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Abstract 

A physiological-type flow in a straight circular tube in the presence of a uniform transverse magnetic field is 

investigated. The pressure gradient is mathematically modelled by a Fourier series of which the second partial 

sum resembles very closely with the observed form of pressure gradient. The governing equations are solved 

exactly by using the method of Laplace transforms. It is found that the effect of a magnetic field is to reduce the 

magnitude of velocity near the central region of the pipe. The coefficients of amplitude and phase lag of the 

mean velocity are also reduced in the presence of a magnetic field. 

Re) north: Physiological-type flow, transverse magnetic field. 

I. Introduction 

The problems of pulsatile flow through pipes have received much attention in literature 
due to their importance in blood-flow research. Womersley 1  has obtained an exact 

solution for a purely oscillatory flow in a rigid tube and brought out the importance of 
such flows in physiology. An exact solution of pulsating laminar flow superposed on the 
steady motion in a rigid circular pipe has been presented by Uchida'. Chandran et ( 	 al3 . 

handran and Yearwood 4, and Yearwood and Chandran s  have studied experimentally 

the physiological-type flow in a curved tube. The effect of unsteadiness on theflowh.as  

t" Investigated experimentally by Siouffi et a!6 using simple pulsatile- and physiological- 

type flows in tubes with stenosis and bifurcations. 

The application of magnetohydrodynamic principles in medicine and engineering is of 

growing interest. In the investigations reported by Barnothy 7, it was observed that the 

:°10gical systems, in general, are greatly affected by the application of an external 
nr:gnetic field. Korchevskii and Marochnik s  suggested the possibility of regulating 

movement of blood by the application of an external magnetic field. By modelling the 
247 
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blood vessel by a cylindrical tube of uniform cross-section with non-conducting walls 

Vardanyan g 
 showed that the application of magnetic field reduces the speed of blood i  

flow. 
An exact solution for the steady one-dimensional flow or an electrically conducti ng  

fluid through a circular pipe with non-conducting wal l!: in 	t he presence of a uniform 

transverse magnetic field has been obtained by Gold '°. The corresponding unsteady 
problem with an exponentially decaying pressure gradient has been studied by Gupta# 
and Bani Singh" for the special case of the Reynolds Number equal to magnetic 
Reynolds Number. Deshikachar and Ramachandra Rao" have studied the effect of a 
transverse magnetic field on the steady flow of blood in 

i 
 a channel of variable cross- 

section and the corresponding oscillatory flow has been investigated by Ramachandra 
Rao and Deshikachar n. They have highlighted the importance or magnetic field on the 
separation in the flow and the steady-streaming phenomena. It is well known that the 
flows in tubes of variable cross-section in the presence of an applied magnetic field are 
important in some biological flows. McMichael and Deutsch" have considered the 
steady flow in a circular tube of variable cross-section in the presence of a magnetic field 
in the axial direction of the tube and the corresponding oscillatory flow has been 
investigated by Deshikachar and Ramachandra Rao". It would be interesting to study 
the effects of transverse magnetic field for the flows in tubes of uniform or non-uniform 
cross-section. 

In the present paper, as a first attempt we have considered the effect of transverse 
magnetic field on a physiological-type flow in a uniform circular pipe. The form of the 
pressure gradient or the volume flux for the physiological-type flow presented by Siouffi 
et al' is mathematically modelled by a Fourier series and it is observed that the graph of 
the second partial sum of this series resembles very closely with the form of the volume 
flux used by thee. The governing equations are solved exactly by using the method of 
Laplace transforms. It is found that the effect of magnetic field is to reduce the velocity 
significantly near the centre of the pipe. The phase lag and amplitude of mean velocity 
are also reduced in the presence of a magnetic field. 

2. Formulation of the problem 

Consider a physiological-type of flow of an incompressible electrically conducting viscous 
fluid in a circular pipe in cylindrical polar coordinates , , z') with the axis of the plPe 
coinciding with the e-axis. A uniform transverse magnetic field H o  is applied 
perpendicular to z'-axis. The equations governing the unsteady flow under the usual 
magnetohydrodynamic approximations are': 

(I) 
pi[ 3--131  +031 • in ir ] tr. — yr + qiir2  c -Fp Cis x RI, at' 

err xE 
eta 	 (2) 
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x fis = I' , 
(3) 

= a re p(r x AN, 
(4) 

V' •E' = 0 -= V' • IT , 
(5) 

where If' is the velocity, p' the pressure, p' the density, '7coefficent of viscosity, if' the 
magnet ic  field, E' the electric field,; the current density, a the electrical conductivity of 
the fluid, p the magnetic permeability, V' the del operator and V a  the Laplacian operator 
in cylindrical polar coordinates. Using (3)-(5), equations (1) and (2) can be reduced to the 
following equations: 

pi_ 

	

	 -V 1 P'-ErirV , 	 (6) et 

err 
pan tl (V x)+V r2  H - et' pa—, 	 (7) 

where P' = p' 1 11 ' 2 1/2. Assuming the motion to be purely axial, the velocity and magne- 
tic fields are taken as 

9 = [0, 0, v,.(1, 0', ea 

RI = [Ho  cos 0', - Ho  sin 0', H 1,,(r', 0', t')]. 

(8) 

(9) 

Substitution of (8) and (9) in (6) and (7) gives 

et% 	1 PP' ilHo 	„,eir sin 0' PH; 	 (10) 
1 = 	- + 	v: - ---,- COS U - 7-  
a 	p 

7 

	

P 	Or 	r 

PP' 	PP' 	 (11) 
r 	00' 

eff's 	 Pv:, 	sin 0' Ovs., 	 (12) 
JAG - = V" H: + pa H 0  cos 0' -2:- 

at' 	 Or' 	r' (iv 

Where 

v': -

021 0 	1 02 	 (13) 
+ 	— 	• 

	

r 	r'' 00' 2  

Equations (10) and (11) imply that the pressure gradient is a function of time alone. 

Introducing the non-dimensional  variables, defined by (141 

vsz/ 170 , h = H"../H 0 , p = 	= cot% 
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where a is the radius of the tube and It o  the characteristic velocity in equations (10) and 

(1 1 ) with the value of pressure gradient given in Appendix I, we obtain 
•  

vzi,  + ovf2/Rno sin()  _01 
— cos0

(7,h
-
) 

= E
x 

kne ( 

	

p N) 	

1 , ( V 

up 	n = o 	
nt 4. ce.

et 1 	 05) 

	

sin 0 (17 7 	PV 	 eit 
V 2 h —  RITZ 	- - — COSO ---- = 1

2 
t 1 1  --iit 1 

( 

	

P i1 0 	i'i) 	

- 

(16) 

where 
(12 	(1 	j (12 

v2= 
1-11) 2-±  ;aril +  7)-±  PO 	 (17) 

m 2 = 1.1 2 1p a 2 (c; r p'v) (Hartmann Number), 

Rtn = pow V 0  (Magnetic Reynolds Number), 
22 = 	2/  , a (Womersley parameter), 

th = vIK is the ratio of viscous diffusivity to magnetic diffusivity, Sc = ihia, and 

k a 2  P.M V 0  is a non-dimensional number. 

In general, it is difficult to obtain the exact solutions of equations (15) and (16). 
Approximate solution of this problem for small Hartmann Number has been presented by 
Gupta". In what follows an exact solution for a special case in which t h = 1, which 
implies that the Reynolds Number (R = a V0/v) and the magnetic Reynolds Number are 
the same, is obtained. The limitations inherent to this equality have been discussed by 
Gupta and Bani Singh' 1• 

The initial and boundary conditions on velocity and magnetic fields are 
(p, 0, 0) = 0; h(p, 0, 0) = 0, 	 (18) 

and 

v(1, 0, 0=0; h(1, 0, t)= 0. 	 (19) 

The first of the boundary conditions (19) represents the no-slip condition at the wall of the pipe p = I and the second implies that the walls are non-conducting. 

3. Solution of the problem 

Taking the Laplace transform of equations (15) and (16) with q i  = 1 and using the initial conditions (18), we obtain 

,r;  M 2  ( 
R

sin° 
p cos u —) 

Op 
k 	 (20) E 	22 se  , 

n=o (s — in)
+ 
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Op
) = cc2  sii, p 00 
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(21) 

where 

= v exp ( st) dt. 	 (22) 

Using the transformations 

M - 
(1)=0+ E 	n — 

n = 0 a 2 5(s — +in) R (23) 

cc 	k. 	, 
= ± 

n =0 a2 s(s-in) R 
(24) 

in equations (20) and (21) and simplifying, we obtain 

v20_ AI  (sin o eo 	eep 
COS 0 

p 
	•3 = 2 2 HI) 

v2 	m  (sin  elfr 
-cose e-±)= 2 2 4. 

p (30' 	a p 

(25) 

(26) 

Again using the transformations 

f (p, 0)= 	"nu , 
	 (27) 

	

g (p, 0) = e — fip cosi) 
	 (28) 

equations (25) and (26) are reduced to 
(29) 

V2f= 72f,  

(30) 
g = g  

where 
(31) 

y 2  = p2  + 12  s, m = 2P. 

The boundary conditions for f 
and g are derived from (27) and (28) using (19), (23) and 

1241 and are given by 

f( 1 , 0) = eti cos 
X 	 k„ 
E 

11=0 
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k n  
g (1, 0) = e C4:35 	E 2 	 — 

n=0 	S(S —  in) 	 (32) 

The solutions of equations (29) and (30) satisfying the boundary conditions (32) are given 
by 

f(p, C)=  E A ni l ,,,(py) cos mO, 
in= 0 	

(33) 

and 

g (p, 0) = 
m 0 

P.1 (py) cos mO, (34) =  

where /„, (py) are modified Besse] functions of the first kind and order M. The coefficients 
A. and B. are determined using the boundary conditions (32) and are given by 

	 E im (fl) ,  m = 0, 1, 2, ..., 	 (35) m 	n o g 2 s(s — in) 	in  Int (T) 

(36) 

where 

= I, m = 0 
=2, m > O. 

(37) 

Using (33) and (34) in (27) and (28), we obtain 0 and and in turn from (23) and (24), we 
get 

and 

= e - tip cos o 	 k„ 	i„,(fi) A- __ 
 = 0 	S (S in)) 'flI () 

k„ • in:  (p7) COS me 	E 
n =0  (38) 

M 	 xi ( _ h 	cos [ 
rn

E 	E 
t0 na.- 0 

ic„ 	/, (Th „ 
cx 2  S 	in)) em  17117) I  on (py) 

x, 
cos m 0 — E 

n r- 

kn  
i;4] .  

Evaluating the integrals of the inverse 

(39) 

Laplace transforms of (38) and (39) by contour 
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integration methods, we get 

CID  ik„ 
v+ h = E 	 

n=0 CX
2

n 
(1 — eint ) e —  Pp cos 0 

.[ 
rn 	

ik 	
1 — 

jm[p02±ia2n)1,2]) 

=0 n=0 a 2 n  

op a° 
2kmr 	mr

) exP [ (ar + fi 2)/a 2 ]  t 1 
—E E 	n   

n=0 r1 	i f  gmr)($ 2 + iiir)662  +4,2; +in) 

E mi l (/3)] cos mid, (40) 

and 

a° ik„ 
v--

R 
h = — 	2 	(1 — ein9+ OP ens° 

n = 0 Ot n 

[ Ea°  ti ik n  ( 1_  Im[p(132 +ia2r01/21) 
J  

vn =0 n =0 2 2  n 	muf3 2 ja .2 po i 2 	
ent 

 

a° a° 2k 	) exp [— (f3 2  ar)/2 2 ] t 
.- EE" 	m  mr  • 

n 0 r1 tit (nir) 	+  

•( — ir E m I m  (f3) cos m0 1, 
	 (41) 

where 	are the roots of I,, (y) = 0. Now using the resultsmr  

I cif, I (p fl) cos ma = Op cos° 

= 0 

m 

co 	
ir E rn i. (713) cos ine = e PP crea 

	 (42) 

and solving (40) and (41) for v and h, we obtain 

	

3e/ 	ik 	. 	ix) 	Gip ikn I n,[p (# 2  + 	r0 1 12] int  

	

V  = E 	elm  
n 0 a 2

. 

 n 	mimeo n2zo 2a3n/,,,[(132+ta n) ] 

2k„ 	(L.) exp [ (IV + ,L)/ 2 2 ] t 

	

"no 	I 	Ynt (sttr) 

 

• I (13) cos me [exp ( fi p cos + ( ir exPOP cos me 

	

E rn  . 	
n 

(43) 
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and 

{ 	k„ R  I . [p(fl 2 + icz 2 n)1/2] 
el 

h = E 
m=0 n=0 4Ce 2  n fi 	nt[(132 	cx 2 n) 1 2] - 

x c'D k„R e„„.. „,(„„r) exp [—UV + !„.)/c( 2] t 
— E E 	  

n=0 r = 1 	2fi .1',„(„„.)(fl2  + ,L.) (IP + 	in) f 

• (fl) cos m0 [exp( — flp cos 0)— (— 1) 1" exp (fl p cos m0)]. 	
(44) 

For large times, Le., t—+cc, we obtain the solution due to steady-oscillating flow and it is 
given by 

/co  
= — E t 	in  (0) cos me {exp ( — Pp cos 0) 

= 	in  0  I m ai) 

i k 	. 
+ ( — 	exp ( 16 p cos 0)1+ E  2 4  eini  

=1 a n 

{

33  I
' 
 [p (132 +  ict 2n) 112]

nt 
1 — 

m=a  
E m  (a) cos m0 

•[exp( — 11 p cos 0) + (— 	exp (llp cos 0)] . 

k R x 	1 1  (fl)  h=—  ° 	E m 	I. (fl p) cos tn0 
8l32  in=0 	m  int (fi) 

(45) 

- [exp( 13 p cos 0)— ( 1)m exp (flp cos GUI— 2p cos 0 

x k„ R + 	E 
n I '"=0 4a 2  nfl 

m [P U? 	12 2  n) 1,2 

I rn  Ufl 2  icr 2  n )1/ 2] CM 

1)m exp (fl p cos 0)]. 	 (46) 

Taking the limit no in (45) and (46), we obtain the results given by Gold
10. The results 

for the non-magnetic case are obtained by taking the limit $—+0 in (45). In this limit (45) reduces to 

ko 	2 	 Ti ik. 	Jo  (an 112 i3/2) -Hi - P ) - E v  = 4 	
2 	1  - i 	1/2 .3 2 	

cant . 	 (47) 

	

n z-- 1 2 n 	J o  (an 	r / ) 

The velocity given in (47) corresponds to the flow due to an oscillatory pressure gradient discussed by Uchida2. 
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4. Results and conclusions 

Evaluating the expressions for the velocity and magnetic fields presented in (45) and (46) 
numerically is quite complicated and difficult as they contain double infinite series and 
modified Bessel functions of different orders with complex-valued arguments. We 
consider only up to two harmonics in all our numerical calculations as the contribution 
due to the third and higher harmonics is negligible compared to the first and second 
harmonics for the small values of 2 and /I, the parameters governing the system. The 
corresponding pressure gradient takes the form 

S, = P0 + P. 1  cos t + P si  sin t + Pa cos 2t -4- P.,2  sin 2t, 	 (48) 

and is represented in fig. II. The Ps in (48) are calculated using (A4)—(A6). 

The oscillatory part of the velocity field in (45) is computed numerically for 0=0. 
7= 0.25, fi= 0.8 and for different p is plotted as a function of t in fig. 1. The dotted lines 
in all the figures correspond to II = 0, i.e., the non-magnetic case. It is observed that the 
velocity field as a function of time is similar to the prescribed pressure gradient curve 5 2  
shown in fig. I I with a shill in the axis. The effect of magnetic field is to reduce the 
magnitude of velocity for all times compared with the corresponding non-magnetic case. 
Figure 2 shows the velocity field for 0---.--  0, x = 0-25, /I= 0-8 for different values of t as a 
function of p and it is seen that the reduction in velocity due to magnetic effect is more 
pronounced in the central region of the pipe. The velocity field for 0= 0, x = l, for 
different values of fl = 0, 2, 3, 4 and for two values of r is depicted in fig. 3. Similar 

behaviour is observed for other values of t and is not shown in the figure. It is observed 
that for a fixed Womersley parameter z the velocity decreases remarkably and the 

i: 

Is 

FIG. I. Velocity field for x =0-25, if = 0.8. 0 =0-0 

for different values of t. 

ha 2. Velocity field for 2 se I. /I as I. 0 is 0 for 

different values of t. 
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FIG. 3. Velocity field for i= I. 0 = 0, /1= 0, 2, 3, 4 

for different values of t. 

FIG. 4. Velocity field for /I= 3, 0 =0, 2 = 1 for 
different values of :. 

velocity profile becomes more and more flat as the magnetic parameter /3 increases, as 
expected, Shercliff'. The velocity field for fixed (3 = 3, 0 = 0, for different values of t is 
plotted in figs 4 and 5, respectively, for 7 = 1 and 	= 3 and the flattening of the 
velocity field is seen as 7 increases as predicted by Uchida'. In order to compare our 
results with those of non-magnetic case, the velocity field for 0 = 7r/2 is depicted in fig. 6 
with the other parameters remaining the same as in fig. 4. There is no significant 
difference in the velocity fields for these values of 0. The induced-magnetic field for 0 = 0, 
7 = I and /3= 3, for different values of t is depicted in fig. 7. It is observed that the 
induced-magnetic field is more significant near the walls than at the centre. 

0.04 

........., -- -- ....- 
0.02 P- 	..e ' ...' ." 

I, 	0 / - - --. --- "-- ---- - 
-.3.5

___ 

0. 021- 

-0.041-  

0.05 

Ts 0 	 Ii 0 

-0.05 

ills 

FIG. 5. Velocity field for 	= 3, 0 0, z= 3 for 
different values of t. FIG.  6. Velocity field for 7 = 1, 	= 3, 0= It;2 for 

different values of t. 
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it 

esi 

WA 

FIG. 7. Induced magnetic field for a = I, 0=0, /I= 3 
for different values of:. 

The sectional mean velocity vni  for the flow is given by 

2yr 	1 

Von  = 
	 vp dp 	 (49) 

8 = 0 it= 0 

Using (45) in (49) and simplifying, we obtain 

k 
von= — -(4 E 	1r 	(fl)  [ "7-2 	M s  C (11)] 411 m = 0 	m  im (fil 02(  

	

ik,, 	 2( — Ir" K.1(11)1„,(13,n)} 
+ 	-- elm I — E 	 

= 1 	n 	ic 0 	I m r( 11 2  i 22  n)" 2J 

where 

'm (f, n) = 	/Ai r/)(# 2  i72  0 112 ] I m(Pii) PdP. 

(50) 

(51) 

If One prescribes the volume flux by a Fourier series instead of pressure gradient, the 

by 	
coefficients of the Fourier series in the pressure gradient could be determined 

by comparing with the coefficients of the Fourier series representing the volume flux. 

For a periodic pressure gradient given in terms of a cosine series (k m.= 0 in (A3)), we 

have the sectional mean velocity as 
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FIG. 8. Coefficient of amplitudes of mean velocity au . 

Si 

FIG. 9. Coefficient of phase lag of mean velocit y  os.  

2 I sm (fli 2 	.2 

	

= ko 	 I m  (fid 
4-jj m =0  

r k, 
+ E 	{( E D,„) cos nt + (1 — 	C,„) sin nt 2 	 (52) 

n= 1 	rg 	m=0 	 tra=0 

where Cm  and D. are the real and imaginary parts of 

	

2( — 1 )in cm 	(fi) 	(ll, n) 
(53) im  ufp 	npi2] • 

Following Uchida', the coefficients of the amplitude and the phase lag of the mean 
velocity in (52), are given by 

2 21 , 2 

	

au =[(1 — 	Cm ) +( 	D„,) 	2 2  n, 	( 54) m0 	m=0 

Fit,. ru. The pressurc4radient curve as defined by 
ht in (A2). Ac. II. The partial sums So, S. 5 ;  of thc Fourier 

series of Fit I. 
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3.= tan -1  {(1 	
(55) 

E C 	E Dm )}. 
m=0 	 m=0  

The values of cr. and b. are computed numerically from (54) and (55) and are plotted in 
figs 8 and 9 for various values of a and fl. From these figures we observe that the curves 
for the coefficients of amplitude and phase lag in the magnetic case have features similar 
to those in the non-magnetic case presented by Uchida', and Womersleyl. Further it is 
seen that both u. and 6. reduce significantly for small values of a only, in the presence of 
a magnetic field. 
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Appendix I 

For a physiological flow the pressure gradient ?P'/?z' in (10) is taken to be 

e Ps lezt = F(t), 	 (A 1 ) 

where F(t) has the form given in fig. 10 and is defined by 

F (0= m r, 
= m (47r15 — t), 
= m 2 (1 — 47r15), 
= m 2  (67r/5 — t), 
= m 3  (t — 67r/5), 
= mi  (87r/5 — t), 
= m4 (t —  8n/5), 
= m4  (27r — t), 

for 04 t 4 27r/5, 
,. 27r/5 4 t 4 47r/5, 
„ 47r/5 4 t 4 7r, 

„ n 4 t 4 67r/5, 
„ 67r/5 4 t 4 77r/5, 
.. 

 
7K/5( 	87r/5, 

„ 87r/5 4. t 4 97r/5, 
., 97t/5 4 t 4 27r, (A2) 

with m i  =(v/ei+ 1)/(t13 — 1), m 2 = —3m 1 /5, m 3  = 2m i /5 and m4 = m 1 /5. The pressure 
gradient of this type is chosen in such a way that the amplitude reduces in each interval 
of time for a cycle of oscillation. Expanding F (t) in (A2) as a Fourier series, we get 

F(t)= S P. elm = P o + 5P c. cos nt +5 P 3. sin nt, 	 (A3) n= 0 	 n = 1 	 n=1 

where the coefficients are given by 

(A4) P0  = (9n/25) m , 

pen= (m 1 /5nn2) [10 cos (2n7r/5)— 2 cos (4mr15)— 6 cos nit + cos (6n7z15) 

(A.5) + 4 cos (7nn/5) — cos (8n7r15) — 2 cos (9n7r/5) — 4], 
Ps.= (rn 1 151rn) [10 sin (2n7r/5)— 2 sin (4n7r/5) + sin (6n7r/5)+ 4 sin (71;7E15) 

(A6) — sin (8n7r/5) — 2 sin (9nn/5)]. 

The graphs of the partial sums S.. n = 0, 1,2, of the Fourier series (A3) are shown in fig. 11. The curve for S2 
resembles the curve for volume flux given by Siouffi et a/ 6  and that for pressure gradient 
in the femoral artery of a dog presented in Womersleyl. 


