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Abstract

The velocity potential due to a submerged horizontal circular ring source of time-dependent strength outside
an immersed vertical coaxial crrcular eylmder s derived for a hguid with an mertial surface. A reduction
procedure 15 used to obtain the transformed potential alter using Laplace transfonm in tme. For time-harmonic
source strengths, the steady-state development demonstrates that the progressive waves originating from the ring
source cannot propagate 1l the ineruial surface is too heavy,
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1. Introduction

Within the framework of the lincarised theory of water waves, the problem of generation
of infinitesimal gravity waves in.a motionless liquid of infinite depth with an inertial
surface composed of uniformly distributed floating particles due to a two-dimensional
line source which begins to operate in a time-dependent manner at a given instant has
been considered by Rhodes -Robinson!. Later, Mandal and Kundu?'? have extended this
problem to the case of a liquid of finite depth and other types of sources such as two- and
three-dimensional multipoles of time-dependent strengths, the effect of surface tension at
the inertial surface being neglected by Mandal and Kundu? while this being included by
Mandal and Kundu®. After using Laplace transform in time, the transformed potentials
in these problems have been obtained in a manner analogous to the usual time-harmonic
problems in a liquid with a free surface. Laplace inversion then produces the required
potentials.

The study of different problems of generation of water waves in the presence of a
vettical body of revolution having a common vertical axis of symmetry with the fluid
motion requires the consideration of velocity potentials due to submerged circular rings
qf wave sources as the problems can be formulated in terms of a suitable distribution of
fings of wave sources around the body {cf. Fenton* and Hulme®). This motivates the
con§iderati0n of various problems of generation of water waves due to a submerged
horizontal ring of wave sources. Recently, Kundu® obtained the velocity potential due to

261



262 B. N MANDAL AND KRISHNA KUNDU

a horizontal ring of wave sources submerged in a liquid of finite depth with an inertig)
surface, while Mandal and Kundu” considered the same problem for a liquid of infinite
depth in the presence of surface temsion at the inertial surface. The mathematicy)
technique used to solve this problem was similar to that used by Mandal and Kundy??

Construction of offshare structures for oil prospecting in high seas requires modelling
ol water wave diffraction problems in a sea in the presence of cylindrical columng of
circular cross-sections. Hence consideration of velocity potentials due to submerged
circular rings of wave sources (arising in diffraction problems due to submerged‘or
partially immersed circular structure around the column) outside a coaxial immersed
cylinder is of some importance. Rhodes-Robinson® obtained the ring source potentils
outside such a coaxial circular cylinder while considenng a class of time-harmonic surface
wave problems involving immersed vertical boundaries.

The present paper is concerned with deriving the potential due to a unilorm
distribution of point sources of the same time-dependent strength around a horizontal
ring submerged in a hiquid of infimite depth with an inertial surface, outside an immersed
coaxial circular cylinder. This may be regarded as an cxtension of the problem of ring
source outside a coaxial cylinder in water with a free surface considered by Rhodes-
Robinson” to a liquid with an inertial surface. Aficr taking Laplace transform in time, a
reduction procedure is used to obtain the transformed potential. This procedure was used
first by Williams® while considering a gencral scattcring problem due to a submerged
time-harmonic point source in deep water with a free surface. Later, Rhodes-Robinson®
applied the same method to an entire class of protlems for time-harmonic surface waves
n water involving mmmersed vertical boundarics allowing for the influence of surface
tension at the free surface. Recently, Mandal'? also applied this procedure to obtain the

potential due to 4 ring of wave sources submerged in a liquid of infinite depth with an
inertial surface.

When the surface density of the floating materials in the results of the present paper is
made equal to zero, known results for a liquid with a free surface are recovered.

2. Formulation of the problem

We consider the motion under gravity in an ideal liquid of density p covered by an
inertial surface composed of a thin uniform distribution of floating particles of area
density pe. =0 corresponds to a liquid with a free surface. A horizontal ring with radius
§ of uniformly distributed sources, each of the same strength m(t), is present in the liquid
at a depth f below the mean position of the inertial surface outside an immersed coaxial
circular cylinder of radius a(<5). Using a cylindrical co-oxdinate system with the axis of
the ring as y-axis, y=0 as the position of inertial surface at rest, the ring source then has
the position R=S(>a), y=f(>0). The point sources on the ring start operating in 4
time-dependent manner at a given instant simultaneously. Since the motion starts from
rest it is irrotational and can be described by a potential function (R, y; r} satisfying the
Laplace’s equation in the liquid region except at poiats on the ring. Within the
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framework of linearised theory, ¢ satisfies, the inertial surface condition
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a2
where ¢ is the gravity, the condition for no motion at infinite depth is given by

(q)—cqjy)—‘g(p‘,f—’o on y=0

@—0as y—co,

the initial conditions

17
a(@—sq;v)=<pff;(p‘,:() ony=0ati=0

Lt @R y;p)=[exp{—pt)o(R yit)dt, p>0), 2.1
o}
then ¢ is the solution of the BVP described by
V2p =0, y>0 except at points on the ring, (2.2)
PPo—(y+:p*)g,=0on y=0, 2.3)
2
%—’:0 on R=ua (2.4)
2.5)

@—0 as y-—» o0

3. Solution of the problem

In view of (2.3) and following Williams®, we introduce a function W (R, k; p) (k> 0) such
that

_ _ 2 £
Po-(gtepto, = - | k¥ sinkydk, y=0. (3.1
0
Solving (3.1) and using (2.4) we obtain
-2 1 . kcosky+qsink
=21 f oy Koosky tasinky 4, G.2)
n g+ep k*+q*
o

(3.3)

Where g =p?/(g+ep?).

This reduces the BV P described by (2.2) to (2.5) by one dimension to another BVP in 4
given in (3.4) below.

v, 1
¥ +Eq"’-—k2'~F=O, R#S,
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¥ =0on R=uq,
WS FO)— WS —0)= — "_'/(f) Ak,f,p)
(S0}~ ¥(S—0j=0at R=S,
and Y0 as R—wo (34

where A(k,f, p)= k{g+ep?) cos kf+p? sinkf and W', W* denole respectively the first ang
second derivatives with respect to R.
The solution of the BVP (3.4) is

[ I (kR) Ky(kR
Itk Ko (kS) { [O ((ku)) * KO((MJ))} R<s,
1 1

Kp(kS)
ka)

wir =" At sp)
o(kS) | Kyl

ol R3S
ke " K, ( } Z$

I (ka) Ko(kR) {

Hence ¢(R,y;p)
x, A K (e 19(,“9 ﬁ@
[ I (kayK ,{kS) {11 k) + Kl(ka)}

Alefip) Atk yp)
I1o(kS) | K, (kS
I (ka)Ko(kR) {’Iﬂ((z‘;: + K()Eka)) }R>S
t 1

2 p)]

T

LRty

(35)

To obtam the Laplace inversion of ¢ we now simplify (3.5) for R=S. The case R<S

can be dealt with similarly. For RS, from (3.5) we can write

_ 2m @
PR y;p) =~ ;fﬁ) [ 1 sinky sin kf B(k) dk
0
7[1 k ) ; .
+3 ,;;;"Iexp{'"k(yf/)}X(k)dk} 68
J .
where  B(k)=1,(ka)K. (kR {fﬁ(l‘f? KotkS) 1)
S TR e o (
and . o HP(kR)H (kS)
an X (k)= Jo(kRYJ 4 (kS) Jl(kq)Re<7,9,,H,(}7(ZZT-,W . (39
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pin (3.6) can be further simplified to

_ 7m p) ke
ky sin kf B{k - ey
- jcm ysinkf Bk)ydk + j.I-H\ exp{ —~k(y+f)} X(kydk

M dk 3.9

. cxp‘ —k N
wtp?

id

ere 1° = ak/(1 +ke). The Laplace inversion of (3.9) is now obvious and thus we obtain

raespt - + H
okt - mint R D)y Jm(z) sin (e — 1) dr dk, (3.10)

I+ I\( B

21 NS ook
where U(R,y)= — | sinky sin kf B(k)dk +n1:_[- "**"CXP{“/{(J}‘*‘)(‘)}X(]\',dk 3.1
| o 2 o l+ke

{310} is the general result for any arbitrary time-dependent strength m(r) of the sources.

4. The time-harmonic ring source

To compare our results with the known potential due to a time-harmonic ring source
suhmerged in water with a free surface, we now consider the special case where the
strength of the sources varics harmonically with time. Let us put m(f) =sinat in (3.10).
Then

PR30 = sin ot U (R, )~ J jrexpl - k(y +f)) X " gm‘_:,_,”,;l”“’, @l
1+ke He—a

To find the sicady-state development in ¢ as t— ¢, we note that the transient term, if

5. occurs only in the integral in (4.1) involving sin uf. Now p? — o vanishes at k= k¥ in

ange of integration L (2 anly when 0K <1 where ki =K(1 —eK) ™ with K=0%/g.

Hence for 0 <ok < 1, introducing o Caachiy pracipal value at k=k¥ in this integral, we

can write the lerm involving sin ut as

A
gt Ciexp aiv B Xt |osinprdp
o it o _i' H—a
4 sin
kS exp L= Ky ) Vikg f “sz. 4.2)
Do

By Riemann Lebesgue Jemma the first integral in (4.2) tends to zero and the second
miegral tends to xr cot ot as i— .. Thus we obtain for large f,
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i3 2

2stnat |4 T S T .
G I:Jl sinky sinkf B{k)dk + f) ke ki exp | ﬁk”f”}x(k)dk}
+kEexp{ —k¥(y+ )} X(k§) cosar. w3
It can be shown that {4.3) represents an outgeing progressive wave as R— oo,
When ¢K > 1, there is no zero of u* — a2 for k>0 and thus the integral involving sin g

is wholly transient. Hence in this case.

o= ﬂ‘lﬂ[  sinky sin kf Bk dk +(Ke— 1)
n 0

Thexp{~k(y+f)}
3 kKe—D+K X”‘)dk]

as t—o0. It can be shown that now there is no progressive wave as R— 0.

For a time-harmonic ring sowrce with circular frequency o, the steady-state
development to the potential ts given by (4.3) for o <(g/e)"/* ie. e<g/c? and by (44) for
az(g/e)'? ie. ezgfa?. The former is interpreted physically as the inertial surface to be
heavy while the latter is interpreted as the inertial surface to be light. Rhodes
Robinson’s'® result can be obtained from (4.3) by putting ¢=0. The effect of inertial
surface on the potential function thus appears to be straight forward enough to visualize,
namely, the time-harmonic waves (produced at the ring source) whose circular frequency
is less than o, =(g/e)!/* will propagate to large distances from the ring source while thos:
with frequency exceeding g, will die out at large distances from the ring source. This
phenomenon is in conformity with the fact that infinitesimal time-harmonic progressive
gravity wave can propagate in an ideal liguid with an inertial surface only if the inertial
surface is not too heavy (¢f. Rhodes-Robinson®, Pcters!?).

5. Conclusion

Potential function due to a ring source of time-dependent strength submerged outside an
immersed coaxial circular cylinder is obtained by a reduction procedure. The boundary
value problem concerning the transformed potential is reduced to another boundary
value problem from whose solution the potential function is obtained. The problem may

be extended to a liquid of finite depth and also to include the effect of surface tension at
the inertial surface.
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