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Abstract

The analytical integration formulae for the products of shape function local derivatives of parabolic and cubic
elements over the square region are first obtained. By means of a transformation from global to local
coordmates, the analytical integration formulae for the products of shape function global detivatives over the
rectangular region are then established These results are then Hlustrated with reference to the evaluation of
stiffness matrices in terms of explicit expressions for the parabolic and cubic elements of the serendipity family
in rectangular shapes under the assumptions of linear plane elasticity.
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1. Introduction

Recently, Babu and Pinder! and Mizukami® presented some integration formulae for the
four-node linear isoparametric quadrilateral element. Using these formulae, one can
easily obtain explicit stiffness matrix for the linear four-node rectangular element under
the assumption of linear plane elasticity as illustrated by Robinson®. However, the linear
four-node rectangular element is not very efficient and a large number of these elements
are necessary to achieve sufficient accuracy. For this reason, in recent years there has
been increasing usage of higher order elements for obtaining accurate solutions to
continuum mechanics problems. The isoparametric elements of the serendipity family
are among the most popular higher-order elements. Although the numerical integration
for the evaluation of the element stiffness matrix is both simple and adaptable to
computer programming, it increases the computations to be performed significantly.
Tfms, the standard numerical integration procedure is quite unattractive, especially for
hl_gher-order elements. Therefore, if the explicit (and simpie) expressions of the element
stiffness matrices are obtained, a big reduction (up to 9% ) in computation time can be
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expected. Further, this will improve the efficiency of the standard finite element
approach and make it more competitive with other numerical methods like finite
difference and boundary integral equation methods. It is easily recognized that in th;
approach the computational convenience, speed and accuracy are enhanced many fold,

2. Element shape functions

Consider the rectangular elements of fig. 1 whose sides are parallel to the global
coordinate axes (x;,x;). If we label each nodal point (x{,,x5,) by i and define two local
normalized coordinates s and ¢ by the equations:

s = (x;—xi)/a, ds=dxi/a
t= (xa—x5)/b, dt=dxy/b m

where (x§.,x5.) denotes the position of the element.centre in the (x;,x;) coordinate
system and a,b denote half-side lengths of the rectangular element. In the normalized
local coordinate system (s,?), the rectangular element is then defined by the square:

Table I
Numerical values of I¥(i,j=1,2,3,...,8)
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Fe 1. R gul 1 of dipity family (i) linear, (ii) parabolic, and (1ii) cubic.

_1<s,t = 1. Following Zienkiewicz*, the element shape functions N, for the parabolic
and the cubic elements of the serendipity family are given by:

(1) Parabolic element

Corner nodes: N, =11- (1+s50) (1 +12) (S(1+i(7—1), i=135,7

Table II o
Numerical values of I¥, (i,j=1,2,3,...,8)
(Parabolic element)
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Midside nodes: N, =% -

(2) Cubic element
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%(1+s0) a-2), i

2) (1+1), i =2,6

4.8 ]

Corner nodes: N, = 31—2 (1+1) (1+50) [-10+9(s+ )], i = 1,4,7,10

Midside nodes: N, = 3 (1+t0) a- 32) (1+9s0),i=2,3,8,9

No=% O (14s9) (1=2) (1+98), i = 5,6,11,12 G

where 1, = tt;,5, = ss, and s,,¢; are the values of s and ¢ respectively at the ith node.

Table I
Numerical values
(Parabolic element)
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3. Integration formulae for shape function global derivatives

Consider the integrals:

dN, N,

Wi = ”—— L dR,ij=1,2,3,...% mn=1,2 @
R OXm Xy,

where R = rectangular region, dR = rectangular area differential, and y = number of

nodes per element.
In terms of the local coordinates s, ¢ defined in equation (1), the above integral of equa-

tion (4) can be rewritten as:

Table IV .
Numerical values of I%/(i,j = 1,2,3,...,12) (Cubic element)
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L N; ON,
Wi, = ab r J N s
-1

_1 Oxp Ox, 6
and
ANe 1 N oNe_ 1 oN, 5
ox, a ds ox, b &

where k =m,n =1,2.

From equations (5) and (6), it can be shown that

Table V _
Numerical values of IV(i,j = 1,2,3,...,12) (Cubic element)
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wil = BI,
W5 = all’, )
Wi = I,
where @ = a/b, B = bla,

1 1 N, 6N,
[ = j 2T g a,
i 1 _y 05 Os

N,
o= Jl Jl a—N' —! ds dr, and

-1 -1 o dt

1 1 4N, 9N,
o= — — ds dz. 8
i I—l 4[-1 ds ot @

Using equations (2), (3) and (8), the closed form expressions in terms of s,, 4;,s,,t for
integrals 13/, 1}’ and I/ can now be derived. The numerical constants of these integrals
for the parabolic and cubic elements of the serendipity family can then be computed
(Tables I-VI).

4. Application to linear plane elasticity
Following Taylor®, the stiffness submatrix of a rectangular element relating nodal pairs i

and j for the linear anisotropic elastic solid under plane stress-plane strain conditions can
be written as:

[K../]e=[ hS2—1.2-1 | hSz:—l,z,] ©
hSay | hSuz |

where
S2i-1,2-1 = (D1 BIY + Dazaly’) + Dis (L5 + I5)
Sam1,3 = (D13BIy + Doz al}’) + (Do I + D3 I
Suz-1 = (D13BIyY + Dozl +(Dx I + D I5)
Suzy = (D33 BIY + Dy aly’) + Doy (I + 14

h = element thickness,

(10
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Table VI

Numerical values of I/ (i,j = 1,2,3,...,12) (Cubic element)
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and Dyy,Dy2. D13, Dxy. Doz, Dy are the coefficients of the elasticity matrix [D] given

bwv:
Dy, Dy, Dy
b1 = Dy Dy
Symmetric D33

5. Conclusions

an

The closed form infegration of integrals W/, could be performed easily in the present
vase us the determinant of the Jacobian matrix is constant (= ab). In this context, it



STIFFNESS MATRICES 221

should be noted that the determinant of the Jacobian matrix is a function of local
coordinates for nonparallelogram-spaped elements and in that case the standard
Jlternative is to resort t0 the approximate and costly numerical integration procedures.
Even though the numerical values _of integrals I}/, {;vf and 1%/ described in Tables I-VI
are applied in the pre.sent pa.per'v'vxth‘reference to linear .plane elasticity problems, it is
easy to conceive their applicability in other areas of finite element analysis.
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