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Abstract

In the present paper we obtain certain asymptotic formula for the spectral matnix of a sclf-adjoint second-order
differential system. We base our derivation of the formula on a Tauberian theorem due to N. Wiener.
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1. Introduction

Consider the differential system

MU = AU (1.1)

where

, --Dz+p(x) r(x) T
== o) ) = didx = . = “A), A

om=("" " e B )D d/dx and U = U(x.A) = (u(x. ), v(x.A))

. _{plx) rix)
0= 10 yeo)

is a real Cy_,(0,b), (k = 0,1), class matrix summable on [0, b), where b is finite or
infinite; by C,(a. B)-class matrices, we mean matrices which are k times differentiable

with respect to the variable x over (a, ), the kth derivative being continuous in the
interval.

(i11) A 1s a complex parameter.

(iv) The boundary conditions at x = 0 and x = b are respectively
au(0,A)+apu’ (0,A)+a;3v(0,A)+a,,v'(0,1) = 0;
bjyu(b,A)+bu’(b,A)+b3v(b,A)+b;,v'(b,A) = 0; (1.2)
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168 N. K. CHAKRAVARTY

j=1,2. a;.b, are real-valued constants independent of A. satisfying
(i) rank(a,;). rank(b,) =2, i= 1,2, j=1.2,3.4
(1) 4j) Q2+ Q3 Qs = 0, jok = 1,2;by1b32— b2 b3 +b13ba—biaby = 0;

(iii) for vectors a, = (a,1.4;2.4,3.a,3) (a,,a;) = 6. 8. the kronecker delta.

By making b tend 1o infinity we obtain’ a self-adjoint eigenvalue problem associated with
the system (1.1) over the interval [0, o).

The eigenvalue problem associated with the Fourier system corresponding to the
general system (l.1) is obtained by considering the system (l1.1) with
p(x) = g(x) = r(x) = 0 whose solutions satisfy the same boundary conditions at x =0
and x = b. For the treatment of the Fourier system over [0, b] we impose the additional
conditions

b“ﬂ*z'i‘b;;ﬂk.; = (), -b.,'ztl“ +‘b}.¢ﬂk3 = 0, ].k = 1,2 (]23)

involving the constants a;, b; in the boundary conditions at x = 0, x = b.

Let &,(0)x,A) = (4, (0fx.A), vJ,(UIx,A))T. j= 1,2, be two linearly independent
boundary-condition vectors at x = 0 ie. é;(0|x.A) are the solutions of (1.1) and
®,(0(0.A) = (a,:.a,d)r, ¢,(0/0.1) = —'(ﬂ”,ﬂ}.g)r. j=1,2.a, are those which occur
in (1.2).

Consider two other vectors

6, (0{x,A) = (x4 (0]x,A),y,(0]x,A))" solutions of (1.1) connected with ¢,(0|x,A) by
means of the relations [¢,.0,] = 6, , the kronecker delta, where [..] is the bilinear
concomitant defined for vectors a; = (a),.a3)",j = 1,2 by

ay), a)> ) axn

(@) .a;] =

'
a) ail ail ﬂiz

For the problem of the interval [0,b]), b > 0 arbitrary, there occurs in the explicit
expression for the Green's matrix G(b,x,y,A) a symmetrix matrix (/(A)), depending
only on A,b and the coefficients in the boundary conditions at x = b, which tends to
(m.(A)) as b tends to infinity. The matrix (m,,(A)) plays a vital role in the problem of the
interval [0, ©) (see Chakravarty' for details; a regular eigenvalue problem is considered
here for the interval [0, 5] and the problem of the singular interval [0, ®) is solved by
making b tend to infinity through a suitable sequence.)

If Anp 15 a simple pole of /,;(A), with residue R,, , the normalized eigenvector is given by

2
l”n(b*x) e z R§r¢r(0|xt Anb) (13)

rm |



SPECTRAL MATRIX OF A DIFFERENTIAL OPERATOR 169
where R%z - R%l = R, R».

Further. when R,, R;;—R%, > 0, there are two normalized linearly independent

eigenvectors ¢y (x),j = 1.2, corresponding to an eigenvalue A,,. such that
f

WO (x) = R (Ryy &1 (01x. Ap ) + Ry22(01x. A ))

U (x) = = RV (R Rz — RE2)F 62(0x. A, ) (1.4)
(compare Tiwari®?).

Let p(b.1) = (p,,(b.1)) be a matrix such that dp,,(b.u) = R,,. Then (dp,.(b.u)) is
either positive definite or positive semi-definite.

Denote by L2(— =, =) the Hilbert space of matrices h(x), square integrable over

—o < x < o with weight dp(u) (i.e. j' h'(x)dp h(x) < =). Then following

Tiichmarsh® closely. by making b tend to infinity through a suitable sequence, Tiwari®"
shows that

(i) p(b.u) = (ps(b.u)) tends uniformly to p(u) = (p,(«)), wu real, where
dp = (dp,(u)) is either positive definite in the sense that the corresponding quadratic
form is positive definite or dp is positive semi-definite in the sense that the matrix dp is
singular and all its principal minors are non-negative.

(i1) p(u) i1s given by

& '

p(u) = (p,s(u)) = —l— Iim I (—imm, (u+iv))du, A= p+iv,
T v=0 Jg

p(u) is normalized in the sense that p(0) = 0.

(iii) if f € L,[0,b], p(u) generates an isometric mapping of L, [0.b]onto L2(~ =, =) by
means of the formulae

E(u.f) = E(u) = [ " FT(x) $(0lx.u) dx

flx) = r ET(u) dp(u) &(0]x.u) (1.5)

wy(x,u) uylx, u)) ‘

1I”I(x*“) vz(x,u)

where ¢(0|x.u) = ¢(x,u) = ¢ = (
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a matrix whose jth column is the vector &, (0|x, 1), u real. The integrals are convergent in
the metrics L,[0,b] and L;(— %, =) respectively.

The Parseval relation 1s

i = f TR = - J ET(u.f) dp(u) Eu.f) LLB)

AL B
and for two vectors f.g.

Ih (f.g) dx = }; Jt ET(u Yy dp{u) E(u.g) (1.7)
{ f o~

)

EfA.f)=It fT(x) d(0lx.A) dx. (A-complex). may be called the o-Fourier

transform of f.

The matrix p(u) = (p,,(u)), w rcal, is the spectral matrix with usual properties,
associated with the system (1.1) with boundary condition (1.2) at x = 0.

We now actually construct the spectral matrix for the Fourier system by first
constructing the same for the regular eigenvalue problem for the interval [0, b] and then
for the singular interval [0, =) by making b tend to infinity through a suitable sequence.

By using condition (1.2a) it can be easily verified that for the Fourier system over the
interval [0.b], associated with an eigenvalue Aj, = n°7°/b°, there are two linearly

independent normalized eigenvectors (Zfr-n-)’% Y (x).j = 1.2. The explicit representa-
tion of dlﬁ,(.r) is

oE (x) = ( (1.8)

a;; cos nx /b @ g, sin nx ﬂ/b)
a,s cos nx wh @ ap sin nx wlh

(2/7)? w,‘:,(x). j = 1,2, being two lincarly independent sequences of normalized
eigenvectors, form a basis of the space of eigenvectors. An element’

7% (g F(x) — oL (x) (1.9)

may be chosen as a normalized eigenvector corresponding to the eigenvalue Af,
= »° 7w?/b* for the Fourier system under consideration (compare Acharyya®).

The two linearly independent boundary condition vectors cbf(le,A) at x = 0 for the
Fourier system are given by

1 ] 1
ais COS ATx —a; /AT sin AZx\ |
’ : =12 (1.10)

1 Lo ol
djg COS A2X —d;3/A2 sin AT x

bF(0]x,A) = (
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Substituting from (1.4) by (1.8) and (1.10) with A7, = n*7?/b? and observing that the
resulting equation holds identically in x, we obtain, on slight simplification,

R.f, = 2/m, R{; =0 and R} = 2w, where Rf are the residues of I5(A) (the
equivalent of [;(A) of the general system) at a simple pole-A),.

A similar consideration with (1.3). (1.9) and (1.10) leads to
RY, = l/m, RS = Uz and R, = 1/

Put do(b.u) = RL,. Then the matrix o(b.u) = {o,,(b,u)) has the explicit repre-
sentation 2/mr-ul, J, 2 X 2 unit matrix or w/m-Iy,I; = (} }) according as the matrix (R5)
is positive definite .or positive semi-definite.

As before, o(b,u) can be extended to o(u) as b tends to infinity through a suitable
sequence. o(u) is the spectral matrix for the Fourier system and

o(u) = 2u/mI. (do(u) positive definite), (1.11)
and o(u) = u/m1I,, (do(u) positive semi-definite). (1.12)

In what follows we assume dp(u). da(u) are both positive definite; the case when they
are positive semi-definite follows similarly. It may be noted that o(u) for the Founer
system has properties similar to those of p(u) for the general system.

When u = p?, put p(u) = p,(u) and assume that p, (u) is extended to the negative
half-line as an odd function. Similarly for o,(u), where o,(n) = o(u).

Spectral theory of second- and higher-order differential equations and of Dirac
equations is a subject which is being intensively investigated by mathematicitans of many
countries. But the spectral problems for the system

LY = A MY (A)

a system consisting of m differential equations each of order n have not received as much

attention. Again, if the tensor interaction forces are taken into account, the Schrodinger
equation for a deuteron (in the ground state) leads to the system

Y"+ XY = (V(x)+6x~2P)Y,0<x<®, P=(3 g) (B)
where V(x) is a hermitian matrix satisfying cettain conditions.

Our system (1.1) is a special case of (A) (with m = n = 2) but a generalized form of
(B). We are therefore led to investigate the spectral problems associated with (1.1). In
the present paper we investigate the asymptotic formulae for the spectral matrix p; (1)
for large p. We follow mostly the methods of Levitan®’ and Marchenko® in the

investigation of the problem.

2. Some preliminary investigations

e ik 1
Lot Cj(x,.&il) _ [ap sin AZx @ ajz cos A*x =12 (2.1)

3 ' 1
a3 sin A2x @) ;4 €OS A?X
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| T n 5 .
C(.r,X-‘i-') being the matrix whose jth column is the vector C;(x.A%).j = 1,2. Evidently,

B! . o
C;(x,A?) are the solutions of the Fourier system.

|

Let $,(x,al) = Al I C,(x. AT) dx (2.2)

)

|
S (x, )L"-l") being the matrix whose jth column is the vector §,(x,A?).
Let A be real, say A = u.

1 . !
When u < (1, let e, (x, [ul'!l) = C,(x,iu’-'l) and Z,(x, |u?) = §,(x,iu?), the corres-
| 3 :
ponding matrices whose jth column vectors are e (x, lul’!‘) and Z,(x, |u?) being
1 1
represented respectively by e(x, {uf?) and Z(x, |ul?).

We prove the following lemma.

Lemma 2.1. For —® <y =0, and arbitrary but fixed x, say x = xg,

urzl) = 0(1).

j” e (xo. |ult) dp(u) e(xo.

It has been established by Ray Paladhi’ (p. 176) that there exists a matrix M (x, ¢) such

that C(x,A?) and ¢(x,A) are connected to each other by

Clx,AY) = d(x, 1) - f M(x.1) (t.A) dr (2.3)

0

where M(x,t) satisfies a set of conditions elaborated on p. 177 of the paper under
reference. M (x, ) is finite in the sense that M (x,f) = Ofort > xand M(x,0) = 0, x lying
in an arbitrary but fixed interval.

Along with (2.3) we have also the integral equation

F 4

&(x,A) = C(x, A1) + I K (x,1) C{t,A%) ds (2.4)

0

where K(x,t) is finite and is such that Us (X, (x,f), Y; (x,1))"=A;K(x,t) where A,
Ku Kn

= ? d X 3 =
(a2, @) and K(x, ) = (1 02

) satisfies inter alia, the Cauchy-type equation

FUlox> = FUla*+ Q(x)U - (2.4a)
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with initial conditions

U(x,t)];m0 = f(x) # 0 a twice differentiable function and

U (x,1)/0t]ymo = 0 (2.5)
for each j = 1,2. (see Ray Paladhi’, pp. 174-175).
The solution of (2.4a)-(2.5) by the Riemann method yields

UG, = 5t +fa=+ 3 [T Wi fo) 6 2.6)

x—1i
the Riemann matrix function W(x,t,s) satisfying the inequality

lr
2

X+t

|W(x,t,5)| S;_ J |Q(a)| do EXP( JH' |Q(a)] dr:.r) (2.7)

x—-t x=1t

where by |§S| we mean the sum of the moduli of all the elements of the matrix § (see
Chakravarty and Ray Paladhi'®).

Since f(x) is continuous in x lying in an arbitrary but finite interval, we can assume
If(xx0)| = a(sy). where 15 = t is fixed but arbitrary. Hence from (2.7) and (2.6)

!

K(x.1) = O(la])+ 0 ([ 10(0)| da) (2.8)

0
where O(.) for a matrix means that each element of the matrix is O(.). Since M (x, 1) also

satisfies a Cauchy-type equation with initial conditions (like (2.4a) and (2.5)) (see Ray
Paladhi’, p. 177), we have also the relation

M(t,s) = O(lal)+O ( L 10(o)| dcr) . (2.9)

Integrating both the sides of (2.3) with respect to x over the int_erval (0,x0) and
changing the order of integration on the right hand side, we obtain

A28 (0, A%) = r' (1- F‘ M(s,3) ds) $(1,A) dt -
0 ! :
B Jxﬂ Ho(xo,7) &(2,A) dt (2.10)
0

where Hy(xg,f) = I—ro M(t,s) ds, 1,2 X2 unit matnx.

f
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] 1. . N
Now each column vector of A~ 2S5 (xg. A?) is the ¢-Fourier transform of the corresponding
column vector of H(x,.!) for t < x,, and equal to zero for r = xq. Therefore by the
Parseval relation (1.6)

Umnm J u-! Sf(xn.tl'%_) dp(u) Si(xo.w*)

- r“ (Mo . Ho) i, jk = 1,2, (2.11)

0

where H,,(.) and Hy (.) are the jth and the kth column vectors of Hy(.). Since the right
hand side of (2.11) is obviously finite, it follows that

r =" ST (xa. i) dp(u) S(xo. i) = O(1) (2.12)

leading to

[ Y ey det Steg

- o0

< Jx T ST(xu,u%) dp(u) S(xu.u%) = 0(1) (2.13)

where the symbol <€ means that the right hand side matrix majorizes that on the left.
When u < 0, we obtain from (2.2) by the first mean value theorem of the integral

calculus, Z(x, [ulil) = ix|u|"e (Ex,lul%_). 0< 8 <1, (2.14)
The lemma then follows from (2.13) and (2.14).

For an nXn matrix A = (a,), let ||A[l = max |a,.
l=rs=n

Then the following proposition holds.

Proposition A. A necessary and sufficient condition that [A dx is absolutely
convergent (i.e. each element of the matrix integral is absolutely convergent) is that

[ llA|] dx is convergent.

The proof follows with little modification in the proof for the corresponding result for
the series as given in Mirsky'!' (p. 331).

Theorem 2.1. Under the conditions of lemma 2.1
0 1 _
[ lleeo, |uf) |12 [|dp(u}]| < =, holds. (2.15)

The theorem follows from lemma 2.1 by using proposition A and noting that dp(u) is
positive.
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The theorem generalizes Marchenko's lemma 2.2.1 (see Marchenko®, p. 42). We now
establish the following lemma which plays a basic role in our further investigations.

Lemma 2.2. If Q(x) is summable in every finite interval, then there exist continuous
matrices C, such that

TRl
(i) sup V pi(p) < C, uniformly in u; and equivalently

(1) pr(b+p)—py(b—pu) < C, uniformly for b, u = 0, holds.
Similar results also hold for the spectral matrix o ().

As in Levitan® (p. 212). consider
g (t.a) = e"*(2e—1t)cosat. 0 =1 =< 2¢;

= () . > 2E.

Then ¢, (A.a)

J ¥ e(t.a) Cli ) dr

0

i

. [2¢
£° I (2e—1) C(t. )ﬁl) cos at dt (2.16)

0

When A is real and equal to u, we have for u <0,

2¢ - ,
|0, (u,a)li = 2 J 12e — i |cos at] ||C(e, flul?)|| dr (Mirsky'!, p. 343)
0
< 4lle (& luP)]l, 0< <2
Therefore, from (2.15) and proposition A, it follows that

j" o7 (u.a) dp(u) ¥ (u.a) = O(1) (2.17)

uniformly for @ and &, which may be small enough. Substituting for C(t,A'?)in (2.16) by
(2.3), we obtain on changing the order of integration

(g-(s.a)] =) Jh M(t,s) g, (t,a) di) P(s,A) ds

3

2

b (A.a) =[

()

so that each column vector of ¢, (A, a) is the ¢-Fourier transform of the corresponding
column vector of
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H(s,a,e) =g (s,a)l- [h M(r.s) g.(t.a) dt for s =2¢ and equal to zero

L |

for s = 2¢.

Hence by the Parseval theorem and relation (2.17)

7t |7 W ) dotu) v 0

0

- r' H¥ 50,6 B8, 8 SF O (2.18)

0

uniformly for a.&. small enough.

2
Now,I " H T By Hila,e) d

0

2 2¢ 2
= IJ gf(s,a)ds—ZJ g.(s.a) (J M(t,s) g.(¢,a) df)ds

0 0 5

2¢ 2e 2
+ J (I M(t,s) g (1,a) dt)) ds

} 0 5

=J,—2J,+J;, say.
From definition g, (r.a) = O(1/¢) uniformly for a and from (2.9)

r M(t,s) ds = O(la]t)+0(r I; 10 (o) da')

0

On changing the order of integration

b= O (e"z r' dr J M(1,s) d.s) = 0(la])+0 ( JZ 10(0)] dcr) (2.19)

0 0

5

_ { [2¢
13=0(f ds

0

_ 2 2
Since I M(t,5) g (t.a) dt = O(|a|)+ O ( I 10(0)| dcr) = O(1), it follows that
; .

5

FEM(‘J) g (¢, a) dr[ )= 0(Iale)+0(s r’ 10(a)] da).(z.zt))
0

Hence from (2.18), (2.19) and (2.20)
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12 r o7 (42.a) dpy () W, (p2.0) = r' g (5.a) ds+0(Jal)

0

+0(F' | Q (o) da')+0(l). (2.21)

0

Since C(1, X‘-’t) cos ar = %(C(:, A.%+a)+ C(t, Ail—a)) and

A'-zl I S(I,A%) dr = —C(x.A'!l)+xA+B, where
0

a N
A =( u az,) and B = (a,; azz) . it follows from (2.16) by integration by parts
a3 a Q14 Q2a,

be(A.a) = L e 2(AT+a) "2 (2e A + B— C(2e. A" +a))
+3 e"2(AT—a)"2 (2e A+ B— C(2¢, A1 — a)) = J;;(A)+J,2(A), say.
When A is real, say A = u, we estimate separately J,, (4) and J;;(«) by using the explicit

expressions for the elements of the matrix C(2e, Wt + a) as obtained from (2.1). Then it
Is easy to deduce that

&, (i, a) > K(sin (2 + b)e/(uT + b)e)?, K (sin (12— b)e/ (i — b)e)?

where K are different constant matrices. K are non-singular, since the rank of the matrix
(a;;) of the coefficients in the boundary condition (1.2) is two. Also & have different
constant values. (The symbol > means that the matrix on the left majorizes that on the
right.) Putting u = u? and for convenience £ = 1, it follows from (2.21) that

= <

Jm (sin p/p)* dpy (b + ), J (sin u/w)* dp, (- b) < C,

-

where C is a suitable constant matrix independent of b.

The lemma therefore follows, since sin u/p 2 2/7 for 0 s u < 3 .

3. Some auxiliary results

Let F(A) = F(AL,f) = I " fT(x) C(x.A%) dx (3.1)

Q0

the C-Fourier transform of the vector fe L,[0, =).
When u = u?, let F(u'?) = Fi(p), if u =0
= "‘F|(ﬂ-).-, if ;i < 0.
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Consider an arbitrary f £ C'(0. X) such that f(x) = 0 for all x = X. Then obviously
f(x)e L5[0, X] and hence f(x)e L. [0. ).

Taking scalar product of (2.3) by fT(x). integrating over [0, %) and then changing the
order of integration. we have

Jm i C(x.zl%) dx = rn (f(x)=h(x)) d(x.A) dx

] 0

where h(x) = rc MT(x.v) f(y) dv.

Then F(A%'.f) = E(A.f)—E(A.h) = E(A.g), where g = f—h.

E

Now ngu-'*=[ 1% g = 1 [ ET(u.g) dp(u) E(u.g)

Jo

/= J'x FT(u_‘—l‘,f) dp (1) F(H%,f) (3.2)

by the Parseval relation.

Therefore from | ||f|I*=lgll* | = [IAll 2{If1] +]IAl])

| AR - 1727 J FTl. ) do () Felan ) l

-

< Um j OFT(f) doy () P )+ A1 I+ 1AL (3.3)

which extends Marchenko's® result (p. 46) to the present system.
We establish the following lemmas.

Lemma 3.1. For an arbitrary fe C'(0, X) which vanishes for all x = X.

lim “‘“"J (Fi(p+a)+Fi(u—a))7 dp, (n) (Fy(m+a)+Fy(u—a)) = IfII%

oG
a— ——

if Q(x) satisfies the conditions of lemma 2.2.

Thf lemma holds, if we replace p,(u) by o,(u), the spectral matrix for the Fourier
system.
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The lemma is proved by an adaptation of the analysis of Marchenko® (p. 46—48).

Replace f by f(a.x) = fcosax, —» <x < », for which F,(u.f) and h(x) are
replaced. respectively, by Fi(a,u.f) and h(a.x). Then from (3.3)

If@.0lF=v2m [~ FT(@.u.do, (wFi (@11

-

Ihm

a—e o

0
= lim Unm J' Fi(a.p.f) dpy () F (a. pn.f)

a—s %

+ lim [lh(a.0)|| 2]lf(a. 0|+l h(a,x)]]). (A)

By using the explicit form of C(x. u) and the Riemann Lebesgue lemma in F,(a. u, f) it
foilows that

lim Fi(a.p.f) = 0.

g —s

When A = 0,

Faapi=e [T ifIceindlide=a " Al ewhbl d

0 (
Now f = 0 outside (0, X). Then it follows from above by using the Schwarz inequality

l ] " v -
that F(a, A, f)|° converges uniformly to zero in each sub-interval and is majorized by

16]1£1] %lle( X, iAF‘l‘)il which is integrable over —® < A = 0 with weight ||dp(A)|[, by
theorem 2.1.

Hence lim ju LFT(a. A, 0 l|dp(A)]

""F im  |FT(a.A.f)P [ldp@)l| = 0.  °

—p @—

X
Now h(a,x) = J

X

X
MT(x,y) f(a,y) dy = J M7 (x,y) f(y) cos ay dy, which tends

X

to zero as a tends to infinity, by the Riemann Lebesgue lemma; M7 (x, y) is bounded in
(0, X) when Q(x) satisfies conditions stated in the lemma (see relation (2.9)).
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X .
Therefore lim [[h(a,x)||? = lim J Ih(a. u)]? du = 0.

*® o 2 1 . : | |
Also lim [|f(a.x)||* = lim j |f|? cos® ax dx = 3 lIf||>. by the Riemann Lebes-

0

g —e & a—e %

gue lemma. Hence from (A)

b T J T Flaop.f) doy(w) Fu(a,pf) = |IfIIP

a— 50

Since Fi(a.u.f) = %(F,(p+a)+Fl(#—a)). the lemma follows from above.
Lemma 3.2. If Q(x) satisfies the condition of lemma 2.2 and f(x) that of lemma 3.1, then

lim r F{ (p+a)dp, () Fi(p—a) = lim r F{ (p—a)dp(p) Fi(p+a)

d—s % {J—» 00

= 0, uniformly in u.
The lemma remains true when p,(u) is replaced by o ().

Lt Gl i, 80) = r FT(u+a) dpy (1) Fy(p—a)

0 x
..:(I +J )FT(#*Pﬂ)dpz(;&)F.(#-ﬂ)*‘-fa“zv say.

0

Using the inequality

(zal“"_rﬂly")z = za}w"rﬂxr Ea,uuyp.ypv if Eap#xpxpu ap,y- — ﬁ'p”_ IS a pOSitiVE quadratic
form (with real but not necessarily positive coefficients), (Hardy, et al'?, ch. 29, p. 33)
we obtain

L} < E Fi(n+a)dp,(p) Fy(2+a) r F{(r—a) dp,(p) Fi{pn—a).
0

By integration by parts

Fi(p.f) = j” 17 Cla ) dx = W j " fTdS(x, 1) = O(1/p)

0 0
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Therefore

r FT(u+a) dpy () Fy(p+a) = o(r ol (u+ a1

0 0
[= ]

= 0( Sk +a)2), by Jemma. 2.9 where

k=0
lldesdl = max  |(p)) (w)l
1%Sr.s<2
-} N 0
Now Y W(k+a)= 3 Uk+a’+ ¥  Uk+a)?
k=0 k=0 kwmN+1

N 20
< Y WUk+a)+ > UK.
k ={(} k=N+1

The usual limit technique can now be applied so as to obtain

lim r FT (s +a) dp, () Fi(z+a) = 0

a— = 0

0

84— 0

Again r £ o) dp ) Filp—d) = J" E Ty s, By ye—a)
0 -

- ] o
< K( 1+ > UK+ Et:lsz) = 0(1)

where K is a constant (compare Levitan’, p. 240).
0
Similarly I FT(u+a) dp, () Fy(u+a) = OQ1).

All the resuilts (3.4)-(3.7) hold uniformly for u.

Hence Iim [, = lim 5L =0.

O —» 00 &3 —p 20
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(3.4)

(3.5)

(3.6)

(3.7)
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Similarly for Jt Fl(u—a)dp(pn) Fi(n+a) and for the case when p, is replaced

by ;. The lemma therefore follows.

q}ll 'Q)IZ

Put pi(p)—oy () = P(p) = (¢,~. lb-,z) ~ where @ is symmetric, since py,0o

are so. Let ®(u) be extended to negative p as an odd function.

Lemma 3.3. If Q(x) satisfies the condition of lemma 2.2, then for the C-Fourier
transform F,(p) of an arbitrary vector f of lemma 3.1,

lim I: Fl(u—a) dd(p) Fi(p—a) = 0, holds uniformly for p = 0.

33— W

Since F,(u) is extended to negative u as an odd function, the lemma follows from
lemmas 3.1 and 3.2.

4. Derivation of the asymptotic formulae

In what follows we shall require the Wiener-Tauberian theorem'’ (pp. 73-74) as
modified by Levitan’ (pp. 241-242) i.e. the following theorem.

Theorem A. Let h{(u), h,(p) be two bounded measurable functions satisfying
(i) A(p), hy(p) are each O(1/p?) for large values of u;

(11) the Fourier transform of A(u) never vanishes.
Suppose further that 6(u) is a function satisfying the condition

n+

sup  Vé(p) <=,

Then lim J h(u—a) do(p) = 0 implies lim rﬂ hy(pnu—a) dé(pn) = 0.

il — 0 e

(see also Titchmarsh'®, p. 371, where a different formulation is given.)

The following theorem is now established.

'ﬂ‘jheorem 4.2.  1f Q(x) satisfies condition of lemma 2.2 and o > 0, fixed but arbitrary,
then

lim (o (po+a)~p,(a)) = 2/m. u,I, where I is the 2 X2 unit matrix.

£ = D
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Since _f(x) is arbitrary and rank (a;). a, coefficients in the boundary condition (1.2), are
two, it follows from the explicit form of C (x,u) in the definition of F;(u) that the

components of Fy(u) are linearly independent. Hence if F, = (Fy1, Fip)T, it follows
from lemma 3.3 that

- J Fy(u—a) Fy(u—a) dby(p) = 0, j.k = 1.2. (4.1)

a—s = —

utl

Also ‘FUF”- = 0(1!’12). V q’;h(#) < 0, by lemma 2.2.
B

Again, the Fourier transform of convolution Fy; % F,, is the product of the Fourier
transforms of F); and Fy;. The thcorem is obtained from Tauberian theorem A by
closely following the analysis of Levitan’ (pp. 241-243).

Finally we establish the following theorem.

Theorem 4.2. The spectral matrix p, (u) associated with the differential system (1.1)

and appearing in the inversion formula (1.9) has the asymptotic representation
pm(p) = 2m. ul+o(p), as p tends to infinity.

Here [ is the 2x2 unit matrix and Q(x) satisfies the condition of lemma 2.2.

In theorem 4.1 put py = 2and a = n+ 2k — 1; then there exists an integer n > N, such
that

pn+2k+1)—-p(n+2k—1) = (4fw+sk){.

where |g,| < £, a pre-assigned positive number and k = 0 is arbitrary but fixed.

Putting k = 0,1,2,...,m(fixed) and summing, we obtain in the usual manner (compare
Marchenko®, p. 53)

lim Vup py(p) = 2/mw. 1

-

Hence the theorem.
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