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Abstract

The concept of functions of bounded kth variation has been extended to an infinite range of intervals leading to
the definition of the RS { integral on an infinite segment that introduces a Laplace-type integral. A convergence
formula along with some other properties has been presented.
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1. Introduction

Russell' defines an integral, the RS, integral. which is an extension of the Riemann-
Sueltjes integral. Further properties of this integral including the convergence formulae
are obtained in Das and Lahiri* and Das and Das’. Bhattacharyya and Das® extend this
notion so as to define a Lebesgue-type integral, the LS, integral. A Perron-type
generalization of such integrals and its approximate and proximal extensions are
obtained in Das and Das®. The purpose of the present paper is to obtain a
Laplace-Stieltjes-type integral, the LapS, integral, induced by the RS} integral. To this
end, it is desirable to set up the notions and results of BV, functions®, k-convex
functions’ and of the RS} integrals'-? on an infinite segment. The concepts should also be
extended so as to accommodate complex-valued functions. In the next section we obtain
certain properties of the RS} integral which are useful in sequel. Finally, in the last
section we obtain the definition of our proposed integral, the Lap$S; integral. which is an
extension of the Laplace-Stieltjes integral®. A convergence formula for such an integral is
an immediate consequence of its reduction to the Laplace-Stieltjes integral and in turn to

the Laplace integral.

Let @ and b be two real numbers such that @ < b ana ict k be a positive integer greater
than 1. For notations and definitions we refer to Russell'*®, Natanson” and Das and
Lahi1i'®, However, we quote two basic definitions needed in this context.

Definition 1.1°. The total kth variation of g on [a,b] is the number

n—K
Vilg: a.8] = sup 2 |Qu-1(8iXinrs- oo Xk ) = Qu—i (@i Xis o s Xiva—1)s

m =)
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where the supremum is taken over all m: @ = Xxg <X <...< X, = b sub-division of
[a.b). If Vi[g;a.b] < + =, then g is said to be of bounded kth variation, BV, , on [a, b]

and we write g € BV,[a.b]. The symbol

k-1
gla;)
Qv1(8r .y, - - ag_1) = 'E’ —
=) ﬂ (a,—-a;)
=,

stands for the (k- 1)th divided difference of g.

Definition 1.2.' The RS} integral of f with respect to g on (a.b],

b d*g(x)
. J fix) dxk-?

is the real number /. if it exists uniquely, and if for each £ > 0 there is a real number &(¢)
such that when x, = § <x,,4.i=0,...,n—k

n—k
§~ E P | Qu—il@ikisi vrwnnXpii ) = Lo MBIy v e o 4 I.f+k-l)] <E

i=0

whenever ||m! < &(e). If the integral exists we write (f,g) € RS;][a, b].

It is observed' that if f is continuous and g is BV, on [a.b]. then (f,g) € RS} [a. b].

2. BV, functions and RS} integrals on infinite segments

Definition 2.1. Let g be a function defined for all x, —o© < x < o_ If Vilg;a.b]
1s finite for all @ < b, and if sup V,[g;a,b]is finite, then g is said to be of bounded

a<h
kth vanation, BV,, on (—«, =) and the number

Vilgi—=, <] = sup Vilg:a.b]

a<b

is called the total kth variation of g on (= o, ®).

Several properties of the function g of BV, on (— =, ®) can be obtained analogous to
those obtained by Russell® and Natanson®.

?efnirion 2.2. Let fbe a bounded continuous function and let gbe BV, on (- =, x). We
efine

" e d*g(x) > b d* e (x
f_w f(x)___dx“"' = lim 4-L f(x) dxf'(f)'
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and if it is finite, then we say (f.g) € RS} (— o, ).

Similarly, we define

"'I fx) x*(f) and *r f() (x)

-_—

Results of Sections 2, 3, 6 of Russell®, Lemma 2 and Theorem 6 of Das and Lahiri? and
Lemma 3.1 of Das and Das’ have obvious extensions for improper integrals. We note
betow the following observation.

Observation 2.1. Das and Das’ (Theorem 3.4) obtain an analogue of Helly's second
theorem:

Let f be continuous on [a.b] and let {g, } be a sequence of functions which converges
uniformly to a finite function g on [a.b]. If K is a fixed positive number and
Vilgp:a.b) = K for all p, then

b k k
lim I fx) -d-f.{-’_-(f) - .rf(x) delx)

We show below that this theorem does not hold for all continuous integrands in
(- =, ). For example, let

Gx)=0if x=0
=xXif0<x=s!
k
=Y (=) '(¥) Hif x>,

r=]

and let g,(x) = G(x—p),p = 1,2..... Clearly {g,} converges uniformly to g = 0 in
(= =, ). Obviously for each p.p = l s ) (p) =0and gt~ (p+1) = k!
Then in view of Lemma 1 of Das and Lahiri? ‘ Vk (g,:p.p+ 1] = k. Further in view of
Lemma 1 of Russell® and Definition 2.1,

Vk[gp; - m-P] = V&[S,-;?P"‘ L, GT-I =
So by an analogue of Theorem 7 of Russell®, it follows that g, is BV on (— %, o) for each
p.p=12,..., and

Vk[gﬂz —~ o, @] = Vk[gp; p.p+l1] =k

Applying an analogue of the Corollary to Theorem 3 of Russell' and Lemma 2 of Das
and Lahiri®, we obtain
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‘Jﬂ f&:_(i) _ . JFHI dkgp(x) il

1 - AN
PR | ’ dx
for each p = 1,2,.... Consequently,
- 4 . Folx
lim *J 1 4, (x) =k # 0= tJ l E—I)
dx*~! & d x
p—= -

This trouble may be overcome, as in Natanson’, by considering those continuous
functions f on (— %, ) such that lim f(x) = lim f(x) = (. According to Natan-

son® (p. 240). we denote this class by C.

Theorem 2.1. Let f ¢ C.. and let {g,} be a sequence of functions on (— =, =) which
converges uniformly to a finite function g on (— %, «). If K is a fixed positive number and
Vilgp; — =, =] = K for all p, then

, =  d'g,(x) = d*g(x)
lim -J_t f(x) #:1-— =*J mf(-’f) el

P-u—-rﬂ

—

Proof. We omit the proof. The proof can be carried out from that of Theorem 6 (p. 240)
of Natanson®, applying analogues of the Corollary to Theorem 3 of Russell' and Lemma
3.1 of Das and Das®, and Theorem 3.4 of Das and Das® (in its original form) in
appropnate steps.

We now present the definitions of functions of bounded kth variation and RS;
integrals for complex-valued functions.
Definition 2.3. (a) If g = g, +ig,, where g, and g, are real-valued functions on [a. b],
then ge BV,[a,b] if and only if g,e BV,[a,b], i = 1,2, and
P@[gumlﬂ:s V}hﬁ;ﬂ,b]+'thh;ﬂ,bL

(b) If f= fi+if; and g = g, +ig,, where f; and g, are real-valued functions on [a, b],
then we define

b d*g(x) b d* k
.L o S = ..L fn T80 *Jb o L8

dx*1 dx*-!

. b d* k
o [ o 1 T

provided all the integrals on the right exist.

These definitions can be extended on infinite segments.
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3. Some results on RS} integral

Russell' presents a reduction formula for the RS} integral. We shall utilise the result to
reduce an RSy integral to an RS integral introducing a related normalized function of
bounded variation. For the development of the context we require the definition of AC,
function of Das and Lahiri'® and some of its standard properties which we refer to Das
and Lahiri'” and Das and Das''. We simply make a remark in view of Theorem 9 of
Russell® and Definition 1.4 of De Sarkar and Das'2.

Remark 3.1. 1f g £ BV, [a,b]. then g'* " exists and is BV on E such that [a,b] - E is
countable.

Definition 3.1. If ge BV,[a.b]. then define a on [a,b] by

a(x) =0 if x=a
= 3(1‘“(";”@_”(“) —g5 Va)ifa<x<b (1)
= g0(b)- g2V (a) if x = b.
Clearly, a is BV on [a,b] and also
a(a) = 0.
a(x) = “(‘H);“(P) if a<x<b.

Hence, a is a normalized function® of bounded variation on [a, b]. Further, by Remark
3.1 |
a(x) = g* N (x)- g% " (a) (2)

on E where [a,b] - E is countable. It readily follows that fora s x < b, a(x) + g% ™" (a)
lies between the infimum and the supremum of {g%5 V(x), g* V(x)}.

Until otherwise stated by a we shall mean the normalized function of bounded
variation on [a, b] relative to ge BV,|a,b).

Theorem 3.1. If f is continuous on [a,b] and ge BV,[a,b], then
k
(=1t <[ f 5 = @) [ 1) data) (3)

Proof. By Theorem 2.5 of De Sarkar and Das'?, g is AC4—,—, on [a, b] and 0, in view
of Theorems 3.3 and 3.4 of Das and Das'}, g is the (k — 1 = 7) fold Lebesgue integral of
g*=1, Utilising (2), we have for each r = 0,1,..., k=2
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where a < ~<b and P,(x—c) is a polynomial of degree (k 2 2) at the most. B?' repeated
applications of Theorem 18 of Russell! (modified for RS} integral), we obtain (3) and

thus the theorem is proved.

Corollary 3.1. 1f f is continuous and g ¢ BV,|a.b). then the function

Flx) = » [ " £ (@ g ()dt )

is a normalized function of bounded variation on [a,b].

Proof. By Theorem 3.1,

Fo) = gy, (RS [ 0 da®

where a is the normalized function of bounded variation on [a,b] relative to
ge BV,[a.b]. The proof now follows from Theorem 8b (p. 14) of Widder®.

Theorem 3.2. If f is continuous in @ < x < « and if g is BV, on a < x < R for every
R > a. then

= dk o
vt = [T ZE = [ s dato (@
provided the first integral converges.
Proof. By Theorem 3.1
R d*
k=t o [0 g B [* 1) dao (5)

Since each point of (k

— 1)th differentiability of g is a point of continuity of a, it follows
that a has atmost a co

, untable points of discontinuity in 2 < x < . Since the integral on
:h;: left Of (4) converges so we may assume the integral as the limit of the integrals on the
eft of (5) as R — = over the set of points of continuity of «, E (say). We thus have
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o d*g(x
k=1t +|” f ~£1 - lim [ *170) dat).
¢ ReE

Since the integral on the right of (5) considered as a function of R is normalized, we can
apply Theorem 8¢ (p. 14) of Widder® and obtain for each R > a

T dk .
(k=1)! I f(x) g(f)= lim r f(x)da(x)=J f(x) da(x).

This completes the proof.

Theorem 3.3. If f and ¢ are continuous on [a,b] and ge BV,[a,b], and if

B(x) = o J é(1)

P

where a=x=<b,a=c=<b, then

d“g
Jb f(x) dB(x) = » r’ f(x) ¢(x) f—g ‘ (6)
Proof. Clearly B e BV{a,b] and so (f,.B)¢& RS[a,b]. That (fo,g)eRSi{a,b]

follows from Theorem 11 of Russell'. We may therefore consider 7 (xg,X;. ..., X,) sub-
division of [a.b] with x,e E = {x:a = x = b and g*"V(x) exists}. We write

=y Xied | d* (1)
Or = 2 f(x;) J 10 _:if“T
fw=() X

Then in view of Theorem 1 and corollary to Theorem 3 of Russell', we have

. k... \ n=1 - d*g(.r)
a,,-.r £(x) d(x) g ) I (fx)~f(®)} ) S -

Consequently, by Lemma 3.1 of Das and Das®, we have
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b | d*g(x)
T — * J'a f(x) &(x) dr

n—1
= Y max [f(x)-fO! Va(g:xiXisr)

t-ﬂ 1'51'51'*1

= M, Vi(g:a.b),

where M, is the largest of the numbers max If(x)—f(x)|, i=0,1,..., n—1.
I"'t'.l";.t*,l

Since f is uniformly continuous on [a, b] it follows that M, tends 10 zero as the norm of

 tends to zero. Since o, tends to the left integral of (6) as the norm of w-sub-division

tends to zero, the theorem is proved.

4. The LapS; integral

Let g(¢f) be a complex-valued function of the real variable ¢ defined on the interval
0 =t < =, Denote its real and imaginary parts by g,(r) and g,(r) respectively,
g(t) = gy (1) +ig>(r). Let ge BV, [0, R] for every R > 0. Let s be a complex variable with
real and imaginary parts o and 7 respectively, s = o+ir. It follows from the existence
theorem of the RS} integral. Theorem 11 of Russell', that the integral

. J RSB0

e
k1
0 dt
exists for each positive R and for every complex s.

Definition 4.1. Consider the improper integral

o de(
y J R i -

B d“g(r)
- % i
0 dr*~!  pw I

J drk*l

If the limit exists for a given value of s, we say the integral on the left converges for that
valup of 5. If the limit on the right does not exist, the integral on the left diverges. When
the l'ntegral converges it det;incs a function of s which we denote by f(s). This function
f(s) is called the k-generalized Laplace-Stieltjes transform of g (1). The function, f(s), will

zf:ll]lsn ?e called the generating function and g (r) will, sometimes, be called the determining
nction.



GENERALIZED LAPLACE STIELTIES INTEGRAL 193

Theorem 4.1. If Jop = {T“"‘i'l"n and if

sup

=<py<=x=

7 d“ [
I p—i - M a8, ®)

. d’h—l

then the integral

e
k-1
0 dr

; J"‘ LN I0

converges for every s for which o > ¢, and

= - dh et x
"[ e” _"i_f-'ul = (§—5u) I e~ U= gn) di (9)
0 dr 0
where
7 - dig(f)
Bu) = “Ll g a1

and the integral on the right of (9) converging absolutely.

Proof. By Theorem 3.3, we have

k
..JR e—-u Eg)_ IR E*(J"Ju)f dﬁ(r)
0

ok =1
0 dr

f-(’*’“lR ﬁ(R)"‘(S“S") JR f'_u_s"” BU) dr.

0

Utilising (8), we obtain, for o > oy

lim e ¢~%R g(R)=0.

R— x
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Consequently,

x d* x
* J f_'" d g(!) - (5_5“) J P—h--t,,]l‘ B(f) di
]

&k~
0 dr

which proves (9).
Also,

() () T =0y

for o > o0y, and so the integral on the. right of (9) converges absolutely for o > o,.
This completes the proof.

Definition 4.2. The number o,, such that the integral (7) converges for o > o, and
diverges for o < o, is called the abscissa of convergence. The line o = o, is called the
axis of convergence.

If (7) converges for no point we have o, = + = and if (7) converges for cyery point we
have o, = — x,

Theorem 4.2. If g e BV,[0,R] for every arbitrary R > 0, and if g4~V (1) = 0(e™) as
t — = for some real number y then the integral

f ; ,
k-1
i dt

_r _,, g

converges for o > v.

Proof. Clearly g'4~"'(1) ¢ BV]0,R] for every R > 0. In fact, for every R > () there is
Ri,Ri,>R>0 and geBV,[0.R,]. Obviously then g4 "(R) exists and so
g%y e BV|[0, R] for every arbitrary R > 0.

Following the proof of Theorem 3.1, it follows that

R d e (s K
(k=1)! » J e~ - 8 _) = J e dg't "V (1). (10)

A—1
0 dr "

Since g & BV, [0, R] for every arbitrary R > 0 and since g5~V (1) = 0(e”) as t — o,
there exists a constant M such that
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185V (D] = Me™, 0=t< o,

Hence the integral

JI e™™ g4V () di (11)

i

ts dominated. in absolute value, by

M J e~ Y g4

< 0

which equals Hoe>vy.

o—Y
This shows that integral (11) converges absolutely for o > y. Now

F e dgi () = e Rg iV (R)- g4 (0) 45 [R € gl N ndt.

L )

We observe that
e *Rg*=N(R) =0(1) as R— © and o> ¥.

Hence

. J Cedgd T = s I a4 ) di—gh" (0). e

4 i}

The right-hand member of (12) is dominated, in absolute value, by
M
(0?+7%)"? ——+ |g71(0)]
o=y

and so the integral on the left of (12) is convergent. Hence. in view of equality (10), 1t
follows that
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e .
k-1
i dr

* I: -5t d‘g(f)

converges, and thus the theorem i1s proved.
Note 4.1. Theorem 4.2 provides a consistency of Theorem 3.2.

That the exact converse of Theorem 4.2 i1s not true 1s shown by considenng
g(t) = t*/k'. In fact, here g4 (1) = g* V(1) = ¢ for all 1.

The integral

. J: ey d&g(” = l I: e M dr
0 gt (k—1)! (0 -

converges for o > (), but g‘f‘,'”(r] = ¢ 15 not -bounded.
As soon as relation (10) is obtained it is not difficult to prove the following results in

view of the corresponding results in Widder®, simply replacing a (1) there by gs~" (1).

Theorem 4.3. If ge BV, [0.R]| for every R > () and if the integral

r e 48

€
k—1
) dr

converges for s = s, = y+ié with y > 0, then

gam () = ofe) as 1 — .

Theorem 4.4. If ge BV, [0.R| for every R > 0 and if the integral

. dr="

r _, dtg

J 1)

converges for s =5, = y+i6 with y <0, then gk V() exists and g4 1)
~g5 V(=) = o(e) as 1 — .

By the use of the above results we may frequently express LapS; integral in terms of
an ordinary Laplace integral as in the following two theorems. We omit the easy proofs.
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Theorem 4.5. If g ¢ BV,[0,R] for every R > 0 and if the integral

= k .
f(sa) = -I P d g([)

k-1
" d:

converges for sy = yo+idy with yo >0, then (k~1)! f(s0) = 50 r e~ gk=1) (1) dr
0 ‘

~¢%1(0) and the integral » |~ e-at S8

+ egral » e —i

4
by any number with larger real part.

converges absolutely if s; is replaced

Theorem 4.6. If g¢ BV |0, R] for every R > 0 and if the integral

= dhg(n)
flso) = 'J“ g "&%z:“:r
converges with v,<0 where s,= y,+i8,, then g% " (o) exists and
(k—1)! f(s0) = g5 V() —g"s7(0) +5, J T e [gk=1) (1) — J4=1) ()] dr.
. » ., dg( “ 2 o 3
Also the ntegral :I g = converges absolutely if s, i1s replaced by any

0
number with larger real part.

Following Widder" it is not difficult to establish the formula for abscissa of
convergence, namely
— lo k=1) {
Theorem 4.7. Let 1 = Iim 8lgs ()I:

f— = 'f

(a) if 1 # 0 then o, = 1,
(b) if 1 =0 and g4~ " (1) has no limit as 1 - = then o, = 0,
(c) if o. =20 then o, =1
—— log|g%™" (=) -g4 " ()|
(d) if o. <0 then o. = lim - 8‘1r -4 .

J—e o0
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