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Abstract

A physiological-type flow in a straight circular tube in the presence of a uniform transverse magnetic field is
investigated. The pressure gradient is mathematically modelled by a Fourier scries of which the second partial
sum rescmbles very closely with the observed form of pressure gradient. The governing equations are solved
exactly by using the method of Laplace transforms. It is found that the effect of a magnetic field is to reduce the
magnitude of velocity ncar the central region of the pipe. The coellicients of amplitude and phase lag of the
mean velocity are also reduced in the presence of a magnetic field.

Key words: Physiological-type low. transverse magnetic field.

l. Introduction

The problems of pulsatile flow through pipes have received much attention in literature
due to their importance in blood-flow research. Womersley' has obtained an exact
Solution for a purely oscillatory flow in a rigid tube and brought out the importance of
such flows in physiology. An exact solution of pulsating laminar flow superposed on lhf
$eady motion in a rigid circular pipe has been presented by Uchida?. Chandran et al”,
“Chandran and Yearwood*, and Yearwood and Chandran® have studied experimentally
the Ph}fﬂiological-lype flow in a curved tube. The effect of unsteadiness on the 'ﬂow'h_as

N Investigated experimentally by Siouffi er al® using simple pulsatile- and physiological-
'Ype flows in tubes with stenosis and bifurcations.

The application of magnetohydrodynamic principles in medicine and engineering is of

. | \
Browing interest. In the investigations reported by Barnothy’, it was observed that (he

biolog; applicati of an external
gical sys : ; : affected by the apphicalion ‘
systems, in gencral, are greatly affe y F regulating

Magnetic field. K o ' LB sted the possibility
. Korchevskii and Marochnik™ sugges _ :
Movement of blood by the application of an external magnetic field. By modciling l::
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| tube of uniform cross-section with non-conducting wajj

" a cylindrica -
t:/loc;dm»;j;il iyo :cijthal the application of magnetic field reduces the speed of blood
araanye :

OW.

fl ¢ the steady one-dimensional ﬂow.of an electrically conducting
with non-conducting walls in the presence of a Uniform
been obtained by Gold'?. The corresponding unsteady
problem with an exponentially decaying pressure gradlentNhas l;zen studied by Gupy,
and Bani Singh'! for the special case of the Reyneldlsz umber egual t0 magnetic
Reynolds Number. Deshikachar and Ramachandra Rac: have studied the. effect of 5
transverse magnetic field on the steady flow of blood in a ch_zmnel of variable cross.
section and the corresponding oscillatory flow has 'been investigated by f(amachandra
Rao and Deshikachar!?. They have highlighl;d the importance o_l' magnetic field on the
separation in the flow and the steady-streaming phenomena. It IS well knovtin that the
flows in tubes of variable cross-section in the presence of an applied magnetic field are
important in some biological flows. McMichael 'and. Deutsch'® have considered the
steady flow in a circular tube of variable cross-section in the presence of a magnetic field
in the axial direction of the tube and the corresponding oscillatory flow has beep
investigated by Deshikachar and Ramachandra Rao'”. It would be interesting to study
the effects of transverse magnetic field for the flows in tubes of uniform or non-uniform

cross-section.

An exact solution fo .
fluid through a circular pipe
transverse magnetic field has

In the present paper, as a first attempt we have considered the effect of transverse
magnetic field on a physiological-type flow in a uniform circular pipe. The form of the
pressure gradient or the volume flux for the physiological-type flow presented by Siouff
et al® is mathematically modelled by a Fourier series and it is observed that the graph of
the second partial sum of this series resembles very closely with the form of the volume
flux used by them®. The governing equations are solved exactly by using the method of
Laplace transforms. It is found that the effect of magnetic field is to reduce the velocity
significantly near the centre of the pipe. The phase lag and amplitude of mean velocity
are also reduced in the presence of a magnetic field.

2. Formulation of the problem

ngsidcr a physiolqgicz?l-t ype of flow of an incompressible electrically conducting viscous
" fg_a C“C'_Jlaf pipe in cy!mdrical polar coordinates (r', &, z') with the axis of the pipe
comciding with the z'-axis. A uniform transverse magnetic field H, is applicd

pc:rpendlcular to z’-gxis, The equations governing the unsteady flow under the usual
magnetohydrodynamic approximations are!®-

| o0 —
p I:E,}T*'(U V)i ]= =V Vi u (T x B, (0
¥ F aH-’
VxE= ~ (2)
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vxH =T

(3)
J=c[E+ud">xH)],

(4)
vie=0=V" -H, (5)

where ¢ is the :relocity, p’ the pressure, p’ the density, 5 coefficent of viscosity, H’ the
magnetic ficld, £ the electric field, J* the current density, ¢ the electrical conduclivity of
the fluid, p the magnetic permeability, V' the del operator and V** the Laplacian operator
in cylindrical polar coordinates. Using (3)-(5), equations (1) and (2) can be reduced to the
following equations:

(-}E' —¢ ¢y —F [ J” " L’ ' p? aF
p'[a;ﬂc -v)v]-u(H VYA = —VP +qV" ¢, (6)
P = cH’
poV' x (&' x A+ VA = po—-, )

where P' = p'+ |H"’|/2. Assuming the motion to be purely axial, the velocity and magne-
tic fieids are taken as

7 = [0, 0, v.(r', 0. )], (8)
H =[Hycos0', —Hysint', H.(r', ¢, t)]. (9)

Substitution of (8) and (9) in (6) and (7) gives

cv. | P H cH. sint) ¢H.
-;U—:= ——E—P—+vV"‘ r;i.ﬁ-ﬁv;E cosl' = =~ (1)
Cl p' 7' - p or ol
oF i F (1)
or’ 0’

oH Qo _sintf 0. (12

where

v =_a_2_.+l_ ﬂ_+l ﬁj (1)

‘ : , ; - | alone.
EQUataonS (10} and (11) imply that the pressure gradient 15 @ function of time alc

|nlr0ducing the non-dimensional variables, defincd by

o (14)

=tVo, h=Hi/Hgy, p=r'fa. t =0,
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is the radius of the tubc and ¥, the characteristic velocity in equations (10) and
re d I

whe dient given in Appendix I, we obtain

(12) with the value of pressure gra

| a4,
sin00 ¢h ChY o g 2@

V2 + (M?/Rm) (‘ﬁ ;.;;,-LOS";[;)*"EO Kne T2 A (15)

. T

sin0 v w\_ 5

where
A2 i T &

2=—-—- = --*--'+'—-“‘_". 117
ViER T & o )

M2 = n?H2d? (6/p'v) (Hartmann Number),

Rm = poaVy (Magnetic Reynolds Number),

v? = wa?/v (Womersley parameter),

n, = v/ is the ratio of viscous diffusivity to magnetic diffusivity, x = 1/uo. and

=a*P_/nV, is a non-dimensional number.
In general, it i1s difficult to obtain the exact solutions of equations (15) and (16).

Approximate solution of this problem for small Hartmann Number has been presented by
Gupta'’. In what follows an exact solution for a special case in which 5, = 1, which

implies that the Reynolds Number (R = aV,/v) and the magnetic Reynolds Number are

the same, is obtained. The limitations inherent to this equality have been discussed by
Gupta and Bani Singh!'!,

The initial and boundary conditions on velocity and magnetic fields are
v{p, 0,0)=0; h(p, 0,0)=0, (18)
and
v(l, 0, )=0; h(l,0,1)=0. (19)

1;]he ﬁrst of the boundary conditions (19) represents the no-slip condition at the wall of
the pipe p =1 and the second implies that the walls are non-conducting.

3. Solution of the problem

Taking the Laplace transfor

conditions (18), we obgain m of equations (15) and (16) with n, = | and using the initial

_ M? (sin0 o i
Vzv—-——_(_ ! 5 ah) x|
R\»p a0 dp n=u(s-—in}+a 3 (



FLOW IN A CIRCULAR PIPE

— sinf dv Jv 5 5
V2h=R > aG_COSB-é; = 3’3;

where x
p= | vexp(—st)dt.
¢

Using the transformations

p=0+ 5 ks _ +MIT,
—oa’s(s—in) R
s k M -
y=0+ e,

n=0 a2s(s—in) R

in equations (20) and (21) and simplifying, we obtain

Vzé_M(sinﬂ a¢—c089-a£)=azsd),

p Cb cp
50 sinf ¢y Qd_/_ 2oy
Vg M( @0 cosﬂap a‘sy

Again using the transformations
f(p, B)=efrcs,
g(p, )=e Preostiy,
equations (25) and (26) are reduced to
Vif=y3/.
Vig=7y’g,
where

vi=f244%s, M=2f.

The boundary conditions for fand g are derived
(24) and are given by

fi1, 0y = efeer? Eo xis(s—in)’

from (27) and (28) using (19), (23)

251

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

and
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% Kn (32)
g“‘ )= ¢~ frost ni:o ,125(3.-— in) :

isfyi : ditions (32) are piy
f equations (29) and (30) satisfying the boundary con ) are given
The solutions of eq
by

(33)
A_I_(py) cos m0,
0

T o I

f(p, 0)=,,.

and

(34)
Pl (py) cos mO,

0

n ™M 8

g(p, 0)=

m

. : he first kind and order m. The coefficients
. fied Bessel functions of t it _
whcredl,gpfir:rgel:;?ili:e d using the boundary conditions (32) and are given by
A. and B,

4 _[;5 ks ]F L (35)

n=0 02s(s—in) | ™ 1_(3)°
36
Bmz(_l)mAm, m=01]121--'! ( )‘
where
E"'zé'm:g (37)
=2, m>0.

Using (33) and (34) in (27) and (28), we obtain ¢ and ¥ and in turn from (23) and (24), we
get

;o b - kn Im(ﬁ)
E+%h=e‘f’ﬂmﬂ[ z ( 2 )-s

=0 \ n=0 '123(5‘5") '"E.._Gf
s __ kK, (38)
1, (py) cos mé "‘fo :xzs(s-r‘n):"
and
o s (5 k I (B)
——h = pBpcosd Y ¥ n P Im
U R j [m=0(n=0 azs(s-inJ)s"’ l.(p) (o7)
' COS mf) — E __ : %)
n=Q DfZS(S"I'H)
Evaluating

the integrals of the Inverse Laplace transforms of (38) and (39) by contour
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integration methods, we get

[E{E ik, (1 I,[p(B*+ia*n )”2])
—olazo a’n 21, [ (B> + ia?n)'/?]
J (&) (B2 + EL )2+ EL, +im) }

e .

) M8
I M8

Qr

and

M © ik,

i O! n 2Im[(ﬁz+ia2n)1!2]

{E ik, (]_I [P(ﬁ2+ia2n)”2])eim
0

r—:'—l
||M8

2k (Er)  €xp[— (B2 +E0N/7]E }

- ¥
Zort Jalm) (B HEREHEtin)

™8

0Or

(—1"¢,1,(B) cos m()], (41)

where ¢, are the roots of I, (y)=0. Now using the results

e 1_(pB)cosmf = efreost,
0

n 8

> (= 1)"enln(ph) cos mf = e~ Fr st (42)

m=0
and solving (40) and (41) for v and h, we obtain

© ik, 3 {m ik, I . [p(ﬁ2+la n)lr‘l] et
n=0

U="§0 azne'm"‘mgo % 2& nI [(ﬂz+m )1!2]

2 © 2k, Enpdr(Eme) EXPL— (B +é..,)/a’]r}
- & L =5 " () (B2 V(B + &ar T iN)

n=0 r=|
(—1)" exp(fp cos m0)]

43
&1 (B) cosmb [exp(— Bp cos 0)+ i
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and
e 2[5 iR IlpBrin ]
meo | n=0 da’nf 1, [(B*+ia’n)'*]
e k..Ra:..,,J,.,(ﬁ,....)exp[—(ﬂ2+¢3.,)/a21r}
cegimr 2B BR+ EL NP Hdntin)
ce. 1 (B) cosmb [exp(— Bp cos ) —(— 1)" exp(Bp cos mb)]. (44)

For large times, i.e., t— o0, we obtain the solution due to steady-oscillating flow and it is
given by

ko E 5 I.(B)

_4_ﬁ m=0 " Im(ﬁ)

I.(pf) cosmB [exp(— Bp cos8)

v=

Ik" elnl
2
X" N

+(—1)"exp(fp cos )]+ E
n=1]

{ (- % Llp+ia’n)'?]

m=0 ZIm [(B2 + fazn)lf?.-‘l smlm (ﬁ) COS m9

‘lexp(—Bpcos@)+(— )" exp(Bp cos 9)]}. (45)

= _KoR % I (B)
h=-2" % "
832 "":0{8'" Im(ﬂ)

I, (Bp)cosmb

‘lexp(—Bp cosG)— (- 1)™ exp (Bp cos 9)]}—2,0 cos 6

5 B . {ik,,R I.[p(B%+ia? n)t/2
=t m=0 (42’ nf I, [(B*+ia®n)"2] om

o .
m (B) cos mo Lexp(—fp cos 0)—(—~1)y" exp(fp cos B)]. (46)

6), we obta'in the results given by Gold!°. The results
ed by taking the limit -0 in (45). In this limit (45)

k ©
”""f“-—pz)-— E'L [I_Jo(&n”zi"‘”):, :
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4. Results and conclusions

Evaluating the expressions for the velocity and magnetic fields
numerically is quite complicated and difficult as they contain double infinite series and
modificd Besscl functions of dilferent orders with complex-valued argumcnt: ?\:/
consider only up to two harmonics in all our numerical calculations as the contrit;ulio;
due to the third and higher harmonics is negligible compared to the first and second

harmonics for the small values of x and f, the parameters governing the system. The
corresponding pressure gradient takes the form

presented in (45) and (46)

S,=Py+P.,cost+Psint+P,,cos2t+ P,sin 2, (48)

and is represented in fig. 11. The Ps in (48) are calculated using (A4)—(A6).

The oscillatory part of the velocity field in (45) is computed numerically for 6§ =0.
x=0-25. =08 and for different p is plotted as a function of ¢ in fig. 1. The dotted lines
in all the figures correspond to f# =0, ie., the non-magnetic case. It is obscrved that the
velocity field as a function of time is similar to the prescribed pressure gradient curve §,
shown in fig. 11 with a shift in the axis. The effect of magnetic field is to reduce the
magnitude of velocity for all times compared with the corresponding non-magnetic case.
Figure 2 shows the velocity field for 0 =0, x=0-25, # =08 for different values of t as a
function of p and it is seen that the reduction in velocity due to magnetic effect is more
pronounced in the central region of the pipe. The velocity field for =0, x=1, for
different values of f=0, 2, 3, 4 and for two values of ¢ is depicted in fg. 3. Similar
behaviour is observed for other values of f and is not shown in the figure. It is observed
that for a fixed Womersley parameter x, the velocity decreases remarkably and the

&02[_

0.01

-0.01

-0.02

Fi. 2. Velocity field for x= I
different values of t.

"‘" /| —-—A—'—“—‘

FIG. 1. Velocity field for x =025, p =08, 0=00
for different values of r.

g=1 0=0 for
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%.0
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1> 0 - 0.5 0 0.5 /
\ ¥ ..
| N /
4.0
-0.05} 3.0 N W
0 - T35
-0.10 ! '  —

FiG. 3. Velocity field for x=1,0=0. §=0, 2. 3.4

for different values of 1.

velocity profile becomes more and more flat as the magnetic parameter B increases, as
expected, Shercliff*®. The velocity field for fixed f=3, 8 =0, for different values of ¢ is

— i
-
0.08} s N
7~ w N
7/ \\
/ N
0.05- / \ \
/""’ T=0 ~
s ~N
~
/4 P
j T
el A e —
o W % W
A
™~ wIs
\ .h\“hah;Zfr- fﬂ'##
-0.05} \ "'"-_:_—-""""-
\ 4
\ 3NS5 /
% 7
. /
-'0-10"' H""—--.._.__.——'f
I_ 1l L __§ J

Fi. 4. Velocity field for =3, =0, a=] for

different values of r.

plotted in figs 4 and 5, respectively, for x=1 and x=3 and the flattening of the
velocity field is seen as a increases as predicted by Uchida?. In order to compare our
results with those of non-magnetic case, the velocity field for 6 = n/2 is depicted in fig. 6
with the other parameters remaining the same as in fig. 4. There is no significant
difference in the velocity fields for these values of 6. The induced-magnetic field for 6 = 0.
x=1 and fi=23, for different values of t is depicted in fig. 7. It is observed that the
induced-magnetic field is more significant near the walls than at the centre.

0.04 -

0.02

I 0

-0.02

-0.04

F_IG. 5. Velocity fi
different values of l.

eld for =3, 0=0, x=3 for

-0.05

l 1

FiG. 6. Velocity field for a=1, f=3, 0=x210f

different values of 1.




FLOW IN A CIRCULAR PipPE

257
0.08
0.05
|2 0
-0.05
-0.08
FIG. 7. Induced magnetic field for a =1, §=0, =3
for different values of .
The sectional mean velocity v, for the flow is given by
| 2x 1 -
U = — f f vp dp do. (49)
8=0 p=0
Using (45) in (49) and simplifying, we obtain
ko x I (ﬁ) l:mz 2
bp=—-— ¥ (— 1", = —5 15(B)— I, (B)
4ﬁ m=0 lm (ﬁ) BZ
~ ik x 2(—1"K, I (/f)fm(ﬁ,n)}
+ ¥ " int — ne X (50)
n=1 ’Izﬂe {] MEG Im[(ﬁz-"iazn)uz]

where

i
L (ff, )= J. L, [p(p*+ix?n)'"2] 1, (pB) pdp.
0

Il one prescribes the volume flux by a Fourier scries instead of
unknown cocflicients of the Fourier scrics in the pressure gradien
by Ccomparing with the coefficients of the Fourier series representing the volume flux.

=0 in (A3}), we

(51)

pressure gradient, the
t could be determined

For a periodic pressure gradient given in terms of 4 cosinc SCrics (K sa
have the sectional mean velocity as
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0 _t 8 rd

Fic. 8. Coeflicient of amplitudes of mean velocity a,,. Fi6. 9. Coeflicient of phase lag of mean velocity

Mo = 4 I (f) l:mz 2 2 ]
S il LK —'lm. Lo _""Im( _!m( )
Sy A I aT AN P imlh
+ i 'iﬂ' {( 5_-_ Dm) COS?H""(]— é Cm) Sinn!}* (52)
n=] X R m=0 m=0

where C,, and D, are the real and imaginary parts of

2( o l)mﬂmlm(ﬁ) Im('ﬁ..ﬂ).
I.[(B*+ix?n)?] -

Following Uchida?, the coefficients of the amplitude and the phase lag of the mean

velocity in (52), are given by
2 11:2 ¢
D,,,) ] ratn, (54)
0

f(T)

=1.0

-20

FIG. 10. The .

Fir)in (A2) 45 F1G. 11 The partial sums S,. S,. S, of the Founef

series of Fir).
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e {(-(26))( 1)

The values of o, and 9, are computed numerically from (54)
figs 8 and 9 for various values of « and f. From these figures
for the coefficients of amplitude and phase lag in the magneti
to those in the non-magnetic case presented by Uchida2, an
seen that both ¢, and &, reduce significantly

and (55) and are plotted in
we observe that the curves
C case have features similar
d Womersley!. Further it is
for small values of « only, in the presence of

a magnetic field.
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Appendix 1|
For a physiological flow the pressure gradient ¢P’/éz" in (10) 1s taken to be

cP'jéz' = F1), (Al)
where F (1) has the form given in fig. 10 and is defined by

F(ty=m,t, for 0<t < 2n/5,
=m, (4n/5—1), - 2n/5<t < 4n/S,
=m, (t —4n/5), % dn/S5<t < n,
=m,(6n/5—1), - n<t< 6n/s,
=m;(t —6m/5), a5 6n/5<t < Tn/s,
=m,(8n/5—1), . Tn/5<t < 8n/5,
=m, (t — 8n/9S), " 8n/5<t < 9n/5,
=m,(2n —t), . On/5<1t < 2n, (A2)

wilh‘m, =(J3+ l')/(\_/i— 1), my=—3m/5 my=2m,/5 and m, = —m,/5. The pressure
grac}:em of this type is chosen in such a way that the amplitude reduces in each interval
of time for a cycle of oscillation. Expanding F(t) in (A2) as a Fourier series, we get

Fiy=X P,e™=P,+ T P_cosnt+ ¥ P, sinnt, (A3)

n=0 n=| n=1
where the coeflicients are given by
Po=(91/25)m, . (A4

Pen=(m,/57n%) [10 cos (2n7/5)~ 2 cos (4nn/5)— 6 cos nr + cos (6n7/5)
+4 cos(Tnn/5) - cos (8nn/S) — 2 cos (9nz/5)— 4], (AJ)

P, = (m,/5nn) [10sin(2nn/5)— 2 sin (4n7/5) + sin (6nn/S5)+ 4 sin (7nn/5)
~sin(8nn/S) ~ 2 sin (9nn/3)]. (A6)

The graphs of the part;
partial s -
I1. The curve for § UM S 1

for pressure gradie

resembl 0, 1,2, of the Fourier series (A3) are shown in fig.
2 mbles the curve for volume flux given by Siouffi et al® and that

nt in al ;
the femoral artery of a dog presented in Womersley'.



