditions. 

Our system (1.1) is a special case of (A) (with m = n = 2) but a generalized form of 
(B). We are therefore led to investigate the spectral problems associated with (1.1). In 
the present paper we investigate the asymptotic formulae for the spectral matrix p i  (A) 

for large g. We follow mostly the methods of Levitan 6.7  and Marchenko8  in the 

investigation of the problem. 

2. Some preliminary investigations 

1 	 1 
1ail  sin Ax (:) a1-2  cos A7-x 

, 1 = 1, 2. Let Ci (x, Az) = 	i 	• 	1 
a13  sin Ax C) apt  cos itIx 

(2.1) 
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C(x, A3 ) being the matrix whose jth column is the vector Ci (x, Al), I = 1, 2. Evidently, 

Ci (x, Ai) are the solutions of the Fourier system. 

1 

Let Si  (x, A-1 ) = ,4 	C IX 	dx (2.2) 

S(x, Az) being the matrix whose jth column is the vector Si (x, A2). 
Let A he real, say A = U. 

i 	1 	 3 	 I 
When u < 0, let ei (x, 1u12) = Ci (x,lua) and Zi (x, jul2) = Si (x,/u3), the corres- 

ponding matrices whose jth column vectors are ei (x, 14) and Zi (x, 14) being 

represented respectively by e(x, lull) and Z(x, fuli). 

We prove the following lemma. 

Lemma 2.1. For — co < u s 0, and arbitrary but fixed x, say x = xo , 

e T 	, 114ri) dp(u) e(x o , 	= 0(1). 

It has been established by Ray Patadhi 9  (p. 176) that there exists a matrix M(x, t) such 

that C(x, A2) and Ot(x, A) are connected to each other by 

gx, A2 ) = tgx, A) - 	M(x, t) 4(t, A) di' 	 (2.3) 

where M(x, t) satisfies a set of conditions elaborated on p. 177 of the paper under 
reference. 	t) is finite in the sense that M(x, t) = 0 for z > x and M(x, 0) = 0,x lying 
in an arbitrary but fixed interval. 

Along with (243) we have also the integral equation 

45(x, A) = C(x,Aat) 4- ix 
Jo 

K (x, t) 	AT) dt (2.4) 

where 14x,t) is finite and is such that Ulm (Xj  (x, t), Y 4,0)T=A1x(x,t) where Ai  
K11 K21 

= (ap t  a14) and IC(x, t) = 
K12 Kn 

satisfies inter alia, the Cauchy-type equation 

(12  LI I X2  = U ai2  Q(x)U 	 (2.4a) 
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with initial conditions 

U(x, 01, 0  = f(x) 96  0 a twice differentiable function and 

ati(x, 01911,. 0  = 0 	 (2.5) 
for each j = 1,2. (see Ray Paladhi9, pp. 174-175). 

The solution of (2.4a)-(2.5) by the Riemann method yields 

1 f r+, 
u(x t o = -

2 
((f (x t) +f(x - I)) 	 W (x , t, s) f (s) ds 	 (2.6) 

x-t 

the Riemann matrix function W(x,t,$) satisfying the inequality 

	

+1 	 t 
I W (X, f, 	

fx 	
1Q (0)1 	

r 
exp (- t 	1(2(01 du) 	 (2.7) 

	

x-t 	 x-t 

where by ISI we mean the sum of the moduli of all the elements of the matrix S (see 
Chakravarty and Ray Paladhi l"). 

Since f(x) is continuous in x lying in an arbitrary but finite interval, we can assume 
I/(x -±01 	a(to ), where to  2..P.I is fixed but arbitrary. Hence from (2.7) and (2.6) 

IC(x,t)= 0(1a1)+0 (f t 	(0)1 da) 
	

(2.8) 

where O() for a matrix means that each element of the matrix is O(). Since Mx, 0 also 
satisfies a Cauchy-type equation with initial conditions (like (2.4a) and (2.5)) (see Ray 
Paladhi9, p. rn), we have also the relation 

m (t,$) = 0( 1a1 )+ 0 ( 	1Q (0 1 d cr) . 
0 

(2.9) 

P 	Integrating both the sides of (2.3) with respect to x over the interval (0,x0 ) and 
changing the order of integration on the right hand side, we obtain 

I 	ir 	 f xe  
A -2 45(X° i  A2 ) = 	

( 
I —  • MO,$) ds) 00, A) di 	 ; 71  

CI 	t 	 . 

-to 

= I 	Hocto 0(z, A) dt 
Jo 

xo 
where 110 (x0, =I - 	M (t, s) 	1,2 x 2 unit matrix. 

ii 

(2.10) 
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3 

Now each column vector of A 3: S (X0 t  A 2 ) is the 0-Fourier transform of the corresponding 
column vector of H (x0 ,1) for z < xo , and equal to zero for t aPh  xo . Therefore by the 
Parseval relation (1.6) 

1/77- lbw 	u` I  ST(xo ,u2) dp(u) .5,0,(x(J ,u2) 

Jo 
	( 	Hok ) dr. j. k = 1, 2, 	 (2.11) 

where Hof  (.) and Ho*  (.) are the jth and the kth column vectors of H 0 (.). Since the right 
hand side of (2.11) is obviously finite, it follows that 

1  tt, x  

	

J 	
U S 

	

P 	 I 	 3 

- 1  T  (x0  , u-5 ) dp(u) S (x0  , di) = 0 (l) 

leading to 

f o 
LI' ST  (xo  , u2) dp(u) .5(x o  u2) 

f x . 	ST(x( ,144 ) dp(u) S(x o  u2) = 0 (1) 

where the symbol 4 means that the right hand side matrix majorizes that on 
When u < 0, we obtain from (2.2) by the first mean value theorem of the 

i calculus, Z(x, lut) = ix lure (Ox, 1u12),  0 < 0 <1. 

The lemma then follows from (2.13) and (2.14). 

For an n x n matrix A = (a,), let IlAii = max la,' . 

(2.12) 

(2.13) 

the left. 
integral 

(2.14) 

Then the following proposition holds. 

Proposition A. A necessary and sufficient condition that 	IA dx is absolutely 
convergent (i.e. each element of the matrix integral is absolutely convergent) is that 

11A II  dx is convergent. 
The proof follows with little modification in the proof for the corresponding result for 

the series as given in Mirsky ll  (p. 331). 

Theorem 2.1. Under the conditions of lemma 2.1 
fo 

Ile(x0 ,141)11 2  Ildp(u)II < co, holds. 
_ 

(2.15) 

The theorem follows from lemma 2.1 by using proposition A and noting that dp(u) is 
positive. 
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The theorem generalizes Marchenko's lemma 2.2.1 (see Marchenkos, p. 42). We now 
establish the following lemma which plays a basic role in our further investigations. 

Lemma 2.2. If Q(x) is summable in every finite interval, then there exist continuous 
matrices C, such that 

PA+ I 

(i) sup 	V pi  GO 4 C, uniformly in 	and equivalently 
-cc 

 
<p.< 

(ii) p i (b g) — (b 	4 C. uniformly for h, g a. 0, holds. 
Similar results also hold for the spectral matrix (T I GL). 

As in Levitan6  (p. 212), consider 

g, (a, a) = E -2 (2e r) cos at, 0 s. r 5 2r; 

= 	 t > E 

.r e  
Then 414(Ai = 0 g,(t, a) C(t, Al l ) di 

(2e — z) C(t, Al) cos at dt (2.16) 

When A is real and equal to u, we have for u < 0, 

2r 
110,(u,a)li 	I2E 	ICOS at' 'IC(01141 )11 di (Mirsky ll , p. 343) 

AtiVe (,10)11, 0 < < 2E. 

Therefore, from (2.15) and proposition A, it follows that 

J _7 
	dp(u) 	= OW (2.17) 

uniformly for a and E, which may be small enough. Substituting for C(z, A 1'2 ) in (2.16) by 
(2.3), we obtain on changing the order of integration 

2e 
(Pe  (A, a) = 	(g, (s, a) I c, 	M(t,$) g,(t, a) dr) Cs, A) ds 

0 	 is 

so that each column vector of OF  (A, a) is the 0-Fourier transform of the corresponding 
column vector of 
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12E 
H (s, a , e) 	gr  (s , a) I — 

, 
1 (t s) g, (t , a) dt for s 5. 2E and equal to zero 

for s 	2e. 

Hence by the Parseval theorem and relation (2.17) 

-1 
ac 	(u , a) dp(u) 	(4, a) 
o 

12, 
li r (s.a,e) H(s,a,e) ds 

0 
(2.18) 

uniformly for a. E small enough. 

2t 
Now. f HT (s,a,E))  (s. a., E) ds 

2e 
= 	g(s, a) ds — 2 .1'6  gr  (s a) ( 2t  

	

f 	s) 	g 9 

	

(t 	 a) dt) ds 
Jo 

/2e I 12e 

Jo \ Js  

M (t , s) g, (t , a) di) 

=J1 -212 +J3 , say. 

From definition g (t, a) = 0 (1/ e) uniformly for a and from (2.9) 

Co 
MQ, $)ds= 0(lal 1)+0 (1 id‘  1Q(a)1c1cr) 

On changing the order of integration 

= 0  ( 	
JO 	JO 

E -2  126 	r mo,$)  ds) = o(icro+o a' 1 2.  IQ(Gr)I dO) 
J o 

(2.19) 

24'2e 
Since 	MO, s) g, (t, a) dt = 0 (1a1) + 0 (I 1Q(01 cia) = 0(1), it follows that 

3 

2e 	 2e J3 = 0 ( 
2e 

 dS 	A 1 (t,$) gr f (t,a) chi 	= °dale) + (e 	1(207)1 du) . (2420) 

Hence from (2.18), (2.19) and (2.20) 
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ao 

 

Zr 
C 1/27r 	T (p. 2  , a) dpi  (#A.)  tk 01 2 , a) = 	g, (s, a) ds + 0 ( I a I ) 

0 

2s 

	

+o(\ 
	0501 dcr)+0(1). 	(211) 

0 

.11 Since C(t, Az) cos at = 4 , (C(1, A 2  + 0+ C(t, — a)) and 

1  fir 
AT 	SO, A2) = — C(x, A2) + x A + , where 

= (an al and B = (a 
12 a22 

it follows from (2,16) by integration by parts 
ao  a23 	 a 14  a24  

tif,(A,a) = C-2 (Al-s-a) -2  (2 E A 4- B — C(2E, 11 4- a)) 

+ I E -2 (0—a) -2  (2 EA + B— C(2E, A-2--  a)) = 	(A) 4.412(A), say. 

When A is real, say A = u, we estimate separately J i i (u) and or12(14) by using the explicit 

expressions for the elements of the matrix C(2E, u2 ± a) as obtained from (2.1). Then it 
is easy to deduce that 

(u, a) t• K (sin + 0E144i + 00 2  , K (sin (ui— b)E1(u 4  — NE)2  

where K are different constant matrices. K are non-singular, since the rank of the matrix 
(a11 ) of the coefficients in the boundary condition (1.2) is two. Also b have different 
constant values. (The symbol 	means that the matrix on the left majorizes that on the 
right.) Putting u = 12 and for convenience e = 1 it follows from (221) that 

(sin Afp„) 4  dp i  (b + p,), ,f' (sin Atikt.) 4  dp i  (h— b) 4 C, 

where C is a suitable constant matrix independent of b. 

The lemma therefore follows, since sin pip, a 2/7r for 0 p. -1- v. 

3. Some auxiliary results 

Let F(A2) F(Atf) = 	fT  (x) C (x A 3 ) dx 
Jo 

the C-Fourier transform of the vector f€ 1, 2 [0, co). 

When u — A2, let F(u 112 ) = Fi  GA), if p, >. 0 

= —Fi (t), if p. <04 

(3.1) 
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Consider an arbitrary f EC (0. X) such that f(x) =0 for all x X. Then obviously 

f (x)E L2 [0, Al and hence f(x)F: L2 [0. GO). 

Taking scalar product of (2.3) by fr (x). integrating over [0, co) and then changing the 

order of integration4 we have 

t. 

fT  C(x, A3 ) 	= 
Jo 	 0 

(f(x)—h(x)) 74(x.A) dx 

• 

where h(x) = ,1-2c  M r (x,y) fly) dy. 

Then F(Ai.f) = E(A.f)—E(A.h) = E(Aig), where g =f—h. 

Now Itgji 2  = = lRr 	E T (u,g) dp(u) E(u,g) 
0 

= 1h3w 	FT (uf) dp(u) F(142, f) 	 (3.2) 

by the Parseval relation. 

Therefore from I 11 f112..4112 5.  toil 	+ 

I II/112 - it27T j: 1, Fr(l,f) dpi () F1  (f) 

s 	 F101-*D+11h11 (2 11111+ 	 (3.3) 

which extends Marchenkols 8  result (p. 46) to the present system. 
We establish the following lemmas. 

Lemma 3.1. For an arbitrary fe C I  (0, X) which vanishes for all x a X, 

ao 

urn 1/4w 	(Fi(L+a)- F F I GL—ap T  dp i (p.) (Fi (t+ a)- - Fi (p.—a)) = lif11 2 , 0—• 

if Q(x) satisfies the conditions of lemma 2.2. 

The lemma holds, if we replace p i (ti) by Gri (p.), the spectral matrix for the Fourier 
system. 
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The lemma is proved by an adaptation of the analysis of Marchenko s  (p. 46-48). 

Replace f by f(a , x) = f cos ax, — op < x < 00, for which F1 (14 1 f) and h (x) are 
replaced. respectively, by F i (a,m,f) and h(a,x). Then from (3.3) 

a
HIM 	11/(a.x)11 2 — 1/2/r  
—4 ex) 	 — 

Jim ihr 	Fl (a, /A l f) dm (On (a, la, f) 
a 	 — 

lirn Hh(a,x)11 (21if(a.x)11+Iih(a,x)11)1 	 (A) 
a--00 

By using the explicit form of C(x.p.) and the Riemann Lebesgue lemma in F1  (a. p.,f) it 
follows that 

iim Ft (a , 	= O. 
a—. cs) 

When A S. O. 

F(a.At,f)1 
	

E if 	dx =4 
	

e(x/lAr2511 dx- 

Now f =0 outside (0, X). Then it follows from above by using the Schwarz inequality 

that Ra, ,f)I 2  converges uniformly to zero in each sub-interval and is majorized by 

1611fi1 211e(X, iik1:4 )11 which is integrable over — 00 < A 5 0 with weight Hdp(A)II, by 
theorem 2A. 

Hence 	urn 1 0 
	

F T  (a. A .16)1 2 	(A)f 
a—• 	at  

=1 	ijrn 
a--• .11  — 

FT(a, A l f)I 2  dp(A)11 = O. 	• 

Now h(a,x) = fx IvI T(x,y) fia, y) dy = f x  M T  (x, y) f(y) cos ay dy, which tends 

to zero as a tends to infinity, by the Riemann Lebesgue lemma; M (x, y) is bounded in 
(O,X) when Q(x) satisfies conditions stated in the lemma (see relation (2.9)). 
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cx 
Therefore hal ijh (a, x)Ij 2  = urn 	lh (a , 01 2  du = 0. 

0-**0 	 a -' 
CC 	X 

Also iim 
la 	ao 

I1f(a,x)11 2  = firn 
a —D 10 

1 
If1 2  c0s2  ax dx =-

2 
II 2 , by the Riemann Lebes- 

gue lemma. Hence from (A) 

lirn 
	

Fr(a,f) dp i  (;.L)Fi  (a i p.,f) = 11111 2  
a—. co 

Since Fi  (a, pi,f) 	Fi(g+ a) + FL (p. - a)), the lemma follows from above. 

Lemma 3.2. If Q(x) satisfies the condition of lemma 2.2 and f(x) that of lemma 3.1, then 

liM 	Fr (,L+ a) dp i  (p.) 	= iim 	F t  (.1.. -a) dpi (g) Fi (IA. +a) 
d 	 a—# ay 

= 0, uniformly in it. 

The lemma remains true when (MIL) is replaced by cr i (m). 

Let G(p,,a)= 	F(IA+a)dPi(g) 

Fr(+ a) dpi  (g) fel  (i.t-a)= l i + 12 , say. 
- 	0 

Using the inequality 

(Ma,,x„y,..) 2 	Eap.„;x.,Ea,y,y, if Eax0L x, ap,. = 	is a positive quadratic 
form (with real but not necessarily positive coefficients), (Hardy, et ar 2 , ch. 29, p. 33) 
we obtain 

• 

1 1212  s 	+ a) dih GO F1 (p, + a) 
eci 

F op-a)  dPI (A) 	a). 

By integration by parts 

FI (A.,f) = I 17.  C(, AL) dr = lip, 1 
Jo 	 Jo 

fT dS(x,p) = 0(1/g). 
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Therefore 

f
ev°  Fop.+ 	dih (A) F1(11+ a) 	0 ( c°  Ildigtfil(14. -4-  02 ) 

= 
 0 (

1/(k + a)2 ) by lemma 2.2, where 
k—O 

ildP111 = 	max 	l(P1),5 (1)I 
isr,ss2 

co 

Now E 1/(k a) 2  = 	1/(k + a) 2 	I/(k a)2  
kdio 	 k—N+1 

to 

1/(k a)2  + 	18C2 . 
kiltO 	 k=N+1 

The usual limit technique can now be applied so as to obtain 

FIT- ( ,+ a) dp i  ( 	+ A) F1 	a) = 0. 	 (3_4) 
a—e. 	0  

Similarly lirn FT(A - a) dm (IL) Fi (ist - a) = 0. 

Again 	FT(L -  a) dpi (p) Fi (p, - a) s co. 
0 	

Fr( A - a) dp i  (A -a) 

t 
K ( 1 4- 	142  + 141 = OM 

where K is a constant (compare Levitan 7 , p. 240). 

Similarly jr 	FRA + a) dpi  (A) Fi (p.+a) = 0(1). 
-69 

All the results (3.4)-(3.7) hold uniformly for t. 

Hence Jim Ii  = lirn /2  = O. 
0-.00 

(3.6) 

(3.7) 
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Similarly for 	Fr( - a) dp i (A) Fi ( + a) and for the case when pi t  is replaced 

by O j 4 The lemma therefore follows. 

Put Pt (1) 	= (P(I) = 
(4)11 11)12) where 4) is symmetric, since Pt, al 

(Diz (t)22 

are so. Let 41(p.) he extended to negative g as an odd function. 

Lemma 33. 	If (2(x) satisfies the condition of lemma 2.2, then for the C-Fourier 

transform /71  GO of an arbitrary vector f of lemma 3.1, 

FT Gip - a) (143 (A) 	( - a) = 0, holds uniformly for p, 	0. 

Since F1 (M) is extended to negative u as an odd function, the lemma follows from 
lemmas 31 and 3.2. 

4. Derivation of the asymptotic formulae 

In what follows we shall require the Wiener-Tauberian theorem 13  (pp. 73-74) as 
modified by Levitan 7  (pp. 241-242) i.e. the following theorem. 

Theorem A. Let h(p.), 17 1 (A) be two bounded measurable functions satisfying 

(I) h(A), h / (A) are each O(1//1 2 ) for large values of 1,I4 

(ii) the Fourier transform of h(p,) never vanishes. 
Suppose further that 0(A) is a function satisfying the condition 

A+ 
sup 	VOGL) < 

*e. 
 

<M< 

	

Then lirn 	Ku- a) d0(.4.) = 0 implies iirn I 	h 1 ( - a) dO(p) = 0. 

	

a-4.m 	op 	 a-•20 

(see also Titchmarsh 14 , p. 371, where a different formulation is given.) 

The following theorem is now established. 

Theorem 4.2. If Q(x) satisfies condition of lemma 2.2 and An  > 0, fixed but arbitrary, 
then 

iirn (Pi  (14,0  + a) - Pi (a)) -= 2/07T ,u_o i, where I is the 2 x 2 unit matrix. 42-6*0 
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Since f(x) is arbitrary and rank (aid, a q  coefficients in the boundary condition (1.2), are 
two, it follows from the explicit form of C(x,p) in the definition of F1 (ii)  that the 
components of Fi (i..t.) are linearly independent. Hence if F 1  = (Fi1 ,F12 )T, it follows 
from lemma 33 that 

et, 
lim  

a —• 
(4.1) 

A+ I 
Also F31 F1 = 0(141.2 ), V (DA (A) < 00  , by lemma 2.2. 

Again, the Fourier transform of convolution F 11  * F12 is the product of the Fourier 
transforms of Fil  and F12. The theorem is obtained from Tauberian theorem A by 
closely following the analysis of Levitan 7  (pp. 241-243). 
Finally we establish the following theorem. 

Theorem 4.2. The spectral matrix Pi()  associated with the differential system (1.1) 
and appearing in the inversion formula (1.9) has the asymptotic representation 

= 21ir.1.4.!+c)(A), as AL tends to infinity. 

Here I is the 2 x 2 unit matrix and (2(x) satisfies the condition of lemma 2.2. 

In theorem 4.1 put pi)  = 2 and a = n + 2k — 1; then there exists an integer n > N, such 
that 

Pi (n  +2k + — Pi (n + 2k 1) = (cifir+ ek  

where lEki < El a pre-assigned positive number and k 0 is arbitrary but fixed. 

Putting k = 0, 1, 2, ... ,m (fixed) and summing, we obtain in the usual manner (compare 
Marchenkos, p. 53) 

Jim 11,u p i (g) = 2hr./. 

Hence the theorem. 
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