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Abstract 

The concept of functions of bounded kth variation has been extended to an infinite range of intervals leading to 
the definition of the RS: integral on an infinite segment that introduces a Laplace-type integral. A convergence 
formula along with some other properties has been presented. 
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1. introduction 

Russell' defines an integral, the RS k  integral, which is an extension of the Riemann- 
Stieltjes integral. Further properties of this integral including the convergence formulae 
are obtained in Das and Lahiri 2  and Das and Das3 . Bhattacharyya and Das' extend this 
notion so as to define a Lebesgue-type integral, the LS k  integral. A Perron-type 
generalization of such integrals and its approximate and proximal extensions are 
obtained in Das and Das5 . The purpose of the present paper is to obtain a 
Laplace-Stieltjes-type integral, the LapS k  integral, induced by the RS: integral. To this 
end. it is desirable to set up the notions and results of BVk  functions', k-convex 
functions7  and of the RS: integrals' 12  on an infinite segment. The concepts should also be 
extended so as to accommodate complex-valued functions. In the next section we obtain 
certain properties of the RS: integral which are useful in sequel. Finally, in the last 
section we obtain the definition of our proposed integral, the LapS k  integral. which is an 
extension of the Laplace-Stieltjes integral s . A convergence formula for such an integral is 
an immediate consequence of its reduction to the Laplace-Stieltjes integral and in turn to 
the Laplace integral. 

Let a and b be two real numbers such that a < h anti iet k be a positive integer greater 
than 1. For notations and definitions we refer to Russell". Natanson 9  and Das and 
Lahiii i°. However, we quote two basic definitions needed in this context. 

Definition I.e. The total kth variation of g on [a, bj is the number 

n 

Vidg; a, bl = sup  
17 	11 03 0 
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where the supremum is taken over all IT: a xo  < X I  < 	< x„ b sub-division of 

la, bj. If tik [g;a,b1< +co, then g is said to be of bounded kth variation, BVk  , on [a, b] 

and we write g E &Vi c  fa. bl. The symbol 

(2k-1(g; aoi al — l ak -1)  

k—I 	 ecti) V 
am() fi 

1 -19, 1 wi 

stands for the (k - 
I )th divided difference of g. 

Definition 1.2.' The RS: integral of f with respect to g on ía, b), 

rb 	 g(x) 

J ilt 
 f(x) dx1-1 

is the real number I. if it exists uniquely, and if for each r > 0 there is a real number B(E) 
such that when x, S. f, s x,. 1  , I = 0, . n - k 

1 	

p1—k 

Al'  - 1 f(fi) [Qk- I Le _ -I xi+1 i • • • 11-i+A )— Qk—I(g;Xis • • • 	 )] < %Xi+14-1 	E 
i=1:1 

whenever 'lir ! ! < S(E). If the integral exists we write (f,g)E R5 k [a,b1. 

It is observed' that if f is continuous and g is BVk  on [a, bl. then (f,g) E RS,Z[a,bi. 

2. BVI, functions and kV: integrals on infinite segments 

Definition 2.1, Let g be a function defined for all x, - co < x < 0o. if ilk [r,a,bil 
is finite for all a < b, and if sup Vk[g;a,blis finite, then g is said to be of bounded 

a<b 
kth variation. BVk  , on (- cc, cc), and the number 

= sup 
Cr 

 

<1i 

is called the total kth variation of g on (- 	ce). 

Several properties of the function g of BVk  on (- os, co) can be obtained analogous to 
those obtained by Russell and Natanson 9. 

Definition 2.2. Let f be a bounded continuous function and let g be BVi, on (- cc 9 w). We define 

d k  g(x) 	 b 	d'ex) si 	f(x) 	= Ern 	*  
- 	

f(x) 	 
00 	dx*-I 	a -4- el* 	 dxk-1  .1  a + 
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and if it is finite, then we say (f.g) E RS: ( -co oc). 

Similarly. we define 

or> 	cl k g(x) 	 d k  g(x) 
* 

a 

f(x) ------- and *f 	f (x) 	- 
dx*-1 	 dx k  - 

Results of Sections 2, 3, 6 of Russell", Lemma 2 and Theorem 6 of Das and Lahiri 2  and 
Lemma 3i of Das and Das 3  have obvious extensions for improper integrals. We note 
below the following observation. 

Observation 2d. Das and Das3  (Theorem 3.4) obtain an analogue of Helly's second 
theorem: 

Let I be continuous on Ea, bi and let fgp  I be a sequence of functions which converges 
uniformly to a finite function g or [a, b]. If K is a fixed positive number and 
VA [gp  ; a, bj 	K for all p. then 

f  h  i 	
d k  gp (X) 	 d k  g(x) 

	

lim • 	f ( x) 	 f (x) 	 
p—• d x ic I 	a 	dx k  -1  ac  

We show below that this theorem does not hold for all continuous integrands in 
(– cc, 3e For example, let 

G(x)O if x 
=1k if 0 < x 1 

	

= 	1Y -/  ( it!) 114-,  if x > 1, 
r 411  I 

and let g(x) = G (x p), p = 1, 	Clearly (g1 } converges uniformiji to g 0 in 
(– co, ix). Obviously for each p, p = I , 2, 	 (p) = 0 and 4' )  (p + = k!. 
Then in view of Lemma I of Das and Lahiri 2  V Igp ;p,p+ tJ = k. Further in view of 
Lemma I of Russell and Definition 2.1, 

vkigp; 	pi = VAigr ; p 	, cc) = 0. 

So by an analogue of Theorem 7 of Russell', it follows that gp  is BV k on (– oo  co) for each 
p,p = 1.2, ... , and 

Vk igp ; - co , 001 = lik [gp ; p, p 11 = k, 

Applying an analogue of the Corollary to Theorem 3 of Russell' and Lemma 2 of Das 
and Lahiri2 , we obtain 
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d k gp (X ) 	p+ 	dk g„(x) 
S i 	 .1 	1 	 k 

dx k -1 	 dx k -1  

for each p = 1, 2, . Consequently, 

im 	
d k g (x) 

	

* 	1 — 	P 	94  0= * 	1 adkx_
g( x

i
) 

P 	
d X k I  

This trouble may be overcome, as in Natanson 9, by considering those continuous 

functions f on (— cocr. 0:1) such that lim f(x) = lim f(x) = O. According to Natan- 

son9  (p. 240). we denote this class by C c°  . 

Theorem 2.i. Let f F C.. and let (gp ) be a sequence of functions on (— oc,op) which 
converges uniformly to a finite function g on (— cc , cc). If K is a fixed positive number and 
ifk [gp ; 	cc] 	K for all p, then 

d k gp  (x) 	itsD 	dk g (x) 

	

Um * 	f(x) 	 
dx " 	 dx 

f(x) 
" p --• 

Proof. We omit the proof. The proof can be carried out from that of Theorem 6 (p. 240) 
of Natanson9, applying analogues of the Corollary to Theorem 3 of Russell' and Lemma 
3.1 of Das and Das3 , and Theorem 3.4 of Das and Das3  (in its original form) in 
appropriate steps. 

We now present the definitions of functions of bounded kth variation and RS: 
integrals for complex-valued functions. 

Definition 2.3. (a) If g = g 1 + ig2  , where g i  and g2  are real-valued functions on la. bl, 
then g e BVk [a,b1 if and only if ge e Blik k,bi, i = 1, 2, and 

k [g;a t  b] 	Vic Egi ;a, bl 4- V kig2i a, bi. 

(b) If if = 	if2  and g = g l -i- 42 , where f, and gi  are real-valued functions on [a, bb 
then we define 

g (x) 
* 	

d 
b  f(x) 	= • I 	

d 
A(x) d*gi (1x) 	b 	dkg2(x) f2  (x) 

xk-1 	 xk 	 k  a 	 a 	 Jr 	dx a 

dk g i  (x)
b 	g2  (x) 

	

a

I 12(X) 
X" 	* 	jfi  14) 

d 	 dXki a 

provided all the integrals on the right exist. 

These definitions can be extended on infinite segments. 
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3. Some results on RS: integral 

Russell' presents a reduction formula for the RS: integral. We shall utilise the result to 
reduce an RS: integral to an RS integral introducing a related normalized function of 
bounded variation. For the development of the context we require the definition of ACk  
function of Das and Lahiri l°  and some of its standard properties which we refer to Das 
and Lahiri l°  and Das and Das". We simply make a remark in view of Theorem 9 of 
Russe116  and Definition 1.4 of De Safkar and Das 12 . 

Remark 3.1. If g e Bilk [a,b1, then g(k 	exists and is 1111  on E such that [a, b]- E is 
countable. 

Definition 3d. 11 g 	I 	bl. then define a on [a , bi by 

a(x) = 
	

if x = a 

" (x) - 	(x) 
g".:. -1) (a) if a < x < b 

- 

	

= e ' 1) (0 k 4.k -1)  (a) 	if x = b. 

Clearly, a is BV on ia,b1 and also 

a(a) = 0, 

a(x 	a(x -) 
a(x)=----- 	if a < x < b. 

Hence, a is a normalized function s  of bounded variation on [a, bi. Further, by Remark 
11 

a (x) = g(k  (x) -it-1) (a) 	 (2) 

on E where [a, bj- E is countable. it readily follows that for a x 	b,a(x)-1- it. -1)  (a) 
lies between the infirnum and the supremum of (e. -1) (x), ek-1) (x)). 

Until otherwise stated by a we shall mean the normalized function of bounded 
variation on [a, 1,1 relative to g EBVk [a, 

Theorem 3.1 If f is continuous on [a, bj and g E Bilk ta,b1, then 

dk  g (x) 
(k 1.)! *1 f (x) 	

k-  1 
- = (RS) 	f (x) da (x). 	 (3) 
dx a 	 4 

Proof. By Theorem 2.5 of De Sarkar and Das 12 ,e)  is AC k _ i _, on [a, bj and so, in view 
of Theorems 3.3 and 14 of Das and Das 11 ,g( r)  is the (k - 1 - t) fold Lebesgue integral of 

g(*-1) . Utilising (2), we have for each r = 0, 1, . 	k - 2 
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f l(x) = 	x 	xi  ' : . . xr  e 	 a(t) dt dx t  ... dxk--.2-r + Pr(x —c), 

C 	C 	 C 

where a s r5b and 1),(x 	is a polynomial of degree (k - 2) at the most. By repeated 

applications of Theorem 18 of Russell' (modified for RS: integral), we obtain (3) and 

thus the theorem is proved. 

corollary 3.1. If f is continuous and g r 13V ic ia,b1, then the function 

F(x) = •I fit) (ce g(t)Idt" ) 

is a normalized function of bounded variation on [a, M. 

Proof. By Theorem 3.1. 

F(x) (RS) I
2 

f(t) da(t) 
a 

where a is the normalized 	function of bounded variation on 	[a, bj 	relative to 
ge BV, [a, bl. The proof now follows from Theorem 8b (p. 14) of Widder s. 

Theorem 3.2. If f is continuous in a -5 x < x and if g is BVk  on a xis-R for every 
R > a. then 

(k —1)! * .1 2;1  f(x) --(14g(x) 	I GD  f(x) da(x), 	 (4) 
dx *-  1  a 	 a 

provided the first integral converges. 

Proof. By Theorem 11 

(5) 
dk g(x) 	

f(x) da(x)• (k1)! * 	ft I ‘x' dxk-1 	a " a 

Since each point of (k - 1)th differentiability of g is a point of continuity of a, it follows 
that a has atmost a countable points of discontinuity in a s x < co. Since the integral on 
the left of (4) converges so we may assume the integral as the limit of the integrals on the 
left of (5) as R 	co over the set of points of continuity of a, E (say). We thus have 
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a* 	 d k  g(x) 	 fR 
(k— 1)! * 1 f(x) 	

I 
= iirn 	If(x) da 

a dx k 	 R-44 cc 	4 a 
RrE 

Since the integral on the right of (5) considered as a function of R is normalized, we can 
apply Theorem 8c (p. 14) of Widder s  and obtain for each R > a 

	

ma 	El k  g(x) 	
f fi 

R 
(lc 1)! • 	f(x) 	 = urn 	x) da (x) = 	f(x) da (x). 

dx 	R c30 

	

J o 	 a 	 La 

This completes the proof. 

Theorem 3.3. If f and 4) are continuous on [a, 121 and g e 	bj, and if 

fl(x) = • 	co 
fx 

d k g(t) 

di k-1  

where a x b, ascs b, then 

ft) 
f(x) dp(x) = * b  f(x) 4(x) dk8*-1°)

• (6) 
dxk-1  • a 

Proof. Clearly /3 E BV [a , bi and so (f, p) e RSla, bl. That (f4),g)E 	bi 
follows from Theorem 11 of Russell'. We may therefore consider ir(x 0  , x i  „ 	x,i ) sub- 
division of [a, b] with X 1  E = {x : a x b and e--1) (x )  exists). We write 

n— I 

= 	fix,) 
dk  g(t) 

dik-1  

Then in view of Theorem 1 and corollary to Theorem 3 of Russell', we have 

b 	 CIA  g (x) 	n-1 xi. i 	 d k  g (x) 
. 	an,— * f f(x) (1)(x) 	 

dxh
6 	

ifixi)_f(x)) 4(x).17.. dx 1  
a 	 1•10 	x, 

Consequently, by Lemma 3.1 of Das and Das 3 , we have 
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f b 
f(x) 41)(x ) 

dkxgk  ) d 

n— t 

S max I f (x4 ) — f(x)1 Vk(g.,x,,xj.,.1) 

  

s. MIT  

where M, is the largest of the numbers max If(x i ) f(x)1 I = 0, 1, 	n-i.  

Since f is uniformly continuous on [a, hi it follows that Ni n  tends to zero as the norm of 
it tends to zero. Since cr„ tends to the left integral of (6) as the norm of it-sub-division 
tends to zero, the theorem is proved. 

4. The LapSk  integral 

Let g(t) be a complex-valued function of the real variable t defined on the interval 
0 5. I < X. 	Denote its real 	and imaginary parts by g 1  (r) 	and g2 (1) 	respectively, 
g(t) = g i  (0 4- ig2 (t). Let g e BV k  (0, RI for every R > O. Let s be a complex variable with 
real and imaginary parts U and 7' respectively, s = a+ Ir. It follows from the existence 
theorem of the RS: integral, Theorem 11 of Russeil l , that the integral 

d k  g(t) 

dt k- I 

exists for each positive R and for every complex s. 

Definition 4.1. Consider the improper integral 

ce (I) 
* 	

dt 
e 	

R— 	

clkg 
tim 

 
* 	" 

Ipao 	
(7) 

Ldt 

If the limit exists for a given value of s, we say the integral on the left converges for that 
value of s. If the limit on the right does not exist, the integral on the left diverges. When 
the integral converges it defines a function of s which we denote by f(s). This function 
f (s) is called the k-generalized Laplace-Stieltjes transform of g(t). The function, f(s), will 
also be called the generating function and g(t) will, sometimes, be called the determining 
function. 
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Theorem 4.1. If so  cro + ill, and if 

d g (I) 
sup 	e -sa < 00 	 (8) 

()..‹ it< 31; 	I J i 	 & A.- 

then the integral 

g(t) 
* 	e 

0 

converges for every s for which (7 > Ivo , and 

wn  4:1 1(  g(t) e  
•  	(s— so)e- Ii - s" )' (t) dt 

dt" 	
(9) 

0 	 0 

where 

ir id 

)9(u) = • e 
dg(t) 

dt k- I  

and the integral on the right of (9) converging absolutely. 

Proof. By Theorem 3.3, we have 

R e  

	

-st d k g (0 	R  e - or - sot do (1) 
* 	 d ir k - 1 

Jo 	

= e-(s ."" )1? 	— 	 (I) dt. 

Utilising (8), we obtain, for a > 

u rn e -(5-5,01? p(R) = O. 
R-. °(' 
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Consequently, 

	

f 7& 	dA g(t) 
• e -." — = (s — so ) 	x  e -("'" )1  p(i) di 

dtA -I  

	

0 	 0 

which proves (9). 

Also, 

x  - 

	

e -( (r-  ( 11° )' 	= 
°V) 	M Jo CFO 

for a > cr„, and so the integral on the. right of (9) converges absolutely for o > ao . 
This completes the proof. 

Definition 4.2. The number o.. such that the integral (7) converges for o > a,. and 
diverges for o < a, is called the abscissa of convergence. The line a = o. called the 
axis of convergence. 

If (7) converges for no point we have a, = 	and if (7) converges for cyery point we 
have a, = 

Theorem 4.2. H g e BVO. 11 for every arbitrary R > 0, and if g".:_-1)  (1) = Nen as 
cC tor some real number y then the integral 

dA  g(t) 
• e " 	 

JD dtk-I  

converges for a > y. 

Proof. Clearly git-I) () r BVIO, 1.1 for every R > 0. In fact, for every R > 0 there is 
R 1 , R 1  > R >0 and ge1314[0, Rd. Obviously then g4 .1:: -  "(R) exists and so 
grit- ' ) (1) e /PIO. RI for every arbitrary R > 0. 

Following the proof of Theorem 3.1. it follows that 

(.144  g(t) 
(k 	1)! • e-31  (14 -0  (0. 

dtA-1 	
(10) 

Since g r BVk lO,R1 for every arbitrary R > 0 and since g".1.-1)  (t) = 0(e) as t —0 00, 
there exists a constant M such that 
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I et - I) (1)1 	M c, 0 	t.< ao 

Hence the integral 

g4 	(1) dr 

is dominated. in absolute value, by 

e - Ifr-  1)1  dr 

M 
which equals — it tr > y . 

- y 

This shows that integral (11) converges absolutely for a-  > y. Now 

J
R 

o 
det - 11 (t) = gt t -1)  (R) g(144: - I)  (0) s •  i R 

Jo
-e 	--1)  (t) dt. 

We observe that 

e -`1R  git - ' ) (R) = 0(1) as R 	cc and u > y. 

Hence 

* z 	de. - I I (i) = s 1 
n 

dt-e-I)  (0). (12) 

The right-hand member of (12) is dominated, in absolute value, by 

(a z + 72 ) 112 lit- ' ) (0 ) 1 

and so the integral on the left of (12) is convergent. Hence, in view of equality (10)„ it 

follows that 
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*r 
	

d k  g(t) 

converges, and thus the theorem is proved. 

Note 43. Theorem 4.2 provides a consistency of Theorem 3.2. 

That the exact converse of Theorem 4.2 is not true is shown by considering 
g(t) = ,k/k!. In fact, here glt. -I) (t) = g(k--1) (t) = t for all I. 

The integral 

• 
dk g(t) 

- e=" dt• 

.1'. 	
e 	 f dt 	(k —1)! 	o  

converges for a > 0. hut e1) ( t )  = t is not 'hounded. 

As soon as relation (10) is obtained it is not difficult to prove the following results in 
view of the corresponding results in Widder'„ simply replacing a(t) there by 4' 1) (0. 

Theorem 4.3. 11 gE BV [( E' R1 for every R > 0 and if the integral 

7: 

esl 

J .. 

(.1 k  et) 

dt *-1 

converges for s = so  = y + ii8 with y > 0, then 

-1) (t) = o(e) as t 

Theorem 4.44 If ge- BVA [O.R1 for every R > U and if the integral 

11C 	

d et) 

e  
dt" 

converges for s = so  = 	with y < 0, then et-1) (00) exists and g(t)
+-1)  (cc) = o1( to4) as I 	CC. 

By the use of the above results we may frequently express LapS k  integral in terms of 
an ordinary Laplace integral as in the following two theorems. We omit the easy proofs. 
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Theorem 4.5. If g e BI/k 10,1?] for every R > 0 and if the integral 

I (so ) = • n 	g(t)  
d 

	

(1 	t  

converges for s o  = yo +ioo  with y, > 0, 

—e-t) (0) and the integral * 	e - $" 1  
fo 

by any number with larger real part. 

then (k-1)! f(so ) = so  I
.

Cs"' et-I)  (0 dt 

dk  g(t) 
converges absolutely if sc  is replaced 

dtk-I  

Theorem 4.6. If gF 811k[0, R1 for every R > 0 and if the integral 

dA  g(t) 

	

I (so ) = • fo e -Na 	 
dtk-I  

converges with yo  < 0 where so  = yo + iSo , then g(14.+7 I)  (00) exists and 

(k — 1)! f(so ) = g(k+-1)  (cc) — e- I)  (0) +so ''''  cit. 
0 

= 	dk  g(t) 

J 
Also the integral • 	e`zii' 	

" 
— converges absolutely if so  is replaced by any 

0 	dt  

number with larger real part. 

Following Widders  it is not difficult to establish the formula for abscissa of 
convergence, namely 

Theorem 4.7. Let I = lim  	; 

(a) if I 	0 then 47, = I, 

(b) if I = 0 and e ) (t) has no limit as t---• 00 then at. = U. 

(c) if a, 0 then u, = 1 

logie.-1) (oo)—el+t-t) (01 
(d) if apc  < 	then 	= fi rn  

1-.02 
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