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Abstract | Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of
rod-like nematogens exhibits temporal power law decay at intermediate times not only near the
isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an
intriguing analogy with supercooled liquids. We have investigated both collective and single-particle
orientational dynamics of a family of model system of thermotropic liquid crystals using extensive
computer simulations. Several remarkable features of glassy dynamics are on display including
non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of
the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system
behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual
relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully
define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a
temperature and density dependence which is remarkably similar to the fragility of glass forming
supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of
the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the
onset of the growth of the depth of the potential energy minima explored by the system. A model
liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics
simulations for orientational relaxation along two isobars starting from the high temperature
isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic
(N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar
(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase
transition shows a power law decay at short to intermediate times, such power law relaxation is not
observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in
the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth
of the orientational pair distribution functions near the I–N phase boundary. As the system settles
into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a
pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular
liquids.

Introduction
Thermotropic liquid crystals exhibit exotic phase
behavior upon temperature variation. In the
isotropic phase, a liquid does not exhibit any long

range translational or orientational order. The
nematic phase is endowed with a long-ranged
orientational order but lacks translational order.
Further cooling leads to a more ordered smectic
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phase where two-dimensional translational order
along with long-ranged orientational order sets
in the system. The isotropic-nematic (I–N) phase
transition, which is believed to be weakly first
order in nature with certain characteristics of
the continuous transition, has been a subject of
immense attention in condensed matter physics and
material sciences.1,2 In contrast, the dynamics of
thermotropic liquid crystals have been much less
studied, the focus being mostly on the long-time
behavior of orientational relaxation near the I–N
transition.1 A series of OKE measurements have,
however, recently studied collective orientational
relaxation in the isotropic phase near the I–N
transition over a wide range of time scales.3,4 The
dynamics have been found to be surprisingly rich,
the most intriguing feature being the power law
decay of the OKE signal at short-to-intermediate
times.3,4 The relaxation scenario appears to be
strikingly similar to that of supercooled molecular
liquids5, even though the latter do not undergo any
thermodynamic phase transition.

This work essentially consists of two parts.
In the first part we study dynamics of rod-like
molecules that form calamitic liquid crystal. In
the second part, we study the dynamics of disk-
like molecules that form discotic phase. Despite
such a large difference in aspect ratio and nature
of the nematic liquid crystals that they form,
there are aspects of relaxation that are remarkably
similar. However, a molecular level understanding
of observed anomalous orientational dynamics is
missing.

Relaxation of discotic phases has been less
explored than that of calamitic liquid crystals. The
discovery of discotic liquid crystals, that consist
of disk-like molecules is more recent and dates
back only to the late 19706. Upon cooling from the
high temperature isotropic (I) phase, discotic liquid
crystals typically exhibit a nematic (N) phase and/or
a columnar (C) phase7. The discotic nematic phase
is analogous to the nematic phase formed by rodlike
molecules in that there is a long-range orientational
order without the involvement of any long-range
translational order. In the columnar phase that is
typical of discotic liquid crystals, the molecules
are stacked on top of each other giving rise to a
columnar structure. These columns form a long-
range two dimensional order in the orthogonal
plane with either a hexagonal or a rectangular
symmetry. While the sequence of phases I–N–C has
been observed experimentally with a number of
discotic liquid crystals upon cooling, there have been
only a few cases where only I–C or I–N transition
is observed8. Although computer simulations of
model liquid crystals have undergone an upsurge

in recent times, discotic liquid crystals are yet to
be studied in detail. Discotic molecules typically
contain an aromatic core with flexible chains added
in the equatorial plane. While atomistic models
could in principle be undertaken, molecular models,
where mesogens are approximated with particles
with well-defined anisotropic shape, find their utility
in obtaining a rather generalized view. A simple
approach along this line involves consideration of
purely repulsive models involving hard bodies9.
This rather extreme choice is inspired by the idea
that the equilibrium structure of a dense liquid is
essentially determined by the repulsive forces which
fix the molecular shape. Along this line, thin hard
platelets, hard oblate ellipsoids of revolution, and
cut hard spheres have been investigated. Such an
approach is appealing for its simplicity9. However,
temperature plays no direct role in purely repulsive
models on the contrary to what is desired for
thermotropic liquid crystals9. In this respect, the
Gay-Berne pair potential10, which is essentially a
generalization of the Lennard-Jones potential to
incorporate anisotropic interactions, or one of its
variants10, where mesogens are approximated with
soft ellipsoids of revolution, appears to serve as a
more realistic model. In fact, discotic liquid crystals,
modeled by the Gay-Berne family of potentials,
have been found to capture the key features of the
experimentally observed phase behavior11.

In this article, we present results of molecular
dynamics simulations of a family of model
systems consisting of both rod-like and disk-
like molecules across the I–N and I–C transition.
Given the involvement of the phase transition
to an orientationally ordered mesophase upon
lowering the temperature, we choose to probe the
single-particle and collective orientational dynamics
in order to make comparison with relaxation
behaviour observed for supercooled liquids. We
have calculated the non-Gaussian parameter in the
orientational degrees of freedom in order to probe
the heterogeneous dynamics present in the system
near I–N transition. We have defined a fragility
index to quantitatively measure the glassy dynamics
observed in the orientational degrees of freedom.
We have also explored plausible correlation of the
features of the underlying energy landscape with
the observed non-Arrhenius dynamics in analogy
with supercooled liquids. This work follows up our
recent work12, which has reported the emergence
of power law decay regime(s) in orientational
relaxation across the isotropic-nematic transition. In
the spirit of the universal power law in orientational
relaxation in thermotropic liquid crystals suggested
therein12, we compare the orientational dynamics
we observed here with those of calamitic liquid
crystals obtained from recent optical Kerr effect
measurements and molecular dynamics simulations
studies. We further discuss the analogous dynamics
observed in supercooled molecular liquids.
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Models and simulation details
A. Rod-like molecules
The systems we have studied consist of ellipsoids of
revolution. The Gay-Berne (GB) pair potential10,
that is well established to serve as a model potential
for systems of thermotropic liquid crystals, has
been employed. The GB pair potential, which
uses a single-site representation for each ellipsoid
of revolution, is an elegant generalization of the
extensively used isotropic Lennard-Jones potential
to incorporate anisotropy in both the attractive
and the repulsive parts of the interaction10,11. In
the GB pair potential, ith ellipsoid of revolution
is represented by the position ri of its center of
mass and a unit vector ei along the long axis of the
ellipsoid. The interaction potential between two
ellipsoids of revolution i and j is given by

U GB
ij = 4ε

(
r̂ij ,ei,ej

)(
ρ−12

ij −ρ−6
ij

)
(1)

where

ρij = rij −σ
(
r̂ij ,ei,ej

)+σss

σss
(2)

Here σ ss defines the thickness or equivalently,
the separation between the two ellipsoids of
revolution in a side-by-side configuration, rij is
the distance between the centers of mass of the
ellipsoids of revolution i and j, and r̂ij = rij/rij is
a unit vector along the intermolecular separation
vector rij . The molecular shape parameter σ and the
energy parameter ε both depend on the unit vectors
ei and ej as well as on r̂ij as given by the following
set of equations:
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where the exponents ν and μ are the adjustable
parameter, and
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with χ′ = (κ′ 1/μ−1)/(κ′ 1/μ +1). Here κ=σee/σ ss

is the aspect ratio of the ellipsoid of revolution with
σee denoting the separation between two ellipsoids
of revolution in a end-to-end configuration, and
σss = σ0, and κ′ = εss/εee , where εss is the depth of
the minimum of the potential for a pair of ellipsoids
of revolution aligned in a side-by-side configuration,
and εee is the corresponding depth for the end-to-
end alignment. Here ε0 is the depth of the minimum
of the pair potential between two ellipsoids of
revolution aligned in cross configuration. The GB
pair potential defines a family of models, each
member of which is characterized by the values
chosen for the set of four parameters κ, κ′, μ, and
ν, and is represented by GB(κ, κ′, μ, ν)11. Systems
consist of 500 ellipsoids of revolution in a cubic
box with periodic boundary conditions at several
temperatures, starting from the high-temperature
isotropic phase down to the nematic phase across
the I–N phase boundary have been simulated. We
have carried out several simulations with different
aspect ratios (κ ) where for each aspect ratio isochors
of different densities have been investigated. All
quantities are given in reduced units defined in
terms of the Gay-Berne potential parameters ε0

and σ0: length in units of σ0, temperature in

units of ε0
kB

, and time in units of
(

σ2
0 m
ε0

)1/2
, m

being the mass of the ellipsoids of revolution.
The mass as well as the moment of inertia of
each of the ellipsoids of revolution have been
set equal to unity. The intermolecular potential
is truncated at a distance rcut and shifted such
that U (rij = rcut) = 0, rij being the separation
between two ellipsoids of revolution i and j. The
equations of motion have been integrated using
the velocity-verlet algorithm with integration time
step dt = 0.0015.12 Equilibration has been done by
periodic rescaling of linear and angular velocities
of particles. This has been done for a time period of
tq following which the system has been allowed to
propagate with a constant energy for a time period of
te in order to ensure equilibration upon observation
of no drift of temperature, pressure, and potential
energy. The data collection has been executed in a
microcanonical ensemble. At each state point, local
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Figure 1: The time evolution of the a) single particle OTCF on a log-log
plot for GB(3,5,2,1) along an isochor with density ρ = 0.32 across I–N
transition at temperatures T = 2.008, 1.697,1.499,1.396, 1.310,1.199
and 1.102 from left to right and b) collective second rank OTCF for the
same system and isochor at temperatures T = 2.008, 1.499,1.396,
1.310,1.199 and 1.102 form top to bottom. TI−N is located between
T = 1.499 and T = 1.396. The portions fitted with straight line
correspond to power law decay regime.

potential energy minimization has been executed
by the conjugate gradient technique for a subset of
200 statistically independent configurations. The
landscape analysis has been done with a system
size of 256 ellipsoids of revolution, which is big
enough for having no qualitative change in the
results due to the system size.14 Minimization has
been performed with three position coordinates and
two Euler angles for each particle, the third Euler
angle being redundant for ellipsoids of revolution.

B. Disk-like molecules
The parameterization, that we have employed here,
is κ = 0.345, κ′ = 0.2,μ = 1, ν = 211. Molecular
dynamics simulations have been performed with
the model discotic system containing 500 oblate
ellipsoids of revolution in a cubic box with periodic
boundary conditions. All the quantities reported
here are given in reduced units. The intermolecular
potential has been truncated at a distance rcut = 1.6

and shifted. The equations of motion have been
integrated following the velocity-Verlet algorithm
with the integration time steps of dt = 0.0015 in
the reduced units. Equilibration has been done in
an NPT ensemble. Following this, the system has
been allowed to propagate with a constant energy
and density in order to ensure equilibration. Upon
observation of no drift in temperature, pressure,
and potential energy, the data collection has been
executed in a microcanonical ensemble. The model
discotic system has been melted from an initial
fcc configuration at high temperatures and low
densities, and studied along two isobars at pressures
P = 25 and P = 10 at several temperatures.

Results and discussion
A. Calamitic liquid Crystals (rod-like molecules)
I. Single particle orientational dynamics
The orientational dynamics of the system at the
single particle level may be described by the first
and second order single particle orientational time
correlation functions (OTCF)Cs

l (t)(l = 1,2), which
are defined by

Cs
l (t) =

〈∑
i Pl(ei(t).ei(0))

〉
〈∑

i Pl(ei(0).ei(0))
〉 (7)

where Pl is the l-th rank Legendre polynomial
and the angular brackets stand for ensemble
averaging. Figure 1a shows the single particle
second rank OTCF in a log-log plot as the
temperature is lowered from high temperature
isotropic phase to low temperature nematic phase
across the I–N transition. The I–N transition
is marked by a jump in the orientational order
parameter S, defined for an N-particle system as
the largest eigenvalue of the ordering matrix Q:
Qαβ = 1

N

∑N
i=1

1
2

(
3eiαeiβ − δαβ

)
, where eiα is the

α-component (in the space-fixed frame) of the unit
orientation vector ei along the principal symmetry
axis of the i-th ellipsoid of revolution.15 Note the
emergence of the power law decay at short to
intermediate times near the I–N phase boundary. As
the I–N phase boundary is crossed upon cooling,
the advent of two power law decay regimes separated
by an intervening plateau at short-to-intermediate
times imparts a step-like feature to the temporal
behavior of the second rank OTCF. Such power
law relaxation near I–N phase boundary was an
area of great interest in the recent past16–21 and
it has been investigated that the scenario is not a
unique property of the model we have studied; it
is a rather universal phenomenon of second rank
OTCF.12 Such a feature bears remarkable similarity
to what is observed for supercooled liquids as the
glass transition is approached from the above.22,23

While for the supercooled liquid the emergence of
step-like feature is well understood as a consequence
of β relaxation, the origin of such a feature observed
for liquid crystal defied of reliable explanation.
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Figure 2: a) The orientational correlation time in the logarithmic scale
as function of the inverse of the scaled temperature, the scaling being
done by the isotropic to nematic transition temperature TI−N . For the
insets, the horizontal and the vertical axis labels read same as that of
the main frame and are thus omitted for clarity. Along each isochor, the
solid line is the Arrhenius fit to the subset of the high-temperature data
and the dotted line corresponds to the fit to the data near the
isotropic-nematic phase boundary with the VFT form. b) The fragility
index m shown as a function of density for different aspect ratios. The
dashed lines are guide to the eye to illustrate the fact that the
dependence of the fragility index on the density is becoming stronger as
the aspect ratio becomes smaller.

II. Collective orientational dynamics
In experiments, one can probe orientational
relaxation through the decay of the OKE signal,
which is given by the negative of the time derivative
of the collective second rank OTCF Cc

2 (t).4,24,25

The later is defined by

Cc
2 (t) =

〈∑
i

∑
j P2

(
ei (0) · ej (t)

)〉
〈∑

i

∑
j P2

(
ei (0) · ej (0)

)〉 . (8)

Calculation of this correlation function is
computationally demanding, particularly at longer
times. In order to set a direct link with experimental
results, we show the temporal behavior of the OKE
signal in the log-log plot for the system across the

I–N phase transition in figure 1b. The short-to-
intermediate-time power law regime is evident in
the OKE signal for the system studied here. Like
single particle second rank OTCF, it is also verified
to be a universal phenomenon near I–N transition.12

III. Fragility of liquid crystals
We estimate the orientational correlation time
τ as the time taken for Cs

2 (t) to decay by
90%, i.e.,Cs

2(t = τ) = 0.1. Figure 2(a) shows τ

in the logarithmic scale as a function of the
inverse temperature along the three isochors for
each of the three systems considered. We have
scaled the temperature by TI−N in the spirit of
Angell’s plot, that displays the shear viscosity
(or the structural relaxation time, the inverse
diffusivity, etc.) of glass-forming liquids as a
function of the inverse of the scaled temperature,
the scaling being done in the latter case by the
glass transition temperature Tg .26,27 For all the
three systems, two distinct features are common:
(i) in the isotropic phase far away from the I–N
transition, the orientational correlation time τ

exhibits the Arrhenius temperature dependence,
i.e., τ (T) = τ0 exp(E/kBT), where the activation
energy E and the pre-factor τ0 are both independent
of temperature; (ii) in the isotropic phase near
the I–N transition, the temperature dependence
of τ shows marked deviation from the Arrhenius
behavior and can be well described by the
Vogel-Fulcher-Tammann (VFT) equationτ (T) =
τ0 exp[B/(T −TV FT )], where τ0, B, and TV FT

are constants, independent of temperature. Again
these features bear remarkable similarity with
those observed for fragile glass-forming liquid.
A non-Arrhenius temperature behavior is taken
to be the signature of fragile liquids. For fragile
liquids, the temperature dependence of the shear
viscosity follows the Arrhenius behavior far above
Tg and can be fitted to the VFT functional form in
the deeply supercooled regime near Tg .26,27 The
striking resemblance in the dynamical behavior
described above between the isotropic phase of
thermotropic liquid crystals near the I–N transition
and supercooled liquids near the glass transition
has prompted us to attempt a quantitative measure
of glassy behavior near the I–N transition. For
supercooled liquids, one quantifies the dynamics by
a parameter called fragility index which measures
the rapidity at which the liquid’s properties (such as
viscosity) change as the glassy state is approached. In
the same spirit28 that offers a quantitative estimation
of the fragile behavior of supercooled liquids, we
here define the fragility index m of a thermotropic
liquid crystalline system as21

m = d log10 τ(T)

dTI−N /T

∣∣∣∣
T=TI−N

. (9)
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Figure 3: Time evolution of the rotational non-Gaussian parameter
αR

2 (t) in a semi-log plot for the system with aspect ratio κ = 3. The time
dependence is shown at several temperatures (T = 3.5, 3.25, 3.0, 2.75,
2.5, 2.25, 2.0, 1.88, 1.82, 1.78, and 1.5) across the isotropic-nematic
(I–N) transition along an isochor at density = 0.33. a) On a different
scale along the vertical axis (appearing on the right), time evolution of
the mean square angular deviation

〈
�φ2 (t)

〉
is shown in a log-log plot

for three temperatures: the highest temperature studied in the isotropic
phase (T = 1.5) and the other two temperatures (T = 3.0 and 2.75) that
are closest to the I–N transition on either side along with the time
evolution of αR

2 (t), and b) On a different scale along the vertical axis
(appearing on the right), the time evolution of the single-particle second
rank orientational time correlation function Cs

2 (t) is shown in a log-log
plot for the two temperatures (T = 3.0 and 2.75) that are closest to the
I–N transition on either side along with the time evolution of αR

2 (t).The
solid lines denote the curves for the high temperature isotropic phase
and the dashed lines for the low temperature nematic phase.

It is clear from the above equation that if τ(T)
follows Arrhenius temperature dependence, m will
be constant throughout the whole temperature
range. Figure 2(b) shows the density dependence
of the fragility index for the three systems with
different aspect ratios. For a given aspect ratio, the
fragility index increases with increasing density,
the numerical values of the fragility index m
being comparable to those of supercooled liquids.
The density dependence observed in the present
work is remarkably similar to those observed for
supercooled liquids. For the range of aspect ratios

studied here, the dependence of the fragility index
on the density is becoming stronger as the aspect
ratio becomes smaller.

IV. Heterogeneous dynamics
Another hallmark of fragile glass-forming liquids
is spatially heterogeneous dynamics29 reflected
in non-Gaussian dynamical behavior.30 It is
intuitive that the growth of the pseudo-nematic
domains, characterized by local nematic order,
in the isotropic phase near the I–N transition
would result in heterogeneous dynamics in liquid
crystals. We have, therefore, monitored the time
evolution of the rotational non-Gaussian parameter
(NGP),31,32 αR

2 (t), which in the present case is
defined as

αR
2 (t) =

〈
�φ4 (t)

〉
2
〈
�φ2 (t)

〉2 −1 (10)

where

〈
�φ2n(t)

〉= 1

N

N∑
i=1

〈|φi (t)−φi (0)|2n〉. (11)

Here φi is the rotation vector like the position
vector ri appears in the case of translational NGP of
ith ellipsoid of revolution, the change of which is
defined by �φi (t) = φi (t)−φi (0) = ∫ t

0 dt ′ω
(
t ′),

ωi being the corresponding angular velocity,22,23

and N is the number of ellipsoids of revolution in
the system. NGP will have value equal to zero when
system dynamics is spatially homogeneous and will
have a non-zero value when the system dynamics
is spatially heterogeneous. As a typical behavior,
Fig. 3(a) and (b) show the time dependence of the
rotational NGP for one of the systems at several
temperatures across the I–N transition along an
isochor. On approaching the I–N transition upon
cooling, a bimodal feature starts appearing with
the growth of a second peak, which eventually
becomes the dominant one, at longer times.21,31 We
further investigate the appearance of this bimodal
feature in NGP plot. To this end we calculate
mean square angular deviation (MSAD) of the
system at different temperatures starting from high
temperature isotropic phase to low temperature
nematic phase. The appearance of the bimodal
feature in the rotational NGP is accompanied by a
signature of a sub-diffusive regime in the temporal
evolution of the MSAD, the time scale of the short-
time peak and that of the onset of the sub-diffusive
regime being comparable, as shown in Fig. 3(a).21,31

We note that the dominant peak appears on a time
scale which is comparable to that of onset of the
diffusive motion in orientational degrees of freedom
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Figure 4: a) The temperature dependence of the average inherent structure energy per particle eIS along three isochors at
densities ρ = 0.31, 0.32, and 0.33 for κ = 3. The inset shows the root mean square fluctuation in inherent structure energyσeIS ,
computed from a subset of 200 configurations for each state point, as a function of temperature T at the same three densities.
b) The evolution of the average order parameter S with temperature both for the inherent structures (filled) and the
corresponding pre-quenched ones (empty). The inset shows the temperature dependence of the average potential energy Epot at a
state point obtained from averaging over the molecular dynamics trajectory. For clarity, Epot is shown for the state points along
only one isochor corresponding to the density ρ = 0.32. The state points considered in our simulations correspond to (i) the
isotropic (I) phase for T � 1.297 and the smectic-B (Sm–B) phase for T � 0.595 along the isochor at ρ = 0.31; (ii) I for T � 1.495
and Sm-B for T � 0.706 at ρ = 0.32; (iii) I for T � 2.089 and Sm-B for T � 0.803 at ρ = 0.33. c) The inverse temperature
dependence of the single-particle orientational relaxation times τ s

l , l = 1 (filled) and l = 2 (empty), in the logarithmic scale. The
straight lines are the Arrhenius fits for the subsets of data points, each set corresponding to a fixed density: ρ = 0.31 (circle),
ρ = 0.32 (square), ρ = 0.33 (triangle up).

(ODOF) as evident in Fig. 3(a).21,31 Similar feature
has been observed recently for supercooled water.31

We further find that the time scale at which the
long-time peak appears is also comparable to the
time scale of onset of the plateau that is observed
in the time evolution of Cs

2 (t), as shown in Fig.
3(b).21,31

V. Energy landscape analysis
Several studies have attempted to interpret the
dynamics of glass-forming liquids in terms of the
features of the underlying energy landscapes.33–38

Energy landscape analysis gives the potential energy,
which devoid of any kind of thermal motions, of
inherent structures of the parent liquid and hence
provides a better understanding of the structure and

dynamics of the parent liquid. Figure 4a displays the
average inherent structure energy as the change in
temperature drives the system across the mesophases
along three different isochors. Figure 4b shows the
concomitant evolution of the average orientational
order parameter S both for the inherent structures
and the corresponding pre-quenched ones. It is
evident that the average inherent structure energy
remains fairly insensitive to temperature in the
isotropic phase before it starts undergoing a steady
fall below a certain temperature that corresponds
to the onset of the growth of the orientational
order14. As the orientational order grows through
the nematic phase, the system continues to explore
deeper potential energy minima until a plateau is
reached on arrival at the smectic phase14. In the
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Figure 5: The average second-rank orientational order parameter 〈P2〉 as a function of temperature
along two isobars. The circles correspond to the data for the pressure P = 25 and the squares for
P = 10. The phase boundaries are shown by vertical dotted lines for P = 25 and by a vertical solid line
for P = 10.
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inset of Fig. 4a, the location of the maximum of the
mean square fluctuation in the inherent structure
energy shows that the system explores potential
energy minima spanning over a broader energy
range as it settles into the nematic phase. This
suggests the critical role of fluctuation effects in the
nematic phase. The average potential energy for a
state point obtained from the molecular dynamics
trajectory, however, decreases rather smoothly in
all three phases with decrease in temperature as
illustrated in the inset of Fig. 4b. It is evident that
the signature of the I–N transition is quite weak here
in contrast to that of the nematic-smectic transition.
We have repeated the same analysis for a larger
system size to check the effect of finite system size,
but qualitatively ended up with same conclusions as
the smaller one. Note that this has been observed for
a glassy system,36 where the average IS energy also
falls over a temperature range.34 Like supercooled
liquid, we have also observed a Gaussian form of
number density of IS with eIS.21

Figure 4c illustrates the correlation of the
energy landscape behaviour with the dynamics
the system exhibits. Here, we define relaxation
times τ s

l (T) as the time when Cs
l (t) = e−1.14 The

dramatic slow down of orientational dynamics with
decreasing temperature near the I–N transition
manifests in the temperature dependence of
these relaxation times. Figure 4c shows that in
the isotropic phase far from the I–N transition
region τ s

l (T) exhibits the Arrhenius behavior, i.e.,
τ s

l (T) = τ0,l exp[El/(kBT)], where the activation
energy El and the infinite temperature relaxation
time τ0,l are independent of temperature. We find

that the breakdown of the Arrhenius behavior
occurs at a temperature that marks the onset of
the growth of the depth of the potential energy
minima explored by the system.14 Such correlations
of different other properties with the landscape
have been investigated in several other studies for
both supercooled liquids and thermotropic liquid
crystals.39,40

B. Discotic liquid crystals (disk-like molecules)
We first need to characterize the phases that appear
along the isobars studied here. To this end, we have
monitored the average second-rank orientational
order parameter 〈P2〉. 〈P2〉 tends to zero in the
isotropic phase but retains a non-zero value because
of the finite size of the system. In the nematic phase,
〈P2〉 has a value above 0.4. For the columnar phase,
〈P2〉 is above 0.9. In the present case, we observe
the I–N–C phase sequence along the isobar at the
higher pressure and the sequence I–C along the
other isobar. The temperature dependence of 〈P2〉
has been shown in Figure 5.

I. Single particle orientational dynamics
We have investigated orientational dynamics
at the single-particle level by monitoring the
temporal evolution of the corresponding second-
rank orientational time correlation functions
(OTCF). In Fig. 6, we show the time evolution
of the single-particle second-rank OTCF at several
temperatures in log-log plots. The emergence of a
power law decay at short-to-intermediate times near
the I–N phase boundary is notable in Fig. 6(a). It
follows from Fig. 6(a) that as the system transits
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Figure 6: Time evolution of the single-particle second-rank OTCF in log-log plots for the discotic
system at several temperatures. The dashed lines are the simulation data corresponding to increasing
orientational order parameter from the bottom to the top. The solid lines are the linear fits to the
data, showing the power law decay regimes. (a) Along the isobar at P = 25.0 at several temperatures:
T = 2.991, 2.693, 2.646, and 2.594; (b) Along the isobar at P = 10.0 at all the temperatures studied for
the isotropic phase.

across the I–N phase boundary, two power law
relaxation regimes, separated by a plateau, appear
giving rise to a step-like feature. However, the decay
of the single-particle second-rank OTCF in the
isotropic phase near the isotropic-columnar phase
boundary does not follow any power law as evident
in 6(b).

II. Collective orientational dynamics
In optical heterodyne detected optical Kerr effect
measurements (OHD-OKE), one probes collective
orientational relaxation41. In recent OHD-OKE
experiments with calamitic liquid crystals, the decay
of the OKE signal has been found to follow a
complex pattern.3,4 The most intriguing feature
has been the power law decay regimes at short-to-
intermediate times.4,5 We have therefore monitored
the time evolution of the collective second-rank
OTCF. In the present case, the negative of the
time derivative of the collective second-rank OTCF
provides a measure of the experimentally observable

OHD-OKE signal. As monitoring the time evolution
of collective orientational correlation function
is computationally quite demanding, we have
restricted ourselves to the short-to-intermediate
time dynamics that would suffice to compare
the most intriguing aspect of the experimental
observations. In Fig. 7, we show in log-log plots the
temporal behavior of the OKE signal derived from
present system at several temperatures. A short-to-
intermediate-time power law regime is evident in
the decay of the OKE signal on either side of the I–N
transition as illustrated in Fig. 7(a). In consistency
with the single-particle dynamics, such a power law
decay regime is not observed for the OKE signal in
the isotropic phase near the I–C phase boundary
as apparent in Fig. 7(b). It follows from the time
evolution of the single-particle second-rank OTCF
shown in Fig. 6(a) that as the system settles into
the nematic phase, two power law decay regimes,
that are separated by a plateau, emerge. Such a
feature bears a close resemblance with what has been
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Figure 7: The short-to-intermediate time decay of the OKE signal in
log-log plots for the discotic system. The dashed lines are the simulation
data and the solid lines show the linear fits to the data showing the
power law decay regimes: ∼ t−α. The values of the power law exponent
α are given below in the parenthesis. (a) Along the isobar at P = 25.0 at
several temperatures: T = 2.991, T = 2.693 (α = 0.208), T = 2.646 (α = 0.194),
and T = 2.594 (α = 0.178). (b) Along the isobar at P = 10.0 at several
temperatures: T = 2.298, 2.196, and 2.143. Temperature decreases from
the top to the bottom at the left of the figure in each case.

observed recently for a model system of calamitic
liquid crystals 21. The decay pattern is also similar
to those observed for models supercooled molecular
liquids. In fact, based on a series of OHD-OKE
measurements Fayers and coworkers have recently
drawn an analogy in the orientational dynamics
between calamitic liquid crystals in their isotropic
phase near the I–N transition and supercooled
molecular liquids. The analogous dynamics could
be captured in a subsequent molecular dynamics
simulation study of model systems of these two
classes of soft condensed matter. The short-to-
intermediate time power law decay of the OKE
signal observed therein bears a close similarity
with what is found in the present discotic system
across the I–N transition. The contrasting behavior
observed in orientational relaxation in the isotropic
phase near the I–N and the I–C phase boundaries is
noteworthy. Such an observation may throw new
light on the origin of the power law relaxation
in the isotropic phase near the I–N transition.

While the I–C transition is strongly first order
in nature, the I–N transition is only weakly first
order with certain characteristics of the continuous
transition. This is reflected in the present case in
a much larger change in the density marking the
I–C transition as compared to the I–N transition
(data not shown). The weakly first order nature
of the I–N transition appears to play a role in the
short-to-intermediate time power law relaxation.
It seems fair to trace the origin of the power law
decay in orientational relaxation to the growth in
the orientational correlation length in the isotropic
phase near the I–N transition.

III. Theoretical analysis
The I–N phase transition is weakly first order
both in calamitic and discotic systems. This is
manifested in the growing orientational pair
correlation length as the I–N phase boundary is
approached from the high temperature isotropic
phase. Apparently, a second order phase transition
at a temperature only slightly lower (by ≈ 1 K),
where the orientational correlation length would
have diverged, is preempted by the weakly first order
phase transition. Nevertheless, even this weakly
first order phase transition is driven by the growing
correlation length. The temperature dependent
growth of this correlation length ξ(T) can be given
by the following expression1

ξ(T) = A
(
T∗ −T

)−ν
(12)

where ν is 0.5 in the Landau mean-field theory.
A simple mode coupling theory, based on time
dependent density functional theory, shows that
this growing correlation length can give rise to a
power-law decay of the type observed in simulations.
This approach uses the the generalized Debye–
Stokes–Einstein relation between the correlation
time, diffusion, and friction42

C2 (z) = 1

(z +6ADR (z))
(13)

and

DR (z) = kBT

I (z +ς(z))
(14)

where A is equal to 1 for the single-particle
relaxation, but is related to orientational caging
for collective dynamics. It was shown elsewhere,
the growing correlation length can give rise to a
singular frequency dependence of ς over a frequency
range ς(z) ∼ A/zα with α = 0.5. This power law
dependence in the frequency dependence of friction
in turn gives rise to a power law decay in the
orientational time correlation function.
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Figure 8: The orientational pair distribution function g220 (r) for the
model discotic system at state points along two isobars: (a) the one at
P = 25 and (b) the other at P = 10. The temperature decreases from the
bottom to the top at the position of the dominant peak of the curves
starting from high temperature isotropic phase down to the temperature
which is just above the temperature at which columnar phase appears.

IV. Orientational pair correlation function
Thus, in the above mentioned theory, the origin
of the power law decay is essentially the same as
observed near the critical phenomena. However,
one may not expect a universal behavior since there
is no true divergence. The absence of power law
decay near the I–C phase boundary could then be
due to the absence of any growing correlation length.
The I–C phase transition is strongly first order in
nature where both orientational and positional
order set in at the same time. Since the growth of
orientational correlation is small, a power law decay
is not expected. To verify our assertion, we have
calculated the distance dependent orientational
pair distribution functiongll′m (r)43 for the system
studied here along both the isobars and presented
in Fig. 8(a) and Fig. 8(b), respectively. While the
growth of orientational correlation length is clearly
evident across the I–N transition, such a growth
is found to be totally absent in the isotropic phase
near the I–C phase boundary.

Conclusion
We have presented theoretical and computer
simulation studies of dynamics of calamitic and
discotic liquid crystals, both near the I–N phase
boundary and also in the respective liquid crystalline
phases. Computer simulation studies of single
particle and collective orientational dynamics of
thermotropic liquid crystals near the isotropic-
nematic (I–N) transition are presented and
compared with the dynamics of supercooled liquids
near glass transition. The short-to-intermediate
time scale power law decay in the orientational
relaxation appeared to be the most intriguing
feature. In analogy with the supercooled liquids,
a fragility index of liquid crystals is introduced to
quantify the glassiness of orientational dynamics
near the I–N transition. Our investigation of
spatially heterogeneous dynamics strengthens the
analogy further. The striking resemblance in
the correspondence between the manner of the
exploration of the potential energy landscape
and the onset of the non-Arrhenius temperature
dependence of the relaxation time might imply a
unique underlying landscape mechanism for slow
dynamics in soft condensed matter.

In the second part of study, of disk-like
molecules, the system has been studied along two
isobars so chosen that the phase sequence I–N-
C appears upon cooling along the one and the
sequence I–C along the other. We have investigated
temperature dependent orientational relaxation
across the I–N transition and in the isotropic
phase near the I–C phase boundary with a focus
on the short-to-intermediate time decay behavior.
While the orientational relaxation across the I–N
phase boundary again shows a power law decay
at short-to-intermediate times, such power law
relaxation is not observed in the isotropic phase
near the I–C phase boundary. Study of orientational
pair distribution function shows that there is a
growth of orientational pair correlation near the
I–N transition whereas such a growth is absent in
the isotropic phase near the I–C phase boundary. As
the system settles into the nematic phase, the decay
of the single-particle second-rank orientational time
correlation function follows a pattern that is similar
to what is observed with calamitic liquid crystals
and supercooled molecular liquids.

The present study brings out the role of
intermolecular correlations in giving rise to the
power law, in a way quite similar to the emergence
of such effects in supercooled liquids, except that
here the fluctuations due to a weakly first order
phase transition makes the effects much more
pronounced, as evident from experiments and
simulations. Energy landscape analysis provides a
convincing testimony to this observation.
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Future work may look into the relaxation
dynamics of discotic liquid crystals more extensively.
As already mentioned, this system has not
been studied in adequate detail. Another greatly
interesting system is calamitic liquid crystals of
dipolar rod-like molecules because many real
molecular systems are dipolar. Such a system can
exhibit dynamics distinctive of the system. Only a
few studies exist along this line44.
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