BOOK REVIEWS

The physical effects in the gravitational field of black holes edited by M. A. Markov. Nova Scrence Publishers, Inc. . 283, Commack Road. Suite 300, Commack, New York 11725, 1987, pp. 262, \$83.

Probably no word in modern times transports one instantaneously to the realms of the strange and bizarre as the word black hole. Yet black holes are not only the most pristine macroscopic objects fabricated solely from space-time concepts but the simplest as well since general relativity leads to their uniqueness. As far back as 1783 John Michell speculated about objects that would be invisible because their gravitational potential would exceed the specific kinetic energy of a projectile moving with the speed of light. This argument later appeared m the 1796 edition of Laplace's famous Exposition det ysteme du Monde wathout acknowledgement adds B. Curter! The notion of a black hole was revived neither with the coming of Einstein's general relativity (1916) nor with Schwarzschild's (1916) discovery in the relativistic context of the Michell radius, mainly due to the coordinate singularity at the horizon. The issue of gravitational trapping of light became more scrious only after Chandrasekhar's (1931) discovery of the mass limit for white dwarfs and Oppenheimer and Volkoff's (1939) limit on the mass of neutron stars. The modern impetus that led to the notion of a black hole was Oppenheimer and Snyder's work (1939) on spherically symmetric gravitational collapse. In the late 1950s and early 1960s Wheeler argued forcibly that gravitational collapse to a singularity was one of the most serious problems for fundamental physics. Subsequently when quasars were discovered astrophysicists looked for a ready explanation in terms of gravitational collapse and began investigating other observational manifestations of collapsed objects. In 1968 the collapsed object was picturesquely christened as black hole by Wheeler and the time was ripe for a new phase in the history of black holes. Investigations proceeded along two directions; one was the mathematical foundation of black-hole configurations and the other, black-hole astrophysics. The former led to the remarkable results on blackhole thermodynamics by Bardeen, Bekenstein, Carter and Hawking that certain blackhole parameters are analogous to macroscopic thermodynamic variables. Meanwhile, it was speculated that in addition to black holes formed by gravitational collapse, pumordial black holes could form by density fluctuations in the very early universe. In the process of studying such mini black holes Hawking discovered that black holes are not completely black after all but emitters of a thermal radiation. This effect is quantum mechanical and thus of significance only for mini black holes; the black holes of gravitational collapse are at such low temperatures that they are virtually black. The surprising result of the black-hole radiance was based on quantum field theory in curved space time and this is the broad subject area the volume under review is concerned with.

The first five chapters of the book are hased on the doctoral dissortation of V. P. Frolov and deal with the following: black holes and the problem of self energy, quantum particle creation in the gravitational field of a black hole, vacuum polarization in the presence of a black hole and the problem of spherically symmetric collapse in quantum gravity. The next three articles are by A. I. Zellnikov, P. A. Bolashenkov, and V. Yc. Kur'yan respectively each jointly with V. P. Frolov. These deal with further details of vacuum polarization by and nonsingular models of black holes, as well as a related problem of radiation from accelerated mirrors. The last artiele on one-loop calculations of photon splitting in a relativistic quantum plasma is totally out of place and has no relation whatsoever with the rest of the book. It scems an editorial gaffe that could easily have been fixed. Luckily the article is brief.

Quantum field theory in curved space time is a particular case of the general problem of physical systems in external fields. In the late sixties research in this discipline was in connection with particle production in cosmological backgrounds. I discovered that Frolov and Markov were the first to discuss quantum effects in black hole backgrounds in 1970. This was followed by the discovery of superradiance and Zeldovich-StarobinskyUnruh nonthermal emission for rotating black holes but Hawking effect was the glamour event that led to the explosion of activity in quantum field theory in curved space time. This led to the publication of a very comprehensive monograph by N. D. Birrell and P. C. W. Davies as early as 1979. The present book covers material with a different emphasis: black holes. It implements quantization by Schwinger's dynamical principle and illustrates how functional methods significantly simplify computation. The problem of self energy of charges is handled differently from the usual ADM approach and it is proved that point charges do not exist and the smallest charges called friedmons are stable. A unified treatment of creation of particles of different spins by rotating black holes is given. The particle creation will eventually start reacting back on the gravitational field and the first step in this computation is to study the expectation value of the energy momentum tensor. V. P. Frolov has been involved in one of the most detailed studies of the expectation value of the energy momentum tensor around black holes and this volume provides at one place his contribution to the subject. Finally these quantum effects could modify the formation of singularities so rigorously proved by the theorems of Penrose and Hawking. A model calculation presented here shows that higher derivative terms dominate the evolution near the singularities and may be could eliminate it. The treatment of various topics is rigorous and the book is heavy on formalism. What I missed was an adequate physical appreciation of results obtained; e.g on page 87 when the thermal nature of the radiation is related to the equivalence principle the discussion is left dangling. In view of the fact that the book does not address itelf to classical and astrophysical effects of black holes a more precise title would have been 'quantum effects in the gravitational field of black holes'. Further, the value of the book would have been enhanced if it contained related work by other Soviet groups as well. May be the editors will be more generous next time!

Barring the above minor reservations the book is a welcome addition to the existing literature on the subject. It makes more accessible the work done in the USSR on quantum field theory in black hole space times and it is interesting to note that many
results avalable in Western（Engish）harature have their counterpans in Soviet pournals．To speed up ther avalabolity would it not be betrer if such pedagogeal and techncal maternal appeared as revew articies rather than as books？May be，then such work would be kess dated，and instead of ponalle semence movements the Soviet and Western brocks．one woud have better tewhack that enrabes and goes a long way in inproving the gencral qually of resouch The hook is reasonably well produced and free from obvious typographacal ermors A couple of manor ones are：on the contents page where friedmon states hat ixcome Friedman sutes，on page 87 Giman is reference number 185 rather than 176 ，atso hound the tambation of some technical terms unusual eg early back holes for pmondial bach bokes，perpedtal blach holes for eternal bata holes，selectons of vacuon sates tor chome of vacuma states，powerfui gravitational theld for strong gravational fieft，acheve mfinty for reach unfinity and fow of preservation for law of conserwathon．Lastey，like other reviewers these days，I camot but point out the exorban cont of volumes in this sermes．Will not this defeat the very pupose of bringing out such volumes and propagate the selection effect a prionties in tavour of westem science？

Raman Research Instutue B．R．Iyta
Bangalore 560 usio．

Expanding protons：Scatleriny ai ngite energies by Hung Cheng and Ta Tsun Wu．The MiT Press，55，Hayward Sireet，Cambridge，Mass．12142，USA，1987，pp．285， 84 figures，$\$ 40$ ．Indari orders to Altiated East－West Press Pvt．Lid．，6，Roselyn Gardens Apartment，20／A Bamaby Road．Madras 600000.

The book under review covers a specialised area in particle physics：the asymptotic hehaviour，in gauge fieh theories，of haghenergy hadronic collosions in the kinematic region where $\begin{gathered}\text { ritasverse monenta transferred to particles m the tinal state are small．}\end{gathered}$ These events constutute the dommant component of hadronic collisions at high energies． Notwithstanding the sustamed merest in this area and the importance of this topic in high－energy physics，avalable materiats are scattered over numerous papers and review atticles．The book thus fulfis a long－standing need of the interested readers and researchers．

Starting wath a brief introducion to relativistic gauge field theory the authors quickly proceed to develop the mathinery for the exposition of the model of expanding protons discovered by them．Thus model，it should be stressed，is onty one among several models popular in the theory and phenomenology of high－energy hadronic collisions．What distinguishes it from the rest is the rare distinction that experiments confirmed the predections of this model years after they were first made．In the year of its birth，all mgniticant predictions of the model of expanding protons seemed to be wrong expermentally．Total cross sections in all hadronic collisions seemed to approach from whe to asynptotically energy－independent constant．The elastic fraction of the total cross section seemed to decrease with increasing collision energy suggesting a Regge
behaviour, and phenomenologists were strugghng with mixed success to verify a shrinking elastic diffraction peak, the sme qua mof of Regge behavoour. Things took a dramatic turn with the announcement of the first results on proton-proton scattering at the Intersecting Storage Ring at CERN. The total cross nectom, mstead of decreasing to a constant seemed to have taken an upturn as predicted by the athors three years earlier. Whatever lingeng chubt one had, melted away with the observation in 1974 in the CERN protomantiproton coilader of an metease on the ratio of the integrated elasta cross secton and the total eross section. nine vears after the theoretsal predictons were made.

The key to this remarkuble success of the model seems, in retrospect, to the present revicwer, to be the choice by Cheng and Wu of a realistic field theory, the gauge field theory, as the lesting ground for their asymptotic studies. But for this choice the asymptotic growth of the tower diagrams would not have summed to a power of the energy that violates the Froissart or the unitarity bound. This is crucial for their final predictions of an asymptotic growth for the total cross section saturating unitarity and of the increase of the ratio of the integrated elastic cross section and the total cross section to an asymptotic value half. These predictions are, in fact, the results of implementing untarity in the direct channel through the eakonal representation, with the encrgy dependence of the ekonal determined by the tower diagrams.

The picture of the expanding proton would be incomplete without an exposition of the monumental work and hard calculations that led to it. In unfolding the exciting story of the expanding protons the authors have two types of readers in mind. The first cight chapters of the book are intended primarily for those who are interested only in an intelligent understanding of the main features of high-energy hadronic collisions and the theoretical basis of the model of expanding protons, without being bogged down in the details of complicated calculations. In these eight chapters calculational procedures for vector-meson exchange diagrams for fermion-fernion clastic scattering are first developed, the droplet and the Regge pole models for potential scattering at high energy are reviewed, the kinematical origin and relative importance of the fragmentation and the pionsation components of multi-particle production are explained. and finally, the model of expanding proton is developed and its predictions compared with the experimental data. The remaining four chapters (chapters 9 to 13) together with Appendices B and C elaborate on the computational details and techniques. These are addressed mainly to researchers interested in high-energy behaviour in perturbative gauge field theories.

Saha Institute of Nuclear Physics
Haridas Banerief Calcuta 700009.

Group theory, gravitation and elementary particle physics (Proceedings of the Lebedev Physics Institute, Volume 167) edited by A. A. Komar. Nova Science Publishers, Inc., 283, Commack Road, Suite 300, Commack, New York 11725, 1987, pp. 365, $\$ 98$ (US \& Canada), \$117 (clsewhere).

This volume, a translation from Russian, is a collection of scholarly articles mainly dealing with coupled quasi-classical interacting quantum systems described under various situations inciuding gravitational fietds and applications of geometric and group theoretic methods to integrable non-linear equations with an attempted understanding of the associated dynamical symmetries. There is also an article on theories with general type of constraints and their canonical formalism, one on the initial state of the universe and another on the Aharonov-Bohm Effect. Altogether a rather wide sophisticated specialised selection of subjects! At this stage, however, one must caution prospective readers of the book! Not only are the articles written in a rather terse style with little introduction, going straight into the troubled depths of the respective subjects making it hard work even for the well-initiated but what makes it even harder work also is the tather poor printing, which manifests itself in various parts of the book.

For instance, in the very opening article dealing with the 'Initial state of the universe' by Markov and Mukhanov, right in the abstract itself one sees whole expressions and fomulae omitted! Probably one has to fill in the blanks ofter reading the whole article. This article deals with the modified Einstein field equations in which the gravitation constant is a function of the cnergy density E in the early universe, decreasing with increase of density (in spirit with asymptotic freedom of gravitational interactions) vanishing as $\mathrm{E} \rightarrow \infty$. At the same time it is claimed that what vanishes is the product of the energy-density-dependent gravitational constant and the energy-momentum tensors, each particle becoming increasingly of lower mass as E increases. The cosmological constant Λ is also made a function of E. It is claimed that the singularity can then be avoided. The authors have not mentioned similar works of various other authors who have pointed out several difficulties with these kinds of models. Moreover, it is not clear how the vanishing of the cnergy moncontum tensor, as the density becomes infinite, smoothly gives rise to a de Sitter state as the initial state of the universe.

The second article by Dodonov and Man'ko deals with a whole range of quasi-classical (mainly dissipative systems with linear classical equations) systems and their quantum description by means of Wigner functions and the corresponding Fokker-Planck equation with the conditions of normalisation, hermiticity and positive definiteness of the density matrix. Some of the problems dealt with by this approach include the damped quantum oscillator, eigenfunctions of quadratic Hamiltonians, charged particles in nonuniform electromagnetic fields, singular oscillators, quantum oscillator relaxation in a magnetic field, etc. Also the quantum corrections to the classical equilibrium distribution functions and thermodynamics potentials are calculated. The generalisations and quantum analogs of classical integral Poincaré-Cartan invariants for these systems are elucidated thus giving a gcometric interpretation to the above problems. This article is the longest (84 pages) in the book and makes difficult reading with many equations. The reader really has to work through. Again as is the case with all the articles, the poor
 (5.25) and the equatom on pages $47,51,52$ and 50 though on many of the other pages it is no betke? There are many monor ponts the the C'ismur operator heing spet with a k. an on p 33. Or course, many of the topes are rigomenly treated hike the relaxation of the
 along wh the thermociynamacs monded The that attide by Zelonkov and Frolov deals
 near-iotatng hack holes. The diferences from the maswews cases ate clearly brought out.
 fueld is found for the case of agobracaliy specta sraces An metestme gravititonal amalog of the dimagnetsm cifect is found for ite seabar fele in the Kerr metio
 of the spin of the field wath the argular momentand of the bach bole very detaled expressions are given for all the components of the wergy momemmm tenor and general expressions for effective attons in aborary gratathomel tiods.

The fourth anticle by Glauher and Manko cuals with danping and fluctuations in systems of coupled quantum oschlators, ic. propertes of equhbriam wates to wheh a system of N -coupled oscilators meracting with a heat bath is draver. The heat bath is
 its own bath characterised by a temperature. Wioned oscoldators and ther corretan functions are also consdered. Abso the study is extended to N-dimensmonal forced osciltators. Although some of these topics may have some interesting applicatoms, for example to gravatanom wave detectors, as is the case with ald the other articher, hat printing agan takes its toll! For example on p. 160 , in equ (5.36) the exponentals are missing in the frst row of the marnx and in can (5. 39) the alagee symbol is not visble.

Such examples of indifterent filling up' of equations abound troughout the book requiring more "slog' from the reader.

The filth article by Skarzhinskiy deals with difterent aspects of the Aharanov-Bohm Effect. Solemid-chaged parthe scattering is considered in some detal. The cffect is investigated for bound states including Latadathevels. Unhke maty of the other arteles this has a dear introduction. The next article by Dodenov of al surveys select results in parametric excitation of quantum systems having dynamical syumetry, i.e. systems whose Hamikonan is a function of sime with values in a certain Lie algebra; the evolution operator belonging to a representation of the Lu group which may be explicily found. Examples are non-stationary bamonic oscillators and spin motion in
4. magnetic fieids. Several new mathematical sum rules and generating functions ate derived. The article by Fradkina deals with canomead formalism and S -matrix of theories with constraints of the general type, i.s. first and second class constrants of arbirary ratrk. The author claims to have derived correct expressions for S matrix of theories that are momentum-quadratic with canomal gauges and includugg ghost fichs. String theories are generalised to relativistic membranes (higher dimensionalobjects) and it is demmonstrated that the theory of membranes in $(n+1)$ dimensional space is a system with

 with. The treatment here $1:$: $4:$, whethy and matey recent reterences are not encluded.

 Enst equations (for axially symmeiric grantatomal feids) and appled to varous
 gauge group (SOCNB). The secomd by Lemon of at wes a purely abebraic method of
 The symmetry base wh the methen as clated to monte dmensonal Lic algebras. A useful list comptrag some thry two completely megrabe non-linear equations is a main feature of thas anticle. Transion to suantum models and muladimensionat generalisatoons is mot Uscotsed.

Despite maty of the shortommes dincussed anove, this book is on the whote a useful collecton of artocles for serous students veceatising in gatam mechanies of dissipative open systems and gromb theoretical methoms applied to mon-honear systems.

Indan lnstutute of Astroghesis
(c. Sivarami

Bangalore 560 0 12 .

Topics on montimear thereve wave-plasmat hateractions by Klaus Baumgartel and Konrad Sauer. Birkhanser Velas. (H-1010), Basel, Switerlanci. 1987, po 222. S. Fr. 52. Indan orders to Springer Booh (maia) Private L.d.. 6. Community Centre. Panchsheel Park, New Dellu 116 :17.

This monograph is the tatest in the market on the subject of nonlinear interactions in the plamas it hat been translated from the onginal Geman version. Natarally there are some defocicoces in tha depammet whenever books are translated. However bots of serious effors have gone into planning the monograph. Even though it is a nonograph it can be comprehended even by beginers. There is a chapter on basic plasma equations followed by limear wave theozy. Threc chapters have been devoted to weakly nonlinear interactions. Strong nonhmear waves have been reated in the hast two chapters.

Basie equatums have heen grea for simulated Raman scattering, wo plasmon decay. and their theshold derived. The treatment is based on fluid cquatons. Subiects like nonlinear Landan Damping have been excluded. There is chapter devoted to Brillouin scattermg in homogencous and mhomogeneous plation in the convective and absolute instablity domains Sume cffort has also been made to anderstand saturations of such instabilities. Resonance absorption has been treated very well. Solitons, shock-like structures, soltary waves through the use of Zakharov equations occupy lots of space. If one wants a quick grasp for wave steepening and wave-breaking, this book is the right place. Odd-integer half harmonc have been treated reasonably well. There is an attempt
to compare the theoretical results wath experments. but the monograph is weak in this deparment. There are a large number of reterences which is positive point, but there is very little critical revicw of these. The reader, nadvertently, is made to beleve as if all the quoted papers are correct. Certain references are conspicuous by their absence, particularly those appearing in the Advances thplasma physacs by A. Simon and W. B. Thampson (eds), John Wiley. References to the English translation of the Russian Journals have not been given.

The monograph will certainly be welcome by the plasma community. Any one trying to understand the subject will find it a very friendly book to read.

Department of Physics
Som Krishan
Indian Institute of Science
Bangalore 560012.

Special functions of mathematical physics by Arnold F. Nikitorov and Vasilii B. Uvarov (translated by R. P. Boas) Birkhauser Verlag. P.O. Box 133. CH-4010, Basel, Switzerland, 1988, pp.427, S. Fr. 168. Indtan orders to Springer Book (India) Private Lid., 6, Community Centre, Panchsheel Park, New Dethi 110017.

Mathematical deseription of many physical phenomena leads to partial differential equations of rather complex form. The usual way of simplifyng the equations is to use the method of separation of variables which reduces the partial differential equations into ordinary differential equations. These simplified equations are of the generalised hypergeometric type. A knowledge of the explicit solutions of these equations is necessary to get a better insight into the qualitative features of the original problem. So a study of the hypergeometric functions is inc vitable and these functions include, as special cases. the so-called peceal tunctions of mathematical physics. namely, the chassical orthogonal polynomials, spherical harmonies and Bessel functions.

There are many books available on the topic of special functions. But the present book presents a unified and elementary treatment of the special functions based on the generalsation of the Rodngues formula satisfied by the classical orthogonal polynomials. This approach makes it possible to give explicit integral representations for the special functions. From these representations using only elementary complex analysis, the authors derive most of the important properties of the special functions. Another novel feature of this book is the treatment of classical orthogonal polynomials of a discrete variable. These polynomials are of interest in the theory of difference methods,

Let us now move to the description of the contents of various chapters. The first chapter miroduces the differential equations of hypergeometric type. For the polynomial solutions of such equations Rodrigues formula is proved and integral representations are obtained. From the Rodrigues formula many basic properties are derived. The second chapter deals with elassical orthogonal polynomials in details. For the Jacobi, Laguerre and Hermite polynomials basic formulas and expansion results are proved. As far as the
qualitative behaviour of these polynomials are concerned certain inequalities and asymptotic expansions are established. Certain convergence theorems are proved and some applications to quantum mechanics are given.

Another important class of special functions is the spherical harmonics. These are very useful in atomic spectra and seattering theory. They are obtained by considering bounded solutions of the Laphace equation in spherical polar coordinates. The role of group representations has been made clear in the study of generahsed spherical harmonics which are used in the theory of angular momentum. Classical orthogonal polynomials of a discrete variable are studied as solutions of difference equations of hypergeometric typc. Useful informaton about Hahn. Chebyshev, Kravchuk, Meixner and Charlier polynomials are gathered. Another useful topic treated in this chapter is the classical orthogonal polynomials on non-uniform lattices.

The third chapter deals with Bessel functions. Typical problems that lead to Bessel functions arise in solving the Helmholtz equation in cylindrical polar coordinates. Bessel functions and Hankel functions are introduced and various representations of them are obtained. All the basic properties like recursion relation, differentation formulas, asymptotic expansions are proved. Graf and Gegenbauer's addition theorems for Bessel functions which are useful in mathematical physics are obtained. This chapter concludes with a brief description of the semiclassical approximation for the solutions of equations of second order getting asymptotic formulas for classical orthogonal polynomials and Bessel functions of large order.

The classical orthogonal polynomials and Bessel functions are special cases of the more general hypergeometric functions. In the fourth chapter the authors study basic properties of the hypergeometric functions. Various special functions are expressed in terms of hypergeometric functions. The last chapter gives applications of special functions to certain concrete problems of mathematical physics, quantum mechanics and numerical analysis. The authors give casy solutions of some basic problems in quantum mechanics like the problem of the motion of the particles in a central field and solutions of the Schrodinger, Dirac and Klcin-Gardon equations for the Coulomb potential. The zonnection between Clebsch-Gordon coefficients and Hahn polynomials is presented.

Since familiarity with the properties of gamma function is necessary for the study of ipecial functions, the authors have included a brief account of the theory of gamma unction in the appendix. In the appendix they have also collected all the basic formulas and main properties of the most important special functions. The book contains a large imount of material and the exposition is concise and lucid. Many basic formulas are given in the form of tables for quick reference. This book will certainly make a nice eading and will serve as a good reference book for physicists and applied mathematifians.
 C1-4010. Basel, Switzerland, 1985, pe 14!, S Fr. 7h, Indeta orders to Soringer Book (India) Private Ltd, 6. Communty Centre. Pamhaheel Pak. New Delhi 110017.

A fine new introductory book in set theory The booh comtanes atself to the most basic ideas and results in the subject. Unhke most of the books written on the subject in the last two decades, it first presents the mave set theory, a la Cantor, then the formal set theory is developed. At the end a minimum amount of loge is preschted to prepare those who wish to plunge into the deeper parts of set theory. The book is writen in a very pleasant styie and is quite easy to read. However mbeh of the proofs are left an an excreise for the reader. Therefore a student, or a person suw in the area, must work out the problems. till be is able to do the everoses in has heak.

Indian Statistical lnstitute
S. M. Srivastata

Calcutta 700035.

Finite difference methords on irreguar metworks by bema lleinrm. Bhthauser Verhg, P.O. Box 133. CH-4010. Basel, Switzerland. 1987. pp. 206. SFit. 68. Indam orders to Spronger Book (India) Pravate Lid , 6. Commanty Centre, Danchhace Park, New Delhi 110017.

Finite element method (FEM) and finite difference mothod (FDM) offer possibilities to discretize a given set of equations including boundary conditions starting from a suitable 'triangulation' of the domain. There is a vast literature on these topies. Needless to add that FDM is much older compared to FEM. It is well known that FEM has the following advantages:
(i) domain is better approximated;
(ii) symmetry properties of the original equation are preserved;
(iii) Natural boundary conditions are treated in a better way;
(iv) yields to the analysis of convergence using Hilbort spuce methods;
(v) can handle weak solutions with very little smoothness.

All these are possible because FEM is based on the so-called averaged formulation of the problem. On the contrary, the classical FDM is based on the so-called point-wise formuation of the problem. Usually, FDM requires solutions to be smooth of certain order. In fact, all the advantages listed above may be lost in FDM. The main point in which FDM scores over FEM is in the simplicity of the construction of the finite difference schemes (FDS) In spite of its drawbacks, FDM is more commonly used by engineers just because of its conceptual simplicity.

Thus the followng questomarses natamally. Com one mody the classical FDiv iar such a way that it emoys all he advandages of HEM and it retans its simplicity to some extent? The answer to this queston is proveded not long ago. It is mainly available in many research articles mengineerng htetature and the method is known under various names such as : box motegratom method, balance method, finite control volume method, ete. So far, there was mo comprehensive study of the mathenatical analysis of this method and the present volume attempts 10 foll in this gap.

It presents the description of the mathon, ats convergence analysis and error estimates in some model probiens which are seomd-order ellipuc boundary vatue probems (BVP) in the plane

Let us brefly take a looh at the contents of the book. After introducing the BVP, the author takes a "thandathon' of the doman by tringles and rectangles. The first step in the modified mothod is to mentroluce a scondary triangulation by means of the boxes ($\mathrm{P} B$ and MD) associated to cach node of the first triangutation. The idea of the balance method in constructug $\& D S$ is lio megrate the equation by parts in these boxes and discretize the equation ita a shitable B'BS. This is done in chapter 3.

In chapter 4. varions properties of the difference operators A_{h} are discussed. Symmetry, monotonicity and positive def̈nteness are among them. Much of the work in this analysis resembles that of FEM. For instance, disercte versions of \mathbb{L}^{2} and H^{1} nomes and Poncare fnequality are neteded to prove positive definteness. Chapter 5 is devored to proving erfor estmates in terms of the parameter of discretzation. in chapter 6 , the author provides an extension of the method to the case whete the first-order terms are present in the operator. Thes corresponds to the efassical upwand schemes. Generalization of the method to ohlique derivative problems and fourth-order problems are presented a chapter 7.

It is unfortunate that mot much space is devoted to the discussion of the implementation of the method. Thes people who are primarily interested in the practical side of the method may not derive much benefit trom this book. On the other hand, the book is useful to the readers interested in the proofs of convergence of the method.

The most important patt of the book is the construction of the GDS which is done in chapters 2 and 3 . Here a het of notatons ate introduced. It nay be difficult for the reader to digest all these in a quick way. For geople who are not familiar with the subject of FEM, the readng may be heavy and rough. The printing of the book does not offer any help to the reader in this regard. Thus the book is definitcly not suitable for beginmers in the subject. To apprectate the value of the book in a better way and see the analogy with FEM, the reader is advised to go through first some of the standard and simple texts on FEM (e.g. Carlet: The binte dement method; TIFR Lecture Notes, 1975)

Contemporary mathematics, selected papers on algebra and topology by G. Birkhoff, edited by G. C. Rota and I. S. Oliveiat Birkhater Verlag. P.O. Box 133, CH-4mith, Basel. Switzerland, 1987, pp. 628. SFr. 138. Indian orders to Springer Book (India) Private Ltd., 6, Community Centre, Panchsheel Park, New Delhi 110017.

The volume is a welcome addition to the mathematical literature. It has been broughtout by Birkhauser under the series 'Contemporary mathematicians', and is edited by Gian-Carlo Rota and Joseph S. Oliveira. The volume is divided into six sections, viz., Lattices; Universal algebra; Topology; Lie groups and Lie algebras; Lattice-ordered algebraic structures; and History of algebra. It contains 39 publications in these areas by Garrett Birkhoff, who has written not only the preface to the volume but also his own comments for each section. His own beginning words in the preface characterize the attempt of selection and importance: "The present volume of reprints are what I consider to be my most important and influential papers on algebra and topology. To tie them together and to place them in context, I have supplemented them by a series of bricf essays sketching their historical background (as I see it). In addition to these I have listed some subsequent papers by others which have further developed some of my key ideas".

There is an autobiographical element in the entire volume. While the author describes the development of his papers, he is also dwelling on his circumstances, personal likes and distikes, opinions on others, father's influence on his academic thinking, compulsions by events in history, etc. The volume presents only about one-fifth of the total works of Garrett Birkhoff, the remaining four-fifths belonging to applied mathematics areas. The same is apparent from the list of his Ph.D. students and their topics in a span of 40 years. In spite of this greater time given to research papers in applied mathematics, his book-writing has been more or less evenly divided between algebra and applied mathematics.

The four papers listed under the section heading "History of algebra" are worthy of special mention. The first two of these are well known and have been well read. They are: 'Current trends in algebra' (Am. Marh. Mon., 1973, 80, 760-782) and 'The role of modern algebra in computing' (Computters in algebra and number theory. G. Birkhoff and M. Hall (eds), Am. Math. Soc. 1971, 1-47). The next two of the papers under this section give the rise of modern algebra up to 1950, in two parts, - the first one up to 1936 and the second one, the rest - and give a racy account of the rise and growth of modern algebra from Emmy Noethers times, through algebraic geometry, covering various British, American and German traditions, the influence of high-speed digital computers, problems of optimization and computational complexity, etc. These fout papers carry the autobiographical undercurrent rather explicitly. They scintillate the mathematical dynamism of Garrett Birkhoff. One cannot also escape noticing his slight bias in favour of stressing the Anglo-French influence in the early development of algebra and related processes of thinking.

For both the present and the future generations of mathematicians, this is a captivating collection.

Birla Institute of Technology and Science
V. Krisinamurtiy Pilani, Rajasthan.

Cadmium in the environment: Experimentia Supplement Vol. 50 edited by H. Mislin and O. Ravera. Birkhauser Vertag, P.O. Box 133, CH-4010. Basel, Switzerland, 1986, pp. 7-144, SFr 64. Indian orders to Spmoger Book (India) Private Ltd.. 6. Community Centre, Panchsheel Park. New Delhi 110017.

This multi-author volume is based on parts of two reviews published in the Journal, Experimentia. The text has been divided into three parts: (1) Cadmium in the environment, (2) Bioaccumation of Cadmium, (3) Cadmium and human health.
Environmental science is a fast developing field of current research. A wealth of data has already been accumulated in this field on diverse aspects. Yet the field is wide open for further exploration, as there are many inconsistencies in the available results due to a number of controlling factors unattempted or ununderstood.

Cadmium is one of the environmental metal pollutants which has attracted the attention of many environmental scientists in the recent years. In fact, it has become a subject of scrious concern to even multidisciplinary researchers primarily due to its detrimental and dangerous consequences on the 'living world'. As one of the authors (S . Ray) has aptly put in his article; in spite of tremendous progress made over the years, the ole of Cd in the environment and consequential outburst to living systems is still very rebulous since mostly the data has come from laboratory studies. Hence the basic inunderstanding of the entire process, in a broader perspective, is likely to remain so intil some of the rudimentary processes like uptake, storage and elimination, etc., are ully investigated and understood. In this context, this volume offers a rich panorama of vide range of results and contents to stimulate further investigations, although data argely pertinent to developed countries (UK, USA, Japan, etc.) only has been taken nto account.

Some of the salient features, and shortcomings of this volume are:
The editor has strived to give an exhastive overview of the subject by selecting rticles of specialists in the filed.
The book not only serves as an excellent source book information (appended with a st of numerous references to specialised scientists working in the field, but also in reating a general awarcness about Cd toxicity, environmental role and effects on human ealth as far as any non-specialist (individual) is concerned.
An apparent drawback of the book seems to be that the editor has overlooked, in alecting and including quite a few articles in each part which overlap to quite a ignificant extent in their objectives, data contents and presentation. The division of the
aticles uto the three ditherent parts appears to be very arbitrary. This is quite evident from the titles of the atioles which are self-cxplatatory to their contents and more so as one gimpses at the content sub-tilles.

The first part of the book comprises seven artucles when deat with aspects ranging from the geochemistry of Cd to its place and role in atmosphere and waters of ail kind. A noteworthy ardicle of this part is the "Evaluation of methods for the speciation of cadmium by M. Astruce. This is a well-presencel artucle belpfal to not ony an analyical and envrommental chemint bat equally 10 a smothe morgane anf bio-inorgance chemist.

The second part comprises six articles whech could broadily be divided into two streams. One prescats facts about aquatic chemptry of (di and its inthence on aquatic living species. While the other ravels the agricultuad and phyochemical facets of Cd pollution with a brief remark on zoo technology of cd in one of the articles.

The las part of the volume spans biochemestry of (d rehevant to human system (largely with geference to food and heath hazards). Two arbcles in this part are quite significant. One deals with the analytical amper of Cdexposure and toxicty to human organs (Biologeal indicators of Co evomate and raxicit! hy Z. A Shakh and R. M.
 Whise the other discusses the tancaties al embonmental (c) pollution problum to burban health (Cd-the environment and human bealth--An owerview by K. J. Yost). thes artice thashes ont the very whectuve and data comtemt of the rest of te artides and is unique as it hys emphasis to show that (d, as an con iromental towe pollutant. does not appear to pose a major heath problem of serious concern. Indeed, this article is in total contradiction to the very spinit of this edited volume. However, the edtor deserves compliments for inclusion of this unigue artiche.

It is rather not an easy kask to bring forth in a comprehensive manner, the revicw/overview highlights of a mult-authored compatation of this kand spanning on varied aspects from article to article yet shating with the owerlapping contents.

The pesent vemtare, however, does deserve a place in research libraries.
Inorgaic and Physical Chemstry Deparment R. R. Tramak Indian Institute of Scionce
Bangalore 5601012 .

Basic orgamometallic chemistry by lonel Haduc and 5. J. Zackerman. Water de Guytu and Co., P.O. Box 11020, D-1000, Berlin 30, 1955, Pp, 404, DM 169/829.90.

This book is based on another book by Professor Haiduc in the Rumanian language. published in 1974.

The book is divided into three parts. In part I, apart from introductory material, are to be found a general and elementary discussion on bonding in organometallies, a section

 metallics.
 trased on the namber of chechom contubuted by the geands. Thus we have chapters on

 atracture and chassatatoen of hamblom-ratal organometallic compounds', at the

The fart questum that athes about the brok is ahout the entended audience, which is

 nether workedexamples not problems to ard the sudent if the book as for an advanced course, it probably lath duph and mome momenty, references. The book is owousty not meant as a refereme tex.

Simitarly. at is mot ckar whether the buok in directed at organic or morganc chemists. No attempt hats been made to gre even an idea of the amazing epplieations of organometallic chemasty to oryma syathesis there may be a shight bas towards
 chemstry Be that as it maty, ha tyte of the book, being descriptive, is out of tune with the times. An approach where umfyng themes were seoned nould bave been more appropriate. At dmes, to matat orgame momists, the book may brong back terifing memories of descreptive inorgana chemistry.
Another umportant shortcomme concoms language and panting. As was montoned abow, thes book sh based on : Rumaman text-book, In thes revewers opmion, the translation has heen less than protessional and may leave many in the country smiling wh satisfactoon. An illastrative example. fiom p. 45 is: The great reactivity of the alkali metal compounds and the small difterenees between the behaviour of the sodium, potassum and the heavier alkah metal derivative has limited interest to those of sodum, the most readily available of them'. Another example, which may be partoularly pleasing to Indan ears is (from p. 147): Few ge manols, $\mathrm{R}_{3} \mathrm{GeOH}$, are known: usually $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$, or $\mathrm{C}_{6} \mathrm{~F}_{5}$,"
Similarly, proathy and other errom abound in the book, especailly in the first half. Indeed, errors stant from the word go. The note on the cover illustration says: Decaphenylstannocene, $\mid \eta^{\dagger}-\left(\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{~K}_{5} \mathrm{I}_{2} \mathrm{Sn}^{17}\right.$: The first symmetrical main-group sandwich compound (Get it?!)
My estimate is that the book averages nearly one printing or other error per page. However, I suppose the printer is hardy responsible for unbalanced equations and groups which mysterously trancform themselves from ' R ' on one side to 'Me' on the other. Here is a sampling:
p. 29 : 'receipies'
p. 65 : Structure of RmgBr (OEt) 2 is wrong
p. 75 : second equation, right-hand side: $\mathrm{Hg}(\mathrm{C} \equiv \mathrm{CH})_{2}$ shond be $\mathrm{Hg}(\mathrm{C} \equiv \mathrm{CR})_{2}$
p. 91 : 'a unusual boron-nitrogen compound'
p.129: second equation not balanced, also $n=$?
p. $167: \mathrm{R}_{3} \mathrm{Sn}^{2} \mathrm{NMe}_{2}+\mathrm{EtNH}_{2} \rightarrow \mathrm{Me}_{3} \mathrm{Sn}-\mathrm{NEt}^{2} \mathrm{SnMe}_{3}+\mathrm{Me}_{2} \mathrm{NH}{ }^{-}$
p. 168: 'In solid $\mathrm{Ph}_{3} \mathrm{Sn}_{\mathrm{S}}-\mathrm{S}-\mathrm{SnPh}_{3}$, the bond angle is ncarly tetrahedral.... (which bond angle?)
p.213: $\left[\mathrm{RN}_{3}\right]^{+}$should be $\left[\mathrm{RN}_{2}\right]^{+}$
p.243: last equation - 'diglime'
p.281: Thus triphenylcyclopropenium cation form a salt.....'
p.293: Structure of α-pyrone is wrong, lacking a double bond.
p. 296: first equation $-(2 \mathrm{LiR})$ should be (-2 LiBr)
p.341: 'tropyllium'
p.357: second equation - ' R ' groups missing on right-hand side.
p.375: last equation - ferrocenc has a stray Hg attached.

All in all, therefore, recommending purchase is out of the question. Which is not to say the book is useless. Instructors (.e e not students) may find it useful if they can find the time for intelligent supplementation. A pity, for the book is otherwise beautifully got up. And, a surprise, for it is from a major publisher.

Department of Organic Chemistry
S. Chandrasekhar

Indian Institute of Science
Bangalore 560012.
Dinosaurs and their living relatives by R. H. Hedley. Cambridge University Press, Cambridge B2 2RU, UK, 1985, pp. 72, \& 4.95. Indian orders to: Affiliated East-West Press, 6, Roselyn Gardens Apartments, 20/1A. Barnaby Road, Madras 600010.

It is a completely new approach to the study in trying to discover the relationship between the dinosaurs and other related animais - both diving and extinct.

The present edition has re-designed chapters adding on new information throughout the text.

A great deal of imagination and effort have gone into the book to simplify the subject by an exploratory approach with simple questions and answers, in step by step stages, using a series of full colour photographs of the many collection of the National History Museum's famous dinosaur collection.

This edition has further simplified the subject and made it more absorbing by creating a better understanding in the relationship of the characteristics of the dinosaurs from the knowledge of fossils and the animals seen today which are physically related to them like the birds and crocodiles. It has successfully used drawings, illustrations, photographs and colours to show similar basic patterns or to distinguish the misleading similarities in anatony, embryo development and other structures like horn skin and feathers.

This book is an excellent publication in the hands of an evolutionary biologist and a layman wanting to know nore about the dinosaurs and its hnkages with the present living animals.

Director
Kamal Naidu
National Zoological Park
New Defh 1100003.

Jished by P. R. Mahapatra, Executive Editor, Joumat of the Indan Institute of Science, Bangalore 560012
Fypeset and printed at Phoenix Frinting Company Pvt L.td. Attibele Ind Area, Bangalore 562107.

