J. Indian Inst. Sci., July-Aug. 1988, 68, pp. 295-300. Indian Institute of Science.

Short Communication

Physicochemical investigation on Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO₂(II) and VO(II)-3-(N- α -phenyl, 2-hydroxy benzylideneimino)propanoate systems

SHOBHA SHARMA, SANTWANA GAUR AND R. K. MEHTA Department of Chemistry, University of Jodhpur, Jodhpur 342 001, India.

Received on February 19, 1987; Revised on September 2, 1988.

Abstract

The dissociation constants of 3-(N- α -phenyl, 2-hydroxy benzylideneimino)propanoic acid (H₂BP) and stability constants of its chelates with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO₂(II) and VO(II) have been determined by Calvin's extension of Bjerrum's method. Elemental analysis, molecular mass, magnetic, TGA and spectral data of the solid chelates were used to establish their stereochemistry.

Key words: 3-(N-a-phenyl, 2-hydroxy benzylideneimino) propanoate, dissociation constants, and stabiliy constants.

1. Introduction

A survey of the literature¹⁻⁴ reveals that no work has been done on the chelates of $3-(N-\alpha-phenyl, 2-hydroxy benzylideneimino)$ propanoic acid (H₂BP). Therefore, both solid and solution-state studies on the chelates of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO₂(II) and VO(II) with H₂BP are reported in the present communication.

2. Experimental

2.1 Synthesis of ligand (H_2BP)

 H_2BP was synthesised by refluxing equimolar ethanolic solution of o-hydroxy benzophenone and β -alanine in the presence of piperidine as catalyst for 1-2 hours. The light yellow solution obtained was filtered hot, concentrated and cooled when yellow crystals were obtained. These were recrystallised from ethanol. M.P. 210°C. The purity was checked by TLC and the appearance of characteristic IR spectral frequencies.

2.2 Synthesis of solid chelates

The metal chelates were obtained as crystalline solid by refluxing ethanolic solutions of H₂BP (0.01 M in 20.0 ml 80% ethanol) and metal nitrate (0.01 M in 10.0 ml 80% ethanol) 295

296

for 2-3 hours, in nitrogen atmosphere. These were recrystallised from suitable solvents. Their complexes with pyridine adducts were also synthesised.

2.3 Preparation of pyridine adducts

The hydrated metal chelates were warmed in distilled pyridine on a steam-bath and concentrated in a vacuum desicator over calcium chloride, when coloured crystals of the pyridine adduct deposited. The crystals were separated, washed with little absolute alcohol and ether, dried and preserved in a vacuum desicator.

3. Result and discussion

 pK_1 and pK_2 of H_2BP (Table I) as determined by interpolation at half \bar{n} values method⁵ and algebraic method⁵, were found to fall with rise of temperature indicating that H_2BP was biprotic ligand. The formation curve⁵ indicates that 1:1 and 1:2 chelate species were formed in solution. The refinement was done by correction term employing convergence formula, successive approximation and interpolation at various \bar{n} values^{6,7}. The average values of their stabilities follow the order VO(II) > UO₂(II) > Cu(II) > Ni(II) > Co(II) > Zn(II) > Cd(II) which was in agreement with Irving-Williams rule⁸.

Free-energy change, enthalpy and entropy values are presented in Table I, which indicate endothermic nature of reactions and favourable formation of 1:1 chelates. In terms of Harned's equation⁹, the values of θ , pK^H_m and Δ H were found to be 865.08, 0.1642 and 150.78, respectively. The Δ H values obtained from Harned's equation and potentiometric studies were in satisfactory agreement with each other (Table I).

3.1 Solid chelates

Based on microelemental analysis and molecular mass determination (Table II) these chelates display 1:1 metal-ligand stoichiometry and hence their molecular formula may be represented by $[M(BP)nH_2O]$, where M is the bivalent metal ion, (BP), the deprotonated H₂BP and n, the number of water molecules.

Pyrolysis (TGA) thermogram of hydrated chelates reveals that on gradual heating from room temperature to 700°C the hydrated salts were completely dehydrated and decomposed in the temperature range 180–780°C. Therefore, the thermogravimetric analysis along with the mass-loss curve of the metal chelates, the absence of water of crystallisation and the presence of three coordinated water molecules (for M = Co(II), Ni(II) and Cu(II)), two coordinated water molecules (for M = VO(II) and one coordinated water molecule (for M = Zn(II) and Cd(II)) is inferred.

The magnetic moment data (Table II) suggest an octahedral geometry for the Co(II), Ni(II), Cu(II) and VO(II) chelates and their pyridine adducts while a tetrahedral stereochemistry for the Zn(II) and Cd(II) chelates and also their pyridine adducts. The electronic spectral data (Table III) is also in agreement with this. It may be added that the Cu(II) chelate and its pyridine adducts seem to be having a distorted octahedral geometry due to Jahn-Teller distortion¹⁰.

IR spectral data as given in Table III indicate the presence of -OH, -COOH and -C=N groups in the ligand. The phenolic¹¹ -OH and the carboxylic -OH were deproto-

Ligand/ Metal ior	1	Stability consta theoreticl value	ints with deviat	ion from	log K°			(−ΔG° K. Jou	') le mole	- 1	(ΔH°) K. Joule	(ΔS°) Joule deg ⁻¹	
		25°	35°	45°	25°	35°	45°	25°	35°	45°	at 35°C	at °C	
H ₂ BP	рК ₁ рК ₂	8.54 10.29	8.18 9.94	7.65 9.45		-		107.45	106.86	104.12	156.96	162.66	
VO(II)	log K ₁ log K ₂	11.30(±0.02) 9.70(±0.04)	11.50(±0.03) 10.10(±0.01)	$11.90(\pm 0.04)$ $10.35(\pm 0.02)$	21.97	22.15	22.79	125.36	130.63	138.77	74.40	665.68	
UO ₂ (II)	log K ₁ log K ₂	10.90(±0.05) 9.30(±0.02)	11.22(±0.02) 9.50(±0.03)	$11.55(\pm 0.06)$ 9.83(± 0.03)	21.11	21.55	22.10	120.46	127.09	134.57	89.82	704.25	
Cu(II)	log K ₁ log K ₂	10.30(±0.02) 8.83(±0.06)	10.50(±0.04) 9.15(±0.06)	$10.75(\pm 0.03)$ 9.42(± 0.05)	20.51	20.85	21.07	117.03	122.96	128.30	50.81	564.18	
Ni(11)	log K ₁ log K ₂	9.50(±0.01) 8.10(±0.05)	9.82(±0.06) 8.45(±0.04)	$10.20(\pm 0.02)$ $8.70(\pm 0.03)$	18.42	18.60	18.95	105.11	109.69	115.39	48.09	512.22	
Co(11)	log K ₁ log K ₂	$8.50(\pm 0.04)$ $7.32(\pm 0.01)$	8.80(±0.03) 7.63(±0.05)	9.23(±0.05) 7.85(±0.01)	17.25	17.56	17.90	98.43	103.56	108.99	58.97	527.76	
Zn(II) Cd(II)	log K ₁ log K ₁	8.27(±0.03) 7.45(±0.03)	8.50(±0.02) 7.85(±0.06)	8.83(±0.03) 8.15(±0.04)	8.65 8.46	8.97 8.63	9.12 8.85	49.36 48.27	52.90 50.90	55.53 53.89	42.64 35.38	310.19 280.12	

11

Table I Dissociation constants, average stability constants and thermodynamic parameters of bivalent metal chelates of 3-(N-α-phenyl, 2-hydroxy benzylideneimino)propanoic acid [H₂BP]

The deviations are given in parentheses.

Ligand/chelates	Molect	ular ·	Elemen	tal anal	ysis (%)								PLeft
	CCDIN		Water		J		Н		z		Metal		B.M. at 308°K
	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.	
[C ₁₆ H ₁₅ NO ₃] (75)	260	269	ĩ	1	71.27	71.38	5.45	5.58	5.11	5.20	1	Ĭ	
[VO(C ₁₆ H ₁₃ NO ₃)(H ₂ O) ₂] (80)	356 (480)	370 (492)	9.67	9.73	51.82 (63.32)	51.90 (63.42)	4.53 (4.51)	4.60 (4.68)	3.70 (8.40)	3.78 (8.54)	18.00 (13.55)	18.09 (13.61)	1.75 (1.80)
[Cu(C ₁₀ H ₁₃ NO ₃)(H ₂ O) ₁] (89)	371 (554)	384 (567)	14.00	14.04	49.85 (65.40)	49.93 (65.55)	4.85 (4.79)	4.94 (4.93)	3.54 (9.75)	3.64 (9.87)	16.47 (11.07)	16.52 (11.20)	2.10 (2.16)
Ni(C ₁₆ H ₁₃ NO ₃)(H ₂ O) ₃] 70)	368 (549)	379 (573)	14.12	14.22	50.45 (66.01)	50.57 (66.11)	4.93 (4.83)	5.00 (4.98)	3.60 (9.86)	3.69	15.40 (10.25)	15.46 (10.43)	3.20 (3.21)
Co(C ₁₆ H ₁₃ NO ₃)(H ₂ O) ₃] 79)	370 (552)	380 (563)	14.17	14.21	50.42 (66.00)	50.54 (66.08)	4.95 (4.80)	5.00 (4.97)	3.54 (9.82)	3.68 (9.95)	15.40 (10.33)	15.51 (10.47)	5.10 (5.18)
Zn(C ₁₆ H ₁₃ NO ₂)(H ₂ O)] 51)	345 (400)	350 (411)	5.05	5.14	54.70 (61.14)	54.79 (61.25)	4.20 (4.25)	4.28 (4.38)	3.90 (6.71)	4.00 (6.81)	18.54 (15.73)	18.66 (15.90)	I
Cd(C ₁₆ H ₁₃ NO ₃)(H ₂ O)] 58)	385 (440)	397 (458)	4.45	4.58	48.25 (54.81)	48.31 (54.97)	3.62 (3.80)	3.77 (3.93)	3.47 (6.00)	3.52 (6.11)	28.20 (24.42)	28.28 (24.52)	,

and of H.RP chelates . Yield, molecular mass, elemental analysis and magnetic moments of the hydrated metal

Table II

SHOBHA SHARMA et al

The values in the parentheses are those of the pyridine adducts.

28 2 . . .

٠

Tabl	e III										
The	electronic	and	IR	spectral	data	of	bivalent	metal	chelates	of	3-(N-
acid	[H ₂ BP]										

_igand/	Electronic s	IR spec	tra (cm ⁻¹)		V1						
Metal ion	Absorption bands (cm ⁻¹)	Assignments	νC=N	νC-0	vOH Phenolic	νO-H of carbo- xylic group	vC-O of carbo- xylic	vCOOH	<i>v</i> SCOO	vasCOO	₽M-N	νM–O
[H ₂ BP]		• • • • • • • •	1630	1320	3350	1650	1710	1750	-			-
Co(II)	8,400 17,050 20,800	${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}(F) \rightarrow {}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(P)$	1610	1330				-	1435	1578	480	360
Ni(II)	14,650 25,600	${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ $\rightarrow {}^{3}T_{1g}(P)$	1607	1335	-		-	-	1432	1575	485	368
Cu(II)	12,509	$^{2}E_{g} \rightarrow ^{2}T_{2g}$	1603	1338	-				1437	1576	492	375
VO(II)	11,925 20,100	${}^{2}B_{2} \rightarrow {}^{2}E_{1} \\ \rightarrow {}^{2}B_{1}$	1600	1340	-	-	-	-	1440	1580	500	380

-α-phenyl, 2-hydroxy benzylideneimino)propanoic

BIVALENT METAL ION

FIG. 1. Bivalent metal chelates of 3-(N-a-phenyl, 2-hydroxy benzylideneimino) propanoic acid [H2BP].

٠

nated on chelation. The ν >C=N was lowered to 1600 cm⁻¹ suggesting its participation in complexation. The appearence of new bands in the ranges 500-480 cm⁻¹ and $380-360 \,\mathrm{cm^{-1}}$ suggests $\nu \,\mathrm{M-N}$ and $\nu \,\mathrm{M-O^{12}}$ bonding. respectively in the chelates.

Based on the above evidences the structures of the chelates may be represented as shown in fig. 1.

Acknowledgements

SS thanks the CSIR. New Delhi. for a Senior Research Fellowship.

References

Progress in inorganic chemistry, Vol. 19, Interscience, 1975, p. 173. 1. HODGSON, D. J.

3())

2. Cor	ron. F. A.	Progress in inorganic chemistry, Vol. 7, Interscience, 1966, p. 88.	
3. GUP Sane Meh	TA, C. P., KHLA, N. K. AND HA, R. K.	J. Prakt. Chem., 1979, 321, 691.	
4. TAN	DON, J. P.	Presidential address, 74th Indian Science Contress 1987, pp. 8-18.	
5. Bifr	RUM. J.	Metal amine formation in aqueous solution, P. Haase and Sons, Copen- hagen, 1941, p. 298.	
6. YAT AND	SIMIRSKILL, K. B. Vashlev, V. P.	Instability constants of complex compounds, D. Van Nostrand, New York, 1960, p. 63.	
7. IRVI Ross	NG, H. AND SOTTI, H. S.	J. Chem. Soc., 1953, 3397-3405.	
8. Irvi Will	NG, H. AND LIAMS, R. J. P.	J. Chem. Soc., 1953, 3192-3210.	
9. Har Emb	RED, H. S. AND REE, N. D.	J. Am. Chem. Soc., 1934, 56, 1050-1053.	
10. Jahr Teli	N, H. A. AND LER, E.	Proc. R. Soc. Lond., 1937, A161, 220.	
11. PRAS TAN	SAD. R. N. AND DON, J. P.	J. Inorg. Nucl. Chem., 1974, 36, 1473-1477.	
12. Nak	амато, К.	Infrared spectra of inorganic and coordination compound. Wiley Inter- science, 1970, 223.	