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Abstract 

The analytical integration formulae for the products of shape functlOn local derivatives of parabolic and cubic 
elements over the square region afe first obtamed. By means of a transformation from global to local 
coordmates, the analytical integration formulae fOf the products of shape function global defivatlves over the 
rectangular region are then established These results are then illustrated with reference to the evaluation of 
stiffness matflces in terms of explicit expressions for the parabolic and cubic elements of the serendipity family 
in rectangular shapes under the assumptions of linear plane elast1city. 
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l. Introduction 

Recently, Babu and Pinder l and Mizukami' presented some integration fprmulae for the 
four-node linear isoparametric quadrilateral element. Using these formulae, one can 
easily obtain explicit stiffness matrix for the linear four-node rectangular element under 
the assumption of linear plane elasticity as illustrated by Robinson'. However, the linear 
four-node rectangular element is not very efficient and a large number of these elements 
are necessary to achieve sufficient accuracy. For this reason, in recent years there has 
been incr~asillg usage of higher order elements for obtaining accurate ,olutions to 
continuum mechanics problems. The isoparametric elements of the serendipitj family 
are among the most popular higher-order elements. Although the numerical integration 
for the evaluation of the element stiffness matrix is both simple and adaptable to 
computer programming, it increases the computations to be performed significantly. 
Thus, the standard numerical integration procedure is quite unattractive, especially for 
h~gher-order elements. Therefore, if the explicit (and simpie) expressions of the element 
stIffness matrices are obtained, a big reduction (up to 99%) in computation time can be 
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expected. Further, this will improve the efficiency of the standard finite element 
approach and make it more competitive with other numerical methods like finite 
difference and boundary integral equation methods. It is easily recognized that in this 
approach the computational convenience, speed and accuracy are enhanced many fold. 

2. Element shape functions 

Consider the rectangular elements of fig. 1 whose sides are parallel to the global 
coordinate axes (Xl ,X2). If we label each nodal point (X'["X2,) by i and define two local 
normalized coordinates sand t by the equations: 

S = (XI -xlc)/a, ds = dx,/a 

t = (X2 -x2c)/b, dt = dX2/b (1) 

where (Xlo X2c) denotes the position of the element. centre in the (XI ,X2) coordinate 
system and a,b denote half-side lengths of the rectangular element. In the normalized 
local coordinate system (s, t), the rectangular element is then defined by the square: 

Table I 
Numerical values of I~,j (i,j = 1,2,3, ... ,8) 
(Parabolic element) 

i/j 

26 

45 

-8 16 

"9 
14 -8 26 

45 "9 45 

-1 

15 15 15 

23 -4 17 26 
90 "9 90 15 45 
-4 8 -4 -8 16 
"9 9 "9 "9 
17 -4 23 -1 14 -8 26 
90 "9 90 15 45 45 
1 -.1 -8 ~1 8 

is 0 is is is 0 is is 
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FIG 1. Rectangular elements of serendipity family (i) linear, (ii) parabolic, and (Iii) cubic. 

-1,; s, t,; 1. Following Zienkiewicz', the element shape functions N, for the parabolic 
and the cubic elements of the serendipity family are given by: 

(1) Parabolic element 

1 . 
Corner nodes: N, = 4 (1+50) (1+to) (50+to-l), i= 1,3,5,7 

Table II 
Numerical values of l~.j, (i,j = 1,2,3, ... ,8) 
(Parabolic element) 

'I 

26 

45 

15 15 

17 26 

9D 15 45 

-4 -8 16 
9" "9 
23 -I 14 -8 26 
9D 15 45 45 

-I -8 -1 
15 IS 15 15 15 

14 -1 23 -4 17 26 
45 15 90 "9 90 15 45 
-8 -4 -4 -8 16 
9" "9 "9 

0 

s 
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Midside nodes: N, = ~ (I-52) (1 + to), i = 2,6 

N, =~ (1+so) (l-t2 ), i = 4,8 

(2) Cubic element 

Corner nodes: N, = tz (1 + to) (I +so) [-10 + 9(52 + t2 )], i = 1,4,7,10 

Midside nodes: N, = ~ O+to) (l-s2) (1+9so), i = 2,3,8,9 

N, =; (1+so) (l-t2 ) (1+910 ), i = 5,6,11,12 
3_ 

(21 

(3) 

where to = It"s" = SS, and s"t, are the values of sand t respectively at the ith node. 

Table III 
Numerical values of 1~1(i,j = 1,2,3",. , 8) 
(Parabolic element) 

ill 

17 1 -1 -1 -1 1 -5 
3n '9 12 9' 36 9' 12 9' 
-5 -4 -1 4 
9' 

() 
9' 9' 9 

-) - 17 -1 -7 1 
12 9' 36 12 '9 36 9 
-1 -4 -1 4 1 

9' 9' '9 '9 
-1 -5 17 -1 -1 

36 9' 12 9' 36 12 9' 
-I 1 4 -5 5 -4 
9' '9 9 9' '9 9' 
-I -7 -1 -17 
1~ 36 9 12 9' 36 '9 

-1 -4 -I 

9' 9' 9' 
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3. Integration formulae for shape function global derivatives 

Consider the integrals: 

W,,) = If aN, aN) 
dR,i,j = 1,2,3, ... '1'; m,n = 1,2 (4) mn aXm aXn R 

where R = rectangular region, dR = rectangular area differential, and 'Y = number of 
nodes per element. 
In tenns of the local coordinates s, t defined in equation (1), the above integral of equa-
tion (4) can be rewritten as: 

Table IV 
Sumerical values of l~J (i,j = 1,2,3, ... ,12) (Cubic element) 

n 10 11 12 

41 

42 

-63 18 

40 5 
-99 18 

20 40 

25 9 -63 41 

16s 20 40 42 

-33 33 27 

560 560 70 

-3 -27 27 
140 140 560 70 

17 -63 155 -3 33 41 
168 40 80 336 140 560 42 

-99 -63 -63 18 
40 80 80 40 5 
-63 -99 -99 18 
80 5 80 40 

0 20 40 5 

10 
155 -63 17 -33 25 -63 41 

336 80 40 168 140 560 168 20 40 42 

II 
-3 27 -27 -33 33 27 

14ti 0 
560 70 140 560 70 560 

12 
33 -33 -27 27 -3 -27 27 

560 0 
140 560 70 560 70 560 140 
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w:;1n= ab [1 [1 
aNi aN; 

dsdt 
aXm ax. 

(i) 

and 

aNk aNk aNk aNk 
(6) - -= -

aXI a as ax2 b at 

where k = m, n = 1,2, 

From equations (5) and (6), it can be shown that 

Table V 
Numerical values of I:J (i,j = 1,2,3, ••. , 12) (Cubic element) 

ilj 2 7 10 11 12 

41 

42 
33 27 

560 70 
-3 -27 27 

140 S60 70 
155 -3 33 41 
336 140 560 42 
-63 -63 18 
80 0 40 "5 
9 

0 
9 -99 18 

40 0 20 40 
17 -33 25 -63 41 

168 140 560 168 20 40 42 
3 27 -27 -33 33 27 

i40 S60 70 560 560 70 
9 

-33 -27 27 -3 -27 27 
560 70 S60 140 140 560 70 

10 
25 -33 17 9 -63 155 -3 33 41 
168 560 140 168 40 80 336 140 560 42 

11 0 0 
9 -99 -63 -63 18 

20 40 80 "5 80 
0 0 40 "5 

12 
-63 -63 9 -99 9 9 -99 18 
40 0 80 "5 80 40 0 0 20 40 5" 
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w"} II = f31;'} , 

W',} 
22 = al~'} (7) 

WI.) 
12 = I"} 

'"' 

where a = alb, f3 = bla. 

L L 
aN, aN} 

ds dt, l~·J 
as as 

L L 
aN, aN] 

ds dt, and I:'] -at at 

1;1 = IJ I' 
~1 -1 

aN, aN} ds dt. 
as at 

(8) 

Using equations (2), (3) and (8), the closed form expressions in tenns of s"t"s},tj for 
integrals I;,}, Ii'} and 1;1 can now be derived. The numerical constants of these integrals 
for the parabolic and cubic elements of the serendipity family can then be computed 
(Tables I-VI). 

4. Application to linear plane elasticity 

Following Taylor5 , the stiffness submatrix of a rectangular element relating nodal pairs i 
and j for the linear anisotropic elastic solid under plane stress-plane strain conditions can 
be written as: 

where 

[K,J, = [ 

S2H,2J-J = (Dllf3I;'}+D33o:I;'})+D13(I;I+I~;') 

S2,-J,2} = (Duf3I::}+D23o:I;'})+(D'2I;!+D331~;') 

S2,.2}-1 = (D13f3I;'}+D23o:l;·})+(D33I.V+DJ2/~n 

S2,,2) = (D33f31~') + D22 o:li'}) + D23 (1;1 +n;') 

h = element thickness, 

(9) 

(10) 
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Table VI 
Numerical values of l~f (i,j = 1,2,3, ... ,12) (Cubic element) 

II] 10 11 12 

17 69 -93 -69 93 -19 93 -69 -7 -159 
32 320 320 160 320 320 160 320 320 160 320 32rJ 
-159 81 -3 -9 -9 93 -81 69 

320 160 320 64 64 320 160 320 64 64 
-81 159 -9 -9 -69 81 -93 

320 160 320 64 64 320 160 320 64 64 

-7 93 -69 -17 159 -3 69 -93 19 -93 69 

160 320 320 32 320 320 160 320 320 160 320 320 
-69 -9 -9 -69 81 - 93 9 -93 81 

320 64 64 320 160 320 64 64 320 160 

93 -9 -9 93 -81 69 69 -81 

320 64 64 320 160 320 64 64 320 160 
-19 93 -69 -7 -159 17 69 -93 7 -69 93 

160 320 320 160 320 320 32 320 320 160 320 320 
93 -81 69 9 -159 81 -3 -9 -9 

320 160 320 64 64 320 160 320 64 64 
-69 81 -93 -81 159 -9 -9 
_~~u 160 320 64 64 320 160 320 64 64 

69 -93 19 -93 69 -7 93 -69 -17 159 -3 
ill 

160 320 160 160 32 320 320 320 320 320 320 320 

-93 -93 81 -69 -9 -9 -69 81 
II 

320 320 64 160 64 64 320 160 64 320 

12 
69 9 69 -81 93 -9 -9 93 -81 

320 6-! 64 320 160 320 64 64 320 160 

and Dil ,D12.D",D22,D23,D" are the coefficients of the elasticity matrix [DJ given 
by: 

[D' D'2 D"] [Dj D22 D 23 
Symmetric D33 (ll) 

5. Condusions 

The clos~d form integration of integrals W:;,{, could be performed easily in the present 
~a'~ u, the detennmant of the Jacobian matrix is constant (= ab). In this context. It 
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h uld be noted that the determinant of the Jacobian matrix is a function of local 
s ~rdinates for nonparallelogram-shaped elements and in that case the standard 
~ternative is to resort to the approximate and costly numerical integration procedures. 
Even though the numerical values .of integrals 1;') ,~:,) and 1;1 described in Tables I-VI 
are applied in the pr~sent p~per.~lth. reference to lInear 'p~ane elasticity problems, it is 
easy to conceive their applIcabilIty In other areas of flmte element analysis. 
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